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Preface

My motivation for writing the first edition of Introductory Econometrics: A Modern 
Approach was that I saw a fairly wide gap between how econometrics is taught to under-
graduates and how empirical researchers think about and apply econometric methods. I 
became convinced that teaching introductory econometrics from the perspective of pro-
fessional users of econometrics would actually simplify the presentation, in addition to 
making the subject much more interesting.
 Based on the positive reactions to earlier editions, it appears that my hunch was cor-
rect. Many instructors, having a variety of backgrounds and interests and teaching  students 
with different levels of preparation, have embraced the modern approach to econometrics 
espoused in this text. The emphasis in this edition is still on applying econometrics to 
real-world problems. Each econometric method is motivated by a particular issue facing 
researchers analyzing nonexperimental data. The focus in the main text is on understand-
ing and interpreting the assumptions in light of actual empirical applications: the math-
ematics required is no more than college algebra and basic probability and statistics.

Organized for Today’s Econometrics 
Instructor
The fourth edition preserves the overall organization of the third. The most noticeable fea-
ture that distinguishes this text from most others is the separation of topics by the kind of 
data being analyzed. This is a clear departure from the traditional approach, which presents 
a linear model, lists all assumptions that may be needed at some future point in the analysis, 
and then proves or asserts results without clearly connecting them to the assumptions. My 
approach is first to treat, in Part 1, multiple regression analysis with cross-sectional data, 
under the assumption of random sampling. This setting is natural to students because they 
are familiar with random sampling from a population in their introductory statistics courses. 
Importantly, it allows us to distinguish between assumptions made about the underlying 
population regression model—assumptions that can be given economic or behavioral 
content—from assumptions about how the data were sampled. Discussions about the con-
sequences of nonrandom sampling can be treated in an intuitive fashion after the students 
have a good grasp of the multiple regression model estimated using random samples.
 An important feature of a modern approach is that the explanatory variables—along 
with the dependent variable—are treated as outcomes of random variables. For the social 
sciences, allowing random explanatory variables is much more realistic than the traditional 
assumption of nonrandom explanatory variables. As a nontrivial benefit, the population 
model/random sampling approach reduces the number of assumptions that students must 
absorb and understand. Ironically, the classical approach to regression analysis, which 
treats the explanatory variables as fixed in repeated samples and is still pervasive in intro-
ductory texts, literally applies to data collected in an experimental setting. In addition, the 
contortions required to state and explain assumptions can be confusing to students.



 My focus on the population model emphasizes that the fundamental assumptions under-
lying regression analysis, such as the zero mean assumption on the unobservables, are prop-
erly stated conditional on the explanatory variables. This leads to a clear understanding of 
the kinds of problems, such as heteroskedasticity (nonconstant variance), that can invalidate 
standard inference procedures. Also, I am able to dispel several misconceptions that arise 
in econometrics texts at all levels. For example, I explain why the usual R-squared is still 
valid as a goodness-of-fit measure in the presence of heteroskedasticity (Chapter 8) or seri-
ally correlated errors (Chapter 12); I demonstrate that tests for functional form should not 
be viewed as general tests of omitted variables (Chapter 9); and I explain why one should 
always include in a regression model extra control variables that are uncorrelated with the 
explanatory variable of interest, often the key policy variable (Chapter 6).
 Because the assumptions for cross-sectional analysis are relatively straightforward yet 
realistic, students can get involved early with serious cross-sectional applications without 
having to worry about the thorny issues of trends, seasonality, serial correlation, high 
persistence, and spurious regression that are ubiquitous in time series regression models. 
Initially, I figured that my treatment of regression with cross-sectional data followed by 
regression with time series data would find favor with instructors whose own research 
interests are in applied microeconomics, and that appears to be the case. It has been grati-
fying that adopters of the text with an applied time series bent have been equally enthusi-
astic about the structure of the text. By postponing the econometric analysis of time series 
data, I am able to put proper focus on the potential pitfalls in analyzing time series data 
that do not arise with cross-sectional data. In effect, time series econometrics finally gets 
the serious treatment it deserves in an introductory text.
 As in the earlier editions, I have consciously chosen topics that are important for 
reading journal articles and for conducting basic empirical research. Within each topic, 
I have deliberately omitted many tests and estimation procedures that, while traditionally 
 included in textbooks, have not withstood the empirical test of time. Likewise, I have 
emphasized more recent topics that have clearly demonstrated their usefulness, such 
as obtaining test statistics that are robust to heteroskedasticity (or serial correlation) of 
unknown form, using multiple years of data for policy analysis, or solving the omitted 
variable problem by instrumental variables methods. I appear to have made sound choices, 
as I have received only a handful of suggestions for adding or deleting material.
 I take a systematic approach throughout the text, by which I mean that each topic is 
presented by building on the previous material in a logical fashion, and assumptions are 
introduced only as they are needed to obtain a conclusion. For example, professional users 
of econometrics understand that not all of the Gauss-Markov assumptions are needed to 
show that the ordinary least squares (OLS) estimators are unbiased. Yet the vast majority 
of econometrics texts introduce a complete set of assumptions (many of which are redun-
dant or in some cases even logically conflicting) before proving the unbiasedness of OLS. 
Similarly, the normality assumption is often included among the assumptions that are 
needed for the Gauss-Markov Theorem, even though it is fairly well known that normality 
plays no role in showing that the OLS estimators are the best linear unbiased estimators.
 My systematic approach is illustrated by the order of assumptions that I use for mul-
tiple regression in Part 1. This ordering results in a natural progression for briefly sum-
marizing the role of each assumption:

 MLR.1:  Introduce the population model and interpret the population parameters 
(which we hope to estimate).
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 MLR.2:  Introduce random sampling from the population and describe the data that we 
use to estimate the population parameters.

 MLR.3:  Add the assumption on the explanatory variables that allows us to compute 
the estimates from our sample; this is the so-called no perfect collinearity 
assumption.

 MLR.4:  Assume that, in the population, the mean of the unobservable error does not 
depend on the values of the explanatory variables; this is the “mean indepen-
dence” assumption combined with a zero population mean for the error, and 
it is the key assumption that delivers unbiasedness of OLS.

 After introducing Assumptions MLR.1 to MLR.3, one can discuss the algebraic 
proper ties of ordinary least squares—that is, the properties of OLS for a particular set of 
data. By adding Assumption MLR.4, we can show that OLS is unbiased (and consistent). 
Assumption MLR.5 (homoskedasticity) is added for the Gauss-Markov Theorem (and for 
the usual OLS variance formulas to be valid), and MLR.6 (normality) is added to round 
out the classical linear model assumptions (for exact statistical inference).
 I use parallel approaches when I turn to the study of large-sample properties and 
when I treat regression for time series data in Part 2. The careful presentation and dis-
cussion of assumptions makes it relatively easy to cover more advanced topics, such as 
using pooled cross sections, exploiting panel data structures, and applying instrumental 
variables methods. Generally, I have strived to provide a unified view of econometrics, 
where all estimators and test statistics are obtained using just a few intuitively reasonable 
principles of estimation and testing (which, of course, also have rigorous justification). For 
example, regression-based tests for heteroskedasticity and serial correlation are easy for 
students to grasp because they already have a solid understanding of regression. This is in 
contrast to treatments that give a set of disjointed recipes for outdated econometric testing 
procedures.
 Throughout the text, I emphasize ceteris paribus relationships, which is why, after one 
chapter on the simple regression model, I move to multiple regression analysis. The mul-
tiple regression setting motivates students to think about serious applications early. I also 
give prominence to policy analysis with all kinds of data structures. Practical topics, such 
as using proxy variables to obtain ceteris paribus effects and interpreting partial effects in 
models with interaction terms, are covered in a simple fashion.

New to This Edition
Specific changes to this edition include a discussion of variance inflation factors in 
Chapter 3. Until now, I have resisted including a formal discussion of the diagnostics 
available for detecting multicollinearity. In this edition, with some reservations, I provide 
a brief discussion. My view from earlier editions—that multicollinearity is still a poorly 
understood issue and that claims that one can detect and correct for multicollinearity are 
wrongheaded—have not changed. But I find myself having to repeatedly explain the use 
and limits of statistics such as variance inflation factors, and so I have decided to confront 
the issue head-on.
 In Chapter 6, I add a discussion of the so-called smearing estimate for retransformation 
after estimating a linear model where the dependent variable is in logarithmic form. The 
smearing approach is widely used and simple to implement; it was an oversight of mine 
not to include it in previous editions. On a related matter, I have also added material on 
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obtaining a 95% prediction interval after retransforming a model that satisfies the classical 
linear model assumptions.
 In Chapter 8, I changed Example 8.6 to one that uses a more modern, much larger data 
set on financial wealth, income, and participation in 401(k) pension plans. This example, 
in conjunction with a new subsection on weighted least squares with a misspecified vari-
ance function, provides a nice illustration of how weighted least squares can be signifi-
cantly more efficient than ordinary least squares, even if we allow the variance function to 
be misspecified.
 Another new subsection in Chapter 8 discusses the problem of prediction after retrans-
formation in a model with a logarithmic dependent variable and heteroskedasticity in the 
orginal linear model. 
 Chapter 9 contains several new items. First, I provide a brief discussion of models 
with random slopes. I provide this material as an introduction to the notion that marginal 
effects can depend on unobserved individual heterogeneity. In the discussion of outliers 
and influential data, I have included a description of “studentized residuals” as a way to 
determine influential data points. I also note how these are easily obtained by dummying 
out an observation. Finally, the increasingly important method of least absolute deviations 
(LAD) is now more fully described in a new subsection. In the computer exercises, a new 
data set on the compensation of Michigan elemenatary school teachers is used to illustrate 
the resilience of LAD to the inclusion of suspicious data points.
 In the time series chapters, Chapters 10, 11, and 12, two new examples (and data sets 
on the U.S. economy) are included. The first is a simple equation known in macroeconom-
ics as Okun’s Law; the second is a sector-specific analysis of the effects of the minimum 
wage. These examples nicely illustrate practical applications to economics of regression 
with time series data.
 The advanced chapters now include discussions of the Chow test for panel data 
(Chapter 13), a more detailed discussion of pooled OLS and panel data methods for cluster 
samples (Chapter 14), and better discussions of the problems of a weak instrument and the 
nature of overidentification tests with instrumental variables (Chapter 15).
 In Chapter 17, I expand the discussion of estimating partial effects in nonlinear  models, 
emphasizing the difference between partial effects evaluated at averages of the regressors 
versus averaging the partial effects across all units.
 I have added more data sets for the fourth edition. I previously mentioned the school-
level data set on teachers’ compensation (ELEM94_95.RAW). In addition, a data set on 
charitable contributions in the Netherlands (CHARITY.RAW) is used in some new prob-
lems. The two new time series data sets are OKUN.RAW and MINWAGE.RAW.
 A few other data sets, not used in the text, will be available on the text’s companion Web 
site, including a data set on salaries and publication records of economics professors at Big 
Ten universities.

Targeted at Undergraduates, 
Adaptable for Master’s Students
The text is designed for undergraduate economics majors who have taken college alge-
bra and one semester of introductory probability and statistics. (Appendices A, B, and C 
contain the requisite background material.) A one-semester or one-quarter econometrics 
course would not be expected to cover all, or even any, of the more advanced material in 
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Part 3. A typical introductory course includes Chapters 1 through 8, which cover the basics 
of simple and multiple regression for cross-sectional data. Provided the emphasis is on 
intuition and interpreting the empirical examples, the material from the first eight chapters 
should be accessible to undergraduates in most economics departments. Most instructors 
will also want to cover at least parts of the chapters on regression analysis with time series 
data, Chapters 10, 11, and 12, with varying degrees of depth. In the one-semester course 
that I teach at Michigan State, I cover Chapter 10 fairly carefully, give an overview of 
the material in Chapter 11, and cover the material on serial correlation in Chapter 12. I 
find that this basic one-semester course puts students on a solid footing to write empirical 
papers, such as a term paper, a senior seminar paper, or a senior thesis. Chapter 9 con-
tains more specialized topics that arise in analyzing cross-sectional data, including data 
problems such as outliers and nonrandom sampling; for a one-semester course, it can be 
skipped without loss of continuity.
 The structure of the text makes it ideal for a course with a cross-sectional or policy 
analysis focus: the time series chapters can be skipped in lieu of topics from Chapters 9, 
13, 14, or 15. Chapter 13 is advanced only in the sense that it treats two new data struc-
tures: independently pooled cross sections and two-period panel data analysis. Such data 
structures are especially useful for policy analysis, and the chapter provides several exam-
ples. Students with a good grasp of Chapters 1 through 8 will have little difficulty with 
Chapter 13. Chapter 14 covers more advanced panel data methods and would probably be 
covered only in a second course. A good way to end a course on cross-sectional methods 
is to cover the rudiments of instrumental variables estimation in Chapter 15.
 I have used selected material in Part 3, including Chapters 13, 14, 15, and 17, in a 
senior seminar geared to producing a serious research paper. Along with the basic one-
semester course, students who have been exposed to basic panel data analysis, instrumen-
tal variables estimation, and limited dependent variable models are in a position to read 
large segments of the applied social sciences literature. Chapter 17 provides an introduc-
tion to the most common limited dependent variable models.
 The text is also well suited for an introductory master’s level course, where the empha-
sis is on applications rather than on derivations using matrix algebra. Still, for instructors 
wanting to present the material in matrix form, Appendices D and E are self-contained 
treatments of the matrix algebra and the multiple regression model in matrix form.
 At Michigan State, PhD students in many fields that require data analysis—including 
accounting, agricultural economics, development economics, finance, international eco-
nomics, labor economics, macroeconomics, political science, and public finance—have 
found the text to be a useful bridge between the empirical work that they read and the more 
theoretical econometrics they learn at the PhD level.

Design Features
Numerous in-text questions are scattered throughout, with answers supplied in Appendix F. 
These questions are intended to provide students with immediate feedback. Each chapter 
contains many numbered examples. Several of these are case studies drawn from recently 
published papers, but where I have used my judgment to simplify the analysis, hopefully 
without sacrificing the main point.
 The end-of-chapter problems and computer exercises are heavily oriented toward 
empirical work, rather than complicated derivations. The students are asked to carefully 
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reason based on what they have learned. The computer exercises often expand on the 
in-text examples. Several exercises use data sets from published works or similar data sets 
that are motivated by published research in economics and other fields.
 A pioneering feature of this introductory econometrics text is the extensive glossary. 
The short definitions and descriptions are a helpful refresher for students studying for 
exams or reading empirical research that uses econometric methods. I have added and 
updated several entries for the fourth edition.

Student Supplements
The Student Solutions Manual (ISBN 0-324-58658-2) contains suggestions on how to read 
each chapter as well as answers to selected problems and computer  exercises. The Student 
Solutions Manual can be accessed online at academic.cengage.com/login. An access code 
has been packaged with every new book and is required to access the material online. For 
students who purchase a used book, the access code may be purchased from the same 
website.
 With their single sign-on access code, students also can access the data sets that 
accompany the text, as well as link to EconApps, a continually updated collection of eco-
nomic news, debates, and data.

Instructor Supplements
The Instructor’s Manual with Solutions (ISBN 0-324-58657-4) contains answers to all 
exercises, as well as teaching tips on how to present the material in each chapter. The 
instructor’s manual also contains sources for each of the data files, with many suggestions 
for how to use them on problem sets, exams, and term papers. This supplement is available 
online only to instructors at academic.cengage.com/economics/wooldridge.
 Upon the instructor’s request, EViews Student Version can be bundled with the text 
for an additional $18 per book. With EViews, students can do homework anywhere they 
have access to a PC. However, because Student EViews restricts the size of a data set that 
can be analyzed, some of the full data sets used in the text and in the problems cannot be 
used in Student EViews. Instead, with the exception of a few of the data sets used only in 
Part 3 of the text, I have provided smaller versions of the EViews data sets that can be used 
in Student EViews. These are described in the instructor’s manual. For more information 
on this special EViews offer, contact your South-Western/Cengage Learning representa-
tive or call Cengage Learning Customer & Sales Support at 1-800-354-9706.

Data Sets—Available in Four Formats
About 100 data sets are available in ASCII, EViews, Excel, and Stata. Because most of the 
data sets come from actual research, some are very large. Except for partially listing data 
sets to illustrate the various data structures, the data sets are not reported in the text. This 
book is geared to a course where computer work plays an integral role. An extensive data 
description manual is available online. This manual contains a list of data sources along 
with suggestions for ways to use the data sets that are not described in the text. Instructors 
can access the data sets at this book’s companion site at academic.cengage.com/economics/
wooldridge.
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 An online access card has been packaged with every new book, which will give stu-
dents access to all of these data sets and the data description manual.

Suggestions for Designing Your Course
I have already commented on the contents of most of the chapters as well as possible out-
lines for courses. Here I provide more specific comments about material in chapters that 
might be covered or skipped.
 Chapter 9 has some interesting examples (such as a wage regression that includes IQ 
score as an explanatory variable). The rubric of proxy variables does not have to be for-
mally introduced to present these kinds of examples, and I typically do so when finishing 
up cross-sectional analysis. In Chapter 12, for a one-semester course, I skip the material 
on serial correlation robust inference for ordinary least squares as well as dynamic models 
of heteroskedasticity.
 Even in a second course, I tend to spend only a little time on Chapter 16, which cov-
ers simultaneous equations analysis. If people differ about one issue, it is the importance 
of simultaneous equations. Some think this material is fundamental; others think it is 
rarely applicable. My own view is that simultaneous equations models are overused 
(see Chapter 16 for a discussion). If one reads applications carefully, omitted variables 
and measurement error are much more likely to be the reason one adopts instrumental 
variables estimation, and this is why I use omitted variables to motivate instrumental 
variables estimation in Chapter 15. Still, simultaneous equations models are indispens-
able for estimating demand and supply functions, and they apply in some other important 
cases as well.
 Chapter 17 is the only chapter that considers models inherently nonlinear in their 
parameters, and this puts an extra burden on the student. The first material one should 
cover in this chapter is on probit and logit models for binary response. My presentation 
of Tobit models and censored regression still appears to be novel: I explicitly recognize 
that the Tobit model is applied to corner solution outcomes on random samples, while 
censored regression is applied when the data collection process censors the dependent 
variable.
 Chapter 18 covers some recent important topics from time series econometrics, includ-
ing testing for unit roots and cointegration. I cover this material only in a second-semester 
course at either the undergraduate or master’s level. A fairly detailed introduction to fore-
casting is also included in Chapter 18.
 Chapter 19, which would be added to the syllabus for a course that requires a term 
paper, is much more extensive than similar chapters in other texts. It summarizes some 
of the methods appropriate for various kinds of problems and data structures, points out 
potential pitfalls, explains in some detail how to write a term paper in empirical econom-
ics, and includes suggestions for possible projects.
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Several of the changes I discussed earlier were driven by comments I received from 
people on this list, and I continue to mull over specific suggestions made by one or more 
reviewers.
 Many students and teaching assistants, too numerous to list, have caught mistakes in 
earlier editions or have suggested rewording some paragraphs. I am grateful to them.
 Thanks to the people at South-Western/Cengage Learning, the revision process has, 
once again, gone smoothly. Mike Worls, my longtime acquistions editor, has been sup-
portive, as always, and Laura Bofinger hit the ground running as my new developmental 
editor. I benefitted from the enthusiasm Laura brought to the project.
 Martha Conway did a terrific job as project manager, and Charu Khanna at Macmillan 
Publishing Solutions professionally and efficiently oversaw the typesetting of the 
 manuscript.
 This book is dedicated to my wife, Leslie—who subjected her senior seminar students 
to the third edition—and to our children, Edmund and Gwenyth—who now understand 
enough about economics to know that they would rather be “real” scientists.

Jeffrey M. Wooldridge
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C H A P T E R 1
The Nature of Econometrics 
and Economic Data

1

Chapter 1 discusses the scope of econometrics and raises general issues that arise in 
the application of econometric methods. Section 1.3 examines the kinds of data sets 
that are used in business, economics, and other social sciences. Section 1.4 provides 

an intuitive discussion of the difficulties associated with the inference of causality in the 
social sciences.

1.1 What Is Econometrics?
Imagine that you are hired by your state government to evaluate the effectiveness of a 
publicly funded job training program. Suppose this program teaches workers various ways 
to use computers in the manufacturing process. The twenty-week program offers courses 
during nonworking hours. Any hourly manufacturing worker may participate, and enroll-
ment in all or part of the program is voluntary. You are to determine what, if any, effect 
the training program has on each worker’s subsequent hourly wage.
 Now, suppose you work for an investment bank. You are to study the returns on dif-
ferent investment strategies involving short-term U.S. treasury bills to decide whether they 
comply with implied economic theories.
 The task of answering such questions may seem daunting at first. At this point, you 
may only have a vague idea of the kind of data you would need to collect. By the end of 
this introductory econometrics course, you should know how to use econometric methods 
to formally evaluate a job training program or to test a simple economic theory.
 Econometrics is based upon the development of statistical methods for estimating 
economic relationships, testing economic theories, and evaluating and implementing 
government and business policy. The most common application of econometrics is the 
forecasting of such important macroeconomic variables as interest rates, inflation rates, 
and gross domestic product. Whereas forecasts of economic indicators are highly visible 
and often widely published, econometric methods can be used in economic areas that have 
nothing to do with macroeconomic forecasting. For example, we will study the effects of 
political campaign expenditures on voting outcomes. We will consider the effect of school 
spending on student performance in the field of education. In addition, we will learn how 
to use econometric methods for forecasting economic time series.
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 Econometrics has evolved as a separate discipline from mathematical statistics 
because the former focuses on the problems inherent in collecting and analyzing nonex-
perimental economic data. Nonexperimental data are not accumulated through con-
trolled experiments on individuals, firms, or segments of the economy. (Nonexperimental 
data are sometimes called observational data, or retrospective data, to emphasize the 
fact that the researcher is a passive collector of the data.) Experimental data are often 
collected in laboratory environments in the natural sciences, but they are much more dif-
ficult to obtain in the social sciences. Although some social experiments can be devised, 
it is often impossible, prohibitively expensive, or morally repugnant to conduct the kinds 
of controlled experiments that would be needed to address economic issues. We give 
some specific examples of the differences between experimental and nonexperimental 
data in Section 1.4.
 Naturally, econometricians have borrowed from mathematical statisticians whenever 
possible. The method of multiple regression analysis is the mainstay in both fields, but its 
focus and interpretation can differ markedly. In addition, economists have devised new 
techniques to deal with the complexities of economic data and to test the predictions of 
economic theories.

1.2 Steps in Empirical Economic Analysis
Econometric methods are relevant in virtually every branch of applied economics. They 
come into play either when we have an economic theory to test or when we have a rela-
tionship in mind that has some importance for business decisions or policy analysis. An 
empirical analysis uses data to test a theory or to estimate a relationship.
 How does one go about structuring an empirical economic analysis? It may seem 
obvious, but it is worth emphasizing that the first step in any empirical analysis is the 
careful formulation of the question of interest. The question might deal with testing a 
certain aspect of an economic theory, or it might pertain to testing the effects of a gov-
ernment policy. In principle, econometric methods can be used to answer a wide range of 
questions.
 In some cases, especially those that involve the testing of economic theories, a formal 
economic model is constructed. An economic model consists of mathematical equa-
tions that describe various relationships. Economists are well known for their building of 
models to describe a vast array of behaviors. For example, in intermediate microeconom-
ics, individual consumption decisions, subject to a budget constraint, are described by 
mathematical models. The basic premise underlying these models is utility maximization. 
The assumption that individuals make choices to maximize their well-being, subject to 
resource constraints, gives us a very powerful framework for creating tractable economic 
models and making clear predictions. In the context of consumption decisions, utility 
maximization leads to a set of demand equations. In a demand equation, the quantity 
demanded of each commodity depends on the price of the goods, the price of substitute 
and complementary goods, the consumer’s income, and the individual’s characteristics 
that affect taste. These equations can form the basis of an econometric analysis of con-
sumer demand.
 Economists have used basic economic tools, such as the utility maximization frame-
work, to explain behaviors that at first glance may appear to be noneconomic in nature. 
A classic example is Becker’s (1968) economic model of criminal behavior.
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E x a m p l e  1 . 1

[Economic Model of Crime]

In a seminal article, Nobel Prize winner Gary Becker postulated a utility maximization framework 
to describe an individual’s participation in crime. Certain crimes have clear economic rewards, but 
most criminal behaviors have costs. The opportunity costs of crime prevent the criminal from par-
ticipating in other activities such as legal employment. In addition, there are costs associated with 
the possibility of being caught and then, if convicted, the costs associated with incarceration. From 
Becker’s perspective, the decision to undertake illegal activity is one of resource allocation, with the 
benefits and costs of competing activities taken into account.
 Under general assumptions, we can derive an equation describing the amount of time spent in 
criminal activity as a function of various factors. We might represent such a function as

 y � f (x
1
, x

2
, x

3
, x

4
, x

5
, x

6
, x

7
), 1.1

where
 y � hours spent in criminal activities,
 x

1
 � “wage” for an hour spent in criminal activity,

 x
2
 � hourly wage in legal employment,

 x
3
 � income other than from crime or employment,

 x
4
 � probability of getting caught,

 x
5
 � probability of being convicted if caught,

 x
6
 � expected sentence if convicted, and

 x
7
 � age.

Other factors generally affect a person’s decision to participate in crime, but the list above is repre-
sentative of what might result from a formal economic analysis. As is common in economic theory, we 
have not been specific about the function f (�) in (1.1). This function depends on an underlying utility 
function, which is rarely known. Nevertheless, we can use economic theory—or introspection—to 
predict the effect that each variable would have on criminal activity. This is the basis for an economet-
ric analysis of individual criminal activity.

 
 Formal economic modeling is sometimes the starting point for empirical analysis, but 
it is more common to use economic theory less formally, or even to rely entirely on intui-
tion. You may agree that the determinants of criminal behavior appearing in equation (1.1) 
are reasonable based on common sense; we might arrive at such an equation directly, 
without starting from utility maximization. This view has some merit, although there are 
cases in which formal derivations provide insights that intuition can overlook.
 Next is an example of an equation that we can derive through somewhat informal 
reasoning.

E x a m p l e  1 . 2

[Job Training and Worker Productivity]

Consider the problem posed at the beginning of Section 1.1. A labor economist would like to 
examine the effects of job training on worker productivity. In this case, there is little need for 
formal economic theory. Basic economic understanding is sufficient for realizing that factors 
such as education, experience, and training affect worker productivity. Also, economists are well 



4 Chapter 1   The Nature of Econometrics and Economic Data

aware that workers are paid commensurate with their productivity. This simple reasoning leads 
to a model such as

 wage � f (educ, exper, training), 1.2

where
 wage � hourly wage,
 educ � years of formal education,
 exper � years of workforce experience, and
 training � weeks spent in job training.

 Again, other factors generally affect the wage rate, but equation (1.2) captures the essence of the 
problem.

 
 After we specify an economic model, we need to turn it into what we call an econometric 
model. Because we will deal with econometric models throughout this text, it is important 
to know how an econometric model relates to an economic model. Take equation (1.1) as 
an example. The form of the function f (•) must be specified before we can undertake an 
econometric analysis. A second issue concerning (1.1) is how to deal with variables that 
cannot reasonably be observed. For example, consider the wage that a person can earn 
in criminal activity. In principle, such a quantity is well defined, but it would be difficult 
if not impossible to observe this wage for a given individual. Even variables such as the 
probability of being arrested cannot realistically be obtained for a given individual, but at 
least we can observe relevant arrest statistics and derive a variable that approximates the 
probability of arrest. Many other factors affect criminal behavior that we cannot even list, 
let alone observe, but we must somehow account for them.
 The ambiguities inherent in the economic model of crime are resolved by specifying a 
particular econometric model:

 crime � �
0
 � �

1
wage

m
 � �

2
othinc � �

3 
 freqarr � �

4 
 freqconv

                    � �
5 
avgsen � �

6 
age � u, 1.3

where
 crime � some measure of the frequency of criminal activity,
 wage

m
 � the wage that can be earned in legal employment,

 othinc � the income from other sources (assets, inheritance, and so on),
 freqarr �  the frequency of arrests for prior infractions (to approximate 

the probability of arrest),
 freqconv � the frequency of conviction, and
 avgsen � the average sentence length after conviction.

 The choice of these variables is determined by the economic theory as well as data 
considerations. The term u contains unobserved factors, such as the wage for criminal 
activity, moral character, family background, and errors in measuring things like criminal 
activity and the probability of arrest. We could add family background variables to the 
model, such as number of siblings, parents’ education, and so on, but we can never elimi-
nate u entirely. In fact, dealing with this error term or disturbance term is perhaps the most 
important component of any econometric analysis.
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 The constants �
0
, �

1
, …, �

6
 are the parameters of the econometric model, and they 

describe the directions and strengths of the relationship between crime and the factors used 
to determine crime in the model.
 A complete econometric model for Example 1.2 might be

 wage � �
0
 � �

1
educ � �

2
exper � �

3
training � u, 1.4

where the term u contains factors such as “innate ability,” quality of education, family 
background, and the myriad other factors that can influence a person’s wage. If we are spe-
cifically concerned about the effects of job training, then �

3
 is the parameter of interest.

 For the most part, econometric analysis begins by specifying an econometric model, 
without consideration of the details of the model’s creation. We generally follow this 
approach, largely because careful derivation of something like the economic model of 
crime is time-consuming and can take us into some specialized and often difficult areas 
of economic theory. Economic reasoning will play a role in our examples, and we will 
merge any underlying economic theory into the econometric model specification. In the 
economic model of crime example, we would start with an econometric model such as 
(1.3) and use economic reasoning and common sense as guides for choosing the variables. 
Although this approach loses some of the richness of economic analysis, it is commonly 
and effectively applied by careful researchers.
 Once an econometric model such as (1.3) or (1.4) has been specified, various hypotheses 
of interest can be stated in terms of the unknown parameters. For example, in equation (1.3), 
we might hypothesize that wage

m
, the wage that can be earned in legal employment, has 

no effect on criminal behavior. In the context of this particular econometric model, the 
hypothesis is equivalent to �

1 
� 0.

 An empirical analysis, by definition, requires data. After data on the relevant vari-
ables have been collected, econometric methods are used to estimate the parameters in the 
econometric model and to formally test hypotheses of interest. In some cases, the econo-
metric model is used to make predictions in either the testing of a theory or the study of a 
policy’s impact.
 Because data collection is so important in empirical work, Section 1.3 will describe the 
kinds of data that we are likely to encounter.

1.3 The Structure of Economic Data
Economic data sets come in a variety of types. Whereas some econometric methods can 
be applied with little or no modification to many different kinds of data sets, the special 
features of some data sets must be accounted for or should be exploited. We next describe 
the most important data structures encountered in applied work.

Cross-Sectional Data

A cross-sectional data set consists of a sample of individuals, households, firms, cities, 
states, countries, or a variety of other units, taken at a given point in time. Sometimes, the 
data on all units do not correspond to precisely the same time period. For example, several 
families may be surveyed during different weeks within a year. In a pure cross-sectional 
analysis, we would ignore any minor timing differences in collecting the data. If a set of 
families was surveyed during different weeks of the same year, we would still view this 
as a cross-sectional data set.
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 An important feature of cross-sectional data is that we can often assume that they have 
been obtained by random sampling from the underlying population. For example, if we 
obtain information on wages, education, experience, and other characteristics by randomly 
drawing 500 people from the working population, then we have a random sample from 
the population of all working people. Random sampling is the sampling scheme covered 
in introductory statistics courses, and it simplifies the analysis of cross-sectional data. 
A review of random sampling is contained in Appendix C.
 Sometimes, random sampling is not appropriate as an assumption for analyzing cross-
sectional data. For example, suppose we are interested in studying factors that influence 
the accumulation of family wealth. We could survey a random sample of families, but 
some families might refuse to report their wealth. If, for example, wealthier families are 
less likely to disclose their wealth, then the resulting sample on wealth is not a random 
sample from the population of all families. This is an illustration of a sample selection 
problem, an advanced topic that we will discuss in Chapter 17.
 Another violation of random sampling occurs when we sample from units that are large 
relative to the population, particularly geographical units. The potential problem in such 
cases is that the population is not large enough to reasonably assume the observations are 
independent draws. For example, if we want to explain new business activity across states as 
a function of wage rates, energy prices, corporate and property tax rates, services provided, 
quality of the workforce, and other state characteristics, it is unlikely that business activities 
in states near one another are independent. It turns out that the econometric methods that we 
discuss do work in such situations, but they sometimes need to be refined. For the most part, 
we will ignore the intricacies that arise in analyzing such situations and treat these problems 
in a random sampling framework, even when it is not technically correct to do so.
 Cross-sectional data are widely used in economics and other social sciences. In econom-
ics, the analysis of cross-sectional data is closely aligned with the applied microeconomics 
fields, such as labor economics, state and local public finance, industrial organization, 
urban economics, demography, and health economics. Data on individuals, households, 
firms, and cities at a given point in time are important for testing microeconomic hypoth-
eses and evaluating economic policies.
 The cross-sectional data used for econometric analysis can be represented and stored in 
computers. Table 1.1 contains, in abbreviated form, a cross-sectional data set on 526 work-
ing individuals for the year 1976. (This is a subset of the data in the file WAGE1.RAW.) 
The variables include wage (in dollars per hour), educ (years of education), exper (years 
of potential labor force experience), female (an indicator for gender), and married (mari-
tal status). These last two variables are binary (zero-one) in nature and serve to indicate 
qualitative features of the individual (the person is female or not; the person is married or 
not). We will have much to say about binary variables in Chapter 7 and beyond.
 The variable obsno in Table 1.1 is the observation number assigned to each person in 
the sample. Unlike the other variables, it is not a characteristic of the individual. All econo-
metrics and statistics software packages assign an observation number to each data unit. 
Intuition should tell you that, for data such as that in Table 1.1, it does not matter which 
person is labeled as observation 1, which person is called observation 2, and so on. The 
fact that the ordering of the data does not matter for econometric analysis is a key feature 
of cross-sectional data sets obtained from random sampling.
 Different variables sometimes correspond to different time periods in cross-sectional 
data sets. For example, to determine the effects of government policies on long-term eco-
nomic growth, economists have studied the relationship between growth in real per capita 
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gross domestic product (GDP) over a certain period (say, 1960 to 1985) and variables 
determined in part by government policy in 1960 (government consumption as a percent-
age of GDP and adult secondary education rates). Such a data set might be represented 
as in Table 1.2, which constitutes part of the data set used in the study of cross-country 
growth rates by De Long and Summers (1991).

TABLE  1 . 1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics

obsno wage educ exper female married

1  3.10 11  2 1 0

2  3.24 12 22 1 1

3  3.00 11  2 0 0

4  6.00  8 44 0 1

5  5.30 12  7 0 1

525 11.56 16  5 0 1

526  3.50 14  5 1 0

TABLE  1 . 2

A Data Set on Economic Growth Rates and Country Characteristics

obsno country gpcrgdp govcons60 second60

1 Argentina 0.89  9 32

2 Austria 3.32 16 50

3 Belgium 2.56 13 69

4 Bolivia 1.24 18 12

61 Zimbabwe 2.30 17  6
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 The variable gpcrgdp represents average growth in real per capita GDP over the period 
1960 to 1985. The fact that govcons60 (government consumption as a percentage of GDP) 
and second60 (percentage of adult population with a secondary education) correspond to 
the year 1960, while gpcrgdp is the average growth over the period from 1960 to 1985, 
does not lead to any special problems in treating this information as a cross-sectional data 
set. The observations are listed alphabetically by country, but nothing about this ordering 
affects any subsequent analysis.

Time Series Data

A time series data set consists of observations on a variable or several variables over time. 
Examples of time series data include stock prices, money supply, consumer price index, 
gross domestic product, annual homicide rates, and automobile sales figures. Because 
past events can influence future events and lags in behavior are prevalent in the social sci-
ences, time is an important dimension in a time series data set. Unlike the arrangement of 
cross-sectional data, the chronological ordering of observations in a time series conveys 
potentially important information.
 A key feature of time series data that makes them more difficult to analyze than 
cross-sectional data is that economic observations can rarely, if ever, be assumed to 
be independent across time. Most economic and other time series are related, often 
strongly related, to their recent histories. For example, knowing something about the 
gross domestic product from last quarter tells us quite a bit about the likely range 
of the GDP during this quarter, because GDP tends to remain fairly stable from one 
quarter to the next. Although most econometric procedures can be used with both 
cross-sectional and time series data, more needs to be done in specifying econometric 
models for time series data before standard econometric methods can be justified. In 
addition, modifications and embellishments to standard econometric techniques have 
been developed to account for and exploit the dependent nature of economic time 
series and to address other issues, such as the fact that some economic variables tend 
to display clear trends over time.
 Another feature of time series data that can require special attention is the data 
 frequency at which the data are collected. In economics, the most common frequencies 
are daily, weekly, monthly, quarterly, and annually. Stock prices are recorded at daily 
intervals (excluding Saturday and Sunday). The money supply in the U.S. economy is 
reported weekly. Many macroeconomic series are tabulated monthly, including inflation 
and unemployment rates. Other macro series are recorded less frequently, such as every 
three months (every quarter). Gross domestic product is an important example of a quar-
terly series. Other time series, such as infant mortality rates for states in the United States, 
are available only on an annual basis.
 Many weekly, monthly, and quarterly economic time series display a strong seasonal 
pattern, which can be an important factor in a time series analysis. For example, monthly 
data on housing starts differ across the months simply due to changing weather conditions. 
We will learn how to deal with seasonal time series in Chapter 10.
 Table 1.3 contains a time series data set obtained from an article by Castillo-Freeman 
and Freeman (1992) on minimum wage effects in Puerto Rico. The earliest year in the 
data set is the first observation, and the most recent year available is the last observation. 
When econometric methods are used to analyze time series data, the data should be stored 
in chronological order.
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 The variable avgmin refers to the average minimum wage for the year, avgcov is the 
average coverage rate (the percentage of workers covered by the minimum wage law), 
unemp is the unemployment rate, and gnp is the gross national product. We will use these 
data later in a time series analysis of the effect of the minimum wage on employment.

Pooled Cross Sections

Some data sets have both cross-sectional and time series features. For example, suppose 
that two cross-sectional household surveys are taken in the United States, one in 1985 and 
one in 1990. In 1985, a random sample of households is surveyed for variables such as 
income, savings, family size, and so on. In 1990, a new random sample of households is 
taken using the same survey questions. To increase our sample size, we can form a pooled 
cross section by combining the two years.
 Pooling cross sections from different years is often an effective way of analyzing the 
effects of a new government policy. The idea is to collect data from the years before and 
after a key policy change. As an example, consider the following data set on housing 
prices taken in 1993 and 1995, before and after a reduction in property taxes in 1994. 
Suppose we have data on 250 houses for 1993 and on 270 houses for 1995. One way to 
store such a data set is given in Table 1.4.
 Observations 1 through 250 correspond to the houses sold in 1993, and observations 
251 through 520 correspond to the 270 houses sold in 1995. Although the order in which 
we store the data turns out not to be crucial, keeping track of the year for each observation 
is usually very important. This is why we enter year as a separate variable.
 A pooled cross section is analyzed much like a standard cross section, except that we 
often need to account for secular differences in the variables across the time. In fact, in 
addition to increasing the sample size, the point of a pooled cross-sectional analysis is 
often to see how a key relationship has changed over time.

TABLE  1 . 3

Minimum Wage, Unemployment, and Related Data for Puerto Rico

obsno year avgmin avgcov unemp gnp

1 1950 0.20 20.1 15.4 878.7

2 1951 0.21 20.7 16.0 925.0

3 1952 0.23 22.6 14.8 1015.9

   

37 1986 3.35 58.1 18.9 4281.6

38 1987 3.35 58.2 16.8 4496.7
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Panel or Longitudinal Data

A panel data (or longitudinal data) set consists of a time series for each cross-sectional 
member in the data set. As an example, suppose we have wage, education, and employment 
history for a set of individuals followed over a ten-year period. Or we might collect infor-
mation, such as investment and financial data, about the same set of firms over a five-year 
time period. Panel data can also be collected on geographical units. For example, we can 
collect data for the same set of counties in the United States on immigration flows, tax rates, 
wage rates, government expenditures, and so on, for the years 1980, 1985, and 1990.
 The key feature of panel data that distinguishes them from a pooled cross section is 
that the same cross-sectional units (individuals, firms, or counties in the preceding exam-
ples) are followed over a given time period. The data in Table 1.4 are not considered a 
panel data set because the houses sold are likely to be different in 1993 and 1995; if there 
are any duplicates, the number is likely to be so small as to be unimportant. In contrast, 
Table 1.5 contains a two-year panel data set on crime and related statistics for 150 cities 
in the United States.
 There are several interesting features in Table 1.5. First, each city has been given a 
number from 1 through 150. Which city we decide to call city 1, city 2, and so on is irrel-
evant. As with a pure cross section, the ordering in the cross section of a panel data set 
does not matter. We could use the city name in place of a number, but it is often useful to 
have both.

TABLE  1 . 4

Pooled Cross Sections: Two Years of Housing Prices

obsno year hprice proptax sqrft bdrms bthrms

  1 1993 85500 42 1600 3 2.0

  2 1993 67300 36 1440 3 2.5

  3 1993 134000 38 2000 4 2.5

250 1993 243600 41 2600 4 3.0

251 1995 65000 16 1250 2 1.0

252 1995 182400 20 2200 4 2.0

253 1995 97500 15 1540 3 2.0

520 1995 57200 16 1100 2 1.5
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 A second point is that the two years of data for city 1 fill the first two rows or observa-
tions. Observations 3 and 4 correspond to city 2, and so on. Because each of the 150 cities 
has two rows of data, any econometrics package will view this as 300 observations. This 
data set can be treated as a pooled cross section, where the same cities happen to show 
up in each year. But, as we will see in Chapters 13 and 14, we can also use the panel 
structure to analyze questions that cannot be answered by simply viewing this as a pooled 
cross section.
 In organizing the observations in Table 1.5, we place the two years of data for each 
city adjacent to one another, with the first year coming before the second in all cases. For 
just about every practical purpose, this is the preferred way for ordering panel data sets. 
Contrast this organization with the way the pooled cross sections are stored in Table 1.4. 
In short, the reason for ordering panel data as in Table 1.5 is that we will need to perform 
data transformations for each city across the two years.
 Because panel data require replication of the same units over time, panel data sets, 
especially those on individuals, households, and firms, are more difficult to obtain than 
pooled cross sections. Not surprisingly, observing the same units over time leads to several 
advantages over cross-sectional data or even pooled cross-sectional data. The benefit that 
we will focus on in this text is that having multiple observations on the same units allows 
us to control for certain unobserved characteristics of individuals, firms, and so on. As we 
will see, the use of more than one observation can facilitate causal inference in situations 
where inferring causality would be very difficult if only a single cross section were avail-
able. A second advantage of panel data is that they often allow us to study the importance 
of lags in behavior or the result of decision making. This information can be significant 

TABLE  1 . 5

A Two-Year Panel Data Set on City Crime Statistics

obsno city year murders population unem police

1   1 1986  5 350000 8.7 440

2   1 1990  8 359200 7.2 471

3   2 1986  2 64300 5.4 75

4   2 1990  1 65100 5.5 75

297 149 1986 10 260700 9.6 286

298 149 1990  6 245000 9.8 334

299 150 1986 25 543000 4.3 520

300 150 1990 32 546200 5.2 493
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because many economic policies can be expected to have an impact only after some time 
has passed.
 Most books at the undergraduate level do not contain a discussion of econometric 
methods for panel data. However, economists now recognize that some questions are dif-
ficult, if not impossible, to answer satisfactorily without panel data. As you will see, we 
can make considerable progress with simple panel data analysis, a method that is not much 
more difficult than dealing with a standard cross-sectional data set.

A Comment on Data Structures

Part 1 of this text is concerned with the analysis of cross-sectional data, because this poses 
the fewest conceptual and technical difficulties. At the same time, it illustrates most of the 
key themes of econometric analysis. We will use the methods and insights from cross-
sectional analysis in the remainder of the text.
 Although the econometric analysis of time series uses many of the same tools as 
cross-sectional analysis, it is more complicated because of the trending, highly persistent 
nature of many economic time series. Examples that have been traditionally used to illus-
trate the manner in which econometric methods can be applied to time series data are now 
widely believed to be flawed. It makes little sense to use such examples initially, since this 
practice will only reinforce poor econometric practice. Therefore, we will postpone the 
treatment of time series econometrics until Part 2, when the important issues concerning 
trends, persistence, dynamics, and seasonality will be introduced.
 In Part 3, we will treat pooled cross sections and panel data explicitly. The analysis 
of independently pooled cross sections and simple panel data analysis are fairly straight-
forward extensions of pure cross-sectional analysis. Nevertheless, we will wait until 
Chapter 13 to deal with these topics.

1.4 Causality and the Notion of Ceteris 
Paribus in Econometric Analysis
In most tests of economic theory, and certainly for evaluating public policy, the economist’s 
goal is to infer that one variable (such as education) has a causal effect on another variable 
(such as worker productivity). Simply finding an association between two or more variables 
might be suggestive, but unless causality can be established, it is rarely compelling.
 The notion of ceteris paribus—which means “other (relevant) factors being equal”—
plays an important role in causal analysis. This idea has been implicit in some of our 
earlier discussion, particularly Examples 1.1 and 1.2, but thus far we have not explicitly 
mentioned it.
 You probably remember from introductory economics that most economic questions 
are ceteris paribus by nature. For example, in analyzing consumer demand, we are inter-
ested in knowing the effect of changing the price of a good on its quantity demanded, 
while holding all other factors—such as income, prices of other goods, and individual 
tastes—fixed. If other factors are not held fixed, then we cannot know the causal effect of 
a price change on quantity demanded.
 Holding other factors fixed is critical for policy analysis as well. In the job train-
ing example (Example 1.2), we might be interested in the effect of another week of job 
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training on wages, with all other components being equal (in particular, education and 
experience). If we succeed in holding all other relevant factors fixed and then find a link 
between job training and wages, we can conclude that job training has a causal effect on 
worker productivity. Although this may seem pretty simple, even at this early stage it 
should be clear that, except in very special cases, it will not be possible to literally hold all 
else equal. The key question in most empirical studies is: Have enough other factors been 
held fixed to make a case for causality? Rarely is an econometric study evaluated without 
raising this issue.
 In most serious applications, the number of factors that can affect the variable of 
interest—such as criminal activity or wages—is immense, and the isolation of any 
particular variable may seem like a hopeless effort. However, we will eventually 
see that, when carefully applied, econometric methods can simulate a ceteris paribus 
experiment.
 At this point, we cannot yet explain how econometric methods can be used to estimate 
ceteris paribus effects, so we will consider some problems that can arise in trying to infer 
causality in economics. We do not use any equations in this discussion. For each example, 
the problem of inferring causality disappears if an appropriate experiment can be carried 
out. Thus, it is useful to describe how such an experiment might be structured, and to 
observe that, in most cases, obtaining experimental data is impractical. It is also helpful to 
think about why the available data fail to have the important features of an experimental 
data set.
 We rely for now on your intuitive understanding of such terms as random, indepen-
dence, and correlation, all of which should be familiar from an introductory probability 
and statistics course. (These concepts are reviewed in Appendix B.) We begin with an 
example that illustrates some of these important issues.

E x a m p l e  1 . 3

[Effects of Fertilizer on Crop Yield]

Some early econometric studies [for example, Griliches (1957)] considered the effects of new fer-
tilizers on crop yields. Suppose the crop under consideration is soybeans. Since fertilizer amount 
is only one factor affecting yields—some others include rainfall, quality of land, and presence of 
parasites—this issue must be posed as a ceteris paribus question. One way to determine the causal 
effect of fertilizer amount on soybean yield is to conduct an experiment, which might include the 
following steps. Choose several one-acre plots of land. Apply different amounts of fertilizer to each 
plot and subsequently measure the yields; this gives us a cross-sectional data set. Then, use statisti-
cal methods (to be introduced in Chapter 2) to measure the association between yields and fertilizer 
amounts.
 As described earlier, this may not seem like a very good experiment, because we have said noth-
ing about choosing plots of land that are identical in all respects except for the amount of fertilizer. 
In fact, choosing plots of land with this feature is not feasible: some of the factors, such as land qual-
ity, cannot even be fully observed. How do we know the results of this experiment can be used to 
measure the ceteris paribus effect of fertilizer? The answer depends on the specifics of how fertilizer 
amounts are chosen. If the levels of fertilizer are assigned to plots independently of other plot fea-
tures that affect yield—that is, other characteristics of plots are completely ignored when deciding 
on fertilizer amounts—then we are in business. We will justify this statement in Chapter 2.
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The next example is more representative of the difficulties that arise when inferring cau-
sality in applied economics.

E x a m p l e  1 . 4

[Measuring the Return to Education]

Labor economists and policy makers have long been interested in the “return to education.” 
Somewhat informally, the question is posed as follows: If a person is chosen from the population and 
given another year of education, by how much will his or her wage increase? As with the previous 
examples, this is a ceteris paribus question, which implies that all other factors are held fixed while 
another year of education is given to the person.
 We can imagine a social planner designing an experiment to get at this issue, much as the agri-
cultural researcher can design an experiment to estimate fertilizer effects. Assume, for the moment, 
that the social planner has the ability to assign any level of education to any person. How would 
this planner emulate the fertilizer experiment in Example 1.3? The planner would choose a group of 
people and randomly assign each person an amount of education; some people are given an eighth- 
grade education, some are given a high school education, some are given two years of college, and so 
on. Subsequently, the planner measures wages for this group of people (where we assume that each 
person then works in a job). The people here are like the plots in the fertilizer example, where educa-
tion plays the role of fertilizer and wage rate plays the role of soybean yield. As with Example 1.3, 
if levels of education are assigned independently of other characteristics that affect productivity 
(such as experience and innate ability), then an analysis that ignores these other factors will yield 
useful results. Again, it will take some effort in Chapter 2 to justify this claim; for now, we state it 
without support.

 

Unlike the fertilizer-yield example, the experiment described in Example 1.4 is unfeasible. 
The ethical issues, not to mention the economic costs, associated with randomly deter-
mining education levels for a group of individuals are obvious. As a logistical matter, we 
could not give someone only an eighth-grade education if he or she already has a college 
degree.
 Even though experimental data cannot be obtained for measuring the return to educa-
tion, we can certainly collect nonexperimental data on education levels and wages for a 
large group by sampling randomly from the population of working people. Such data are 
available from a variety of surveys used in labor economics, but these data sets have a 
feature that makes it difficult to estimate the ceteris paribus return to education. People 
choose their own levels of education; therefore, education levels are probably not deter-
mined independently of all other factors affecting wage. This problem is a feature shared 
by most nonexperimental data sets.
 One factor that affects wage is experience in the workforce. Since pursuing more edu-
cation generally requires postponing entering the workforce, those with more education 
usually have less experience. Thus, in a nonexperimental data set on wages and education, 
education is likely to be negatively associated with a key variable that also affects wage. 
It is also believed that people with more innate ability often choose higher levels of edu-
cation. Since higher ability leads to higher wages, we again have a correlation between 
education and a critical factor that affects wage.
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 The omitted factors of experience and ability in the wage example have analogs 
in the fertilizer example. Experience is generally easy to measure and therefore is 
similar to a variable such as rainfall. Ability, on the other hand, is nebulous and dif-
ficult to quantify; it is similar to land quality in the fertilizer example. As we will 
see throughout this text, accounting for other observed factors, such as experience, 
when estimating the ceteris paribus effect of another variable, such as education, is 
relatively straightforward. We will also find that accounting for inherently unobserv-
able factors, such as ability, is much more problematic. It is fair to say that many of 
the advances in econometric methods have tried to deal with unobserved factors in 
econometric models.
 One final parallel can be drawn between Examples 1.3 and 1.4. Suppose that in the fer-
tilizer example, the fertilizer amounts were not entirely determined at random. Instead, the 
assistant who chose the fertilizer levels thought it would be better to put more fertilizer on 
the higher-quality plots of land. (Agricultural researchers should have a rough idea about 
which plots of land are better quality, even though they may not be able to fully quantify 
the differences.) This situation is completely analogous to the level of schooling being 
related to unobserved ability in Example 1.4. Because better land leads to higher yields, 
and more fertilizer was used on the better plots, any observed relationship between yield 
and fertilizer might be spurious.

E x a m p l e  1 . 5

[The Effect of Law Enforcement on City Crime Levels]

The issue of how best to prevent crime has been, and will probably continue to be, with us for some 
time. One especially important question in this regard is: Does the presence of more police officers 
on the street deter crime?
 The ceteris paribus question is easy to state: If a city is randomly chosen and given, say, ten 
additional police officers, by how much would its crime rates fall? Another way to state the ques-
tion is: If two cities are the same in all respects, except that city A has ten more police officers than 
city B, by how much would the two cities’ crime rates differ?
 It would be virtually impossible to find pairs of communities identical in all respects except 
for the size of their police force. Fortunately, econometric analysis does not require this. What we 
do need to know is whether the data we can collect on community crime levels and the size of the 
police force can be viewed as experimental. We can certainly imagine a true experiment involving 
a large collection of cities where we dictate how many police officers each city will use for the 
upcoming year.
 Although policies can be used to affect the size of police forces, we clearly cannot tell each city 
how many police officers it can hire. If, as is likely, a city’s decision on how many police officers 
to hire is correlated with other city factors that affect crime, then the data must be viewed as non-
experimental. In fact, one way to view this problem is to see that a city’s choice of police force size 
and the amount of crime are simultaneously determined. We will explicitly address such problems 
in Chapter 16.

 
 The first three examples we have discussed have dealt with cross-sectional data at vari-
ous levels of aggregation (for example, at the individual or city levels). The same hurdles 
arise when inferring causality in time series problems.
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E x a m p l e  1 . 6

[The Effect of the Minimum Wage on Unemployment]

An important, and perhaps contentious, policy issue concerns the effect of the minimum wage on 
unemployment rates for various groups of workers. Although this problem can be studied in a variety 
of data settings (cross-sectional, time series, or panel data), time series data are often used to look at 
aggregate effects. An example of a time series data set on unemployment rates and minimum wages 
was given in Table 1.3.
 Standard supply and demand analysis implies that, as the minimum wage is increased above 
the market clearing wage, we slide up the demand curve for labor and total employment decreases. 
(Labor supply exceeds labor demand.) To quantify this effect, we can study the relationship between 
employment and the minimum wage over time. In addition to some special difficulties that can arise 
in dealing with time series data, there are possible problems with inferring causality. The minimum 
wage in the United States is not determined in a vacuum. Various economic and political forces 
impinge on the final minimum wage for any given year. (The minimum wage, once determined, 
is usually in place for several years, unless it is indexed for inflation.) Thus, it is probable that the 
amount of the minimum wage is related to other factors that have an effect on employment levels.
 We can imagine the U.S. government conducting an experiment to determine the employment 
effects of the minimum wage (as opposed to worrying about the welfare of low-wage workers). 
The minimum wage could be randomly set by the government each year, and then the employment 
outcomes could be tabulated. The resulting experimental time series data could then be analyzed 
using fairly simple econometric methods. But this scenario hardly describes how minimum wages 
are set.
 If we can control enough other factors relating to employment, then we can still hope to estimate 
the ceteris paribus effect of the minimum wage on employment. In this sense, the problem is very 
similar to the previous cross-sectional examples.

 
 Even when economic theories are not most naturally described in terms of causality, 
they often have predictions that can be tested using econometric methods. The following 
example demonstrates this approach.

E x a m p l e  1 . 7

[The Expectations Hypothesis]

The expectations hypothesis from financial economics states that, given all information available 
to investors at the time of investing, the expected return on any two investments is the same. For 
example, consider two possible investments with a three-month investment horizon, purchased at 
the same time: (1) Buy a three-month T-bill with a face value of $10,000, for a price below $10,000; 
in three months, you receive $10,000. (2) Buy a six-month T-bill (at a price below $10,000) and, 
in three months, sell it as a three-month T-bill. Each investment requires roughly the same amount 
of initial capital, but there is an important difference. For the first investment, you know exactly 
what the return is at the time of purchase because you know the initial price of the three-month 
T-bill, along with its face value. This is not true for the second investment: although you know the 
price of a six-month T-bill when you purchase it, you do not know the price you can sell it for in 
three months. Therefore, there is uncertainty in this investment for someone who has a three-month 
investment horizon.
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 The actual returns on these two investments will usually be different. According to the expecta-
tions hypothesis, the expected return from the second investment, given all information at the time 
of investment, should equal the return from purchasing a three-month T-bill. This theory turns out 
to be fairly easy to test, as we will see in Chapter 11.

 

S U M M A R Y

In this introductory chapter, we have discussed the purpose and scope of econometric analy-
sis. Econometrics is used in all applied economics fields to test economic theories, to inform 
government and private policy makers, and to predict economic time series. Sometimes, an 
econometric model is derived from a formal economic model, but in other cases, econometric 
models are based on informal economic reasoning and intuition. The goals of any econometric 
analysis are to estimate the parameters in the model and to test hypotheses about these param-
eters; the values and signs of the parameters determine the validity of an economic theory and 
the effects of certain policies.
 Cross-sectional, time series, pooled cross-sectional, and panel data are the most common 
types of data structures that are used in applied econometrics. Data sets involving a time dimen-
sion, such as time series and panel data, require special treatment because of the correlation 
across time of most economic time series. Other issues, such as trends and seasonality, arise in 
the analysis of time series data but not cross-sectional data.
 In Section 1.4, we discussed the notions of ceteris paribus and causal inference. In most 
cases, hypotheses in the social sciences are ceteris paribus in nature: all other relevant factors 
must be fixed when studying the relationship between two variables. Because of the nonexperi-
mental nature of most data collected in the social sciences, uncovering causal relationships is 
very challenging.

K E Y  T E R M S

Causal Effect
Ceteris Paribus
Cross-Sectional Data Set
Data Frequency
Econometric Model

Economic Model
Empirical Analysis
Experimental Data
Nonexperimental Data
Observational Data

Panel Data
Pooled Cross Section
Random Sampling
Retrospective Data
Time Series Data

P R O B L E M S

1.1  Suppose that you are asked to conduct a study to determine whether smaller class sizes 
lead to improved student performance of fourth graders.

 (i)  If you could conduct any experiment you want, what would you do? Be specific.
 (ii)  More realistically, suppose you can collect observational data on several thousand 

fourth graders in a given state. You can obtain the size of their fourth-grade class 
and a standardized test score taken at the end of fourth grade. Why might you expect 
a negative correlation between class size and test score?
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 (iii)  Would a negative correlation necessarily show that smaller class sizes cause better 
performance? Explain.

1.2  A justification for job training programs is that they improve worker productivity. 
Suppose that you are asked to evaluate whether more job training makes workers more 
productive. However, rather than having data on individual workers, you have access to 
data on manufacturing firms in Ohio. In particular, for each firm, you have information 
on hours of job training per worker (training) and number of nondefective items produced 
per worker hour (output).

 (i)  Carefully state the ceteris paribus thought experiment underlying this policy question.
 (ii)  Does it seem likely that a firm’s decision to train its workers will be independent 

of worker characteristics? What are some of those measurable and unmeasurable 
worker characteristics?

 (iii)  Name a factor other than worker characteristics that can affect worker productivity.
 (iv)  If you find a positive correlation between output and training, would you have con-

vincingly established that job training makes workers more productive? Explain.

1.3  Suppose at your university you are asked to find the relationship between weekly hours 
spent studying (study) and weekly hours spent working (work). Does it make sense to 
characterize the problem as inferring whether study “causes” work or work “causes” 
study? Explain.

C O M P U T E R  E X E R C I S E S

C1.1 Use the data in WAGE1.RAW for this exercise.
 (i)  Find the average education level in the sample. What are the lowest and highest 

years of education?
 (ii) Find the average hourly wage in the sample. Does it seem high or low?
 (iii)  The wage data are reported in 1976 dollars. Using the Economic Report of the 

President (2004 or later), obtain and report the Consumer Price Index (CPI) for 
the years 1976 and 2003.

 (iv)  Use the CPI values from part (iii) to find the average hourly wage in 2003 dollars. 
Now does the average hourly wage seem reasonable?

 (v) How many women are in the sample? How many men?

C1.2 Use the data in BWGHT.RAW to answer this question.
 (i)  How many women are in the sample, and how many report smoking during 

 pregnancy?
 (ii)  What is the average number of cigarettes smoked per day? Is the average a good 

measure of the “typical” woman in this case? Explain.
 (iii)  Among women who smoked during pregnancy, what is the average number of cig-

arettes smoked per day? How does this compare with your answer from part (ii), 
and why?

 (iv)  Find the average of fatheduc in the sample. Why are only 1,192 observations used 
to compute this average?

 (v) Report the average family income and its standard deviation in dollars.
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C1.3  The data in MEAP01.RAW are for the state of Michigan in the year 2001. Use these 
data to answer the following questions.

 (i)  Find the largest and smallest values of math4. Does the range make sense? Explain.
 (ii)  How many schools have a perfect pass rate on the math test? What percentage is 

this of the total sample?
 (iii) How many schools have math pass rates of exactly 50 percent?
 (iv)  Compare the average pass rates for the math and reading scores. Which test is 

harder to pass?
 (v)  Find the correlation between math4 and read4. What do you conclude?
 (vi)  The variable exppp is expenditure per pupil. Find the average of exppp along 

with its standard deviation. Would you say there is wide variation in per pupil 
 spending?

 (vii)  Suppose School A spends $6,000 per student and School B spends $5,500 per stu-
dent. By what percentage does School A’s spending exceed School B’s? Compare 
this to 100 · [log(6,000) – log(5,500)], which is the approximation percentage differ-
ence based on the difference in the natural logs. (See Section A.4 in Appendix A.)

C1.4  The data in JTRAIN2.RAW come from a job training experiment conducted for low-
income men during 1976–1977; see Lalonde (1986).

 (i)  Use the indicator variable train to determine the fraction of men receiving job 
 training.

 (ii)  The variable re78 is earnings from 1978, measured in thousands of 1982 dollars. 
Find the averages of re78 for the sample of men receiving job training and the 
sample not receiving job training. Is the difference economically large?

 (iii)  The variable unem78 is an indicator of whether a man is unemployed or not in 
1978. What fraction of the men who received job training are unemployed? What 
about for men who did not receive job training? Comment on the difference.

 (iv)  From parts (ii) and (iii), does it appear that the job training program was effective? 
What would make our conclusions more convincing?
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Part 1 of the text covers regression analysis with cross-sectional data. It builds 
upon a solid base of college algebra and basic concepts in probability and 
 statistics. Appendices A, B, and C contain complete reviews of these topics.

Chapter 2 begins with the simple linear regression model, where we explain 
one variable in terms of another variable. Although simple regression is not widely used 
in applied econometrics, it is used occasionally and serves as a natural starting point 
because the algebra and interpretations are relatively straightforward.
 Chapters 3 and 4 cover the fundamentals of multiple regression analysis, where we 
allow more than one variable to affect the variable we are trying to explain. Multiple 
regression is still the most commonly used method in empirical research, and so these 
chapters deserve careful attention. Chapter 3 focuses on the algebra of the method of 
ordinary least squares (OLS), while also establishing conditions under which the OLS 
 estimator is unbiased and best linear unbiased. Chapter 4 covers the important topic of 
statistical inference.
 Chapter 5 discusses the large sample, or asymptotic, properties of the OLS estima-
tors. This provides justification of the inference procedures in Chapter 4 when the errors 
in a regression model are not normally distributed. Chapter 6 covers some additional 
topics in regression analysis, including advanced functional form issues, data scaling, 
prediction, and goodness-of-fit. Chapter 7 explains how qualitative information can be 
incorporated into multiple regression models.
 Chapter 8 illustrates how to test for and correct the problem of heteroskedasticity, or 
nonconstant variance, in the error terms. We show how the usual OLS statistics can be 
adjusted, and we also present an extension of OLS, known as weighted least squares, 
that explicitly accounts for different variances in the errors. Chapter 9 delves further into 
the very important problem of correlation between the error term and one or more of the 
explanatory variables. We demonstrate how the availability of a proxy variable can solve 
the omitted variables problem. In addition, we establish the bias and inconsistency in the 
OLS estimators in the presence of certain kinds of measurement errors in the variables. 
Various data problems are also discussed, including the problem of outliers.

Regression Analysis with 
Cross-Sectional Data
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C H A P T E R

The simple regression model can be used to study the relationship between two 
variables. For reasons we will see, the simple regression model has limitations as a 
general tool for empirical analysis. Nevertheless, it is sometimes appropriate as an 

empirical tool. Learning how to interpret the simple regression model is good practice for 
studying multiple regression, which we will do in subsequent chapters.

2.1 Defi nition of the Simple 
Regression Model
Much of applied econometric analysis begins with the following premise: y and x are two 
variables, representing some population, and we are interested in “explaining y in terms 
of x,” or in “studying how y varies with changes in x.” We discussed some examples in 
Chapter 1, including: y is soybean crop yield and x is amount of fertilizer; y is hourly wage 
and x is years of education; and y is a community crime rate and x is number of police 
officers.
 In writing down a model that will “explain y in terms of x,” we must confront three 
issues. First, since there is never an exact relationship between two variables, how do we 
allow for other factors to affect y? Second, what is the functional relationship between 
y and x? And third, how can we be sure we are capturing a ceteris paribus relationship 
between y and x (if that is a desired goal)?
 We can resolve these ambiguities by writing down an equation relating y to x. A simple 
equation is 

 y � �
0 
� �

1
x � u. 2.1

Equation (2.1), which is assumed to hold in the population of interest, defines the simple 
linear regression model. It is also called the two-variable linear regression model or 
bivariate linear regression model because it relates the two variables x and y. We now 
discuss the meaning of each of the quantities in (2.1). [Incidentally, the term “regression” 
has origins that are not especially important for most modern econometric applications, 

2

The Simple Regression Model
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so we will not explain it here. See Stigler (1986) for an engaging history of regression 
analysis.]
 When related by (2.1), the variables y and x have several different names used interchange-
ably, as follows: y is called the dependent variable, the explained variable, the response 
variable, the predicted variable, or the regressand; x is called the independent variable, the 
explanatory variable, the control variable, the predictor variable, or the regressor. (The 
term covariate is also used for x.) The terms “dependent variable” and “independent variable” 
are frequently used in econometrics. But be aware that the label “independent” here does not 
refer to the statistical notion of independence between random variables (see Appendix B).
 The terms “explained” and “explanatory” variables are probably the most descriptive. 
“Response” and “control” are used mostly in the experimental sciences, where the variable 
x is under the experimenter’s control. We will not use the terms “predicted variable” and 
“predictor,” although you sometimes see these in applications that are purely about predic-
tion and not causality. Our terminology for simple regression is summarized in Table 2.1.
 The variable u, called the error term or disturbance in the relationship, represents factors 
other than x that affect y. A simple regression analysis effectively treats all factors affecting y 
other than x as being unobserved. You can usefully think of u as standing for “unobserved.”
 Equation (2.1) also addresses the issue of the functional relationship between y and x. 
If the other factors in u are held fixed, so that the change in u is zero, �u � 0, then x has 
a linear effect on y:

 �y � �
1
�x if �u � 0. 2.2

Thus, the change in y is simply �
1 
multiplied by the change in x. This means that �

1 
is the 

slope parameter in the relationship between y and x, holding the other factors in u fixed; 
it is of primary interest in applied economics. The intercept parameter �

0
,
 
sometimes 

called the constant term, also has its uses, although it is rarely central to an analysis.

TABLE  2 . 1

Terminology for Simple Regression

y x

Dependent variable Independent variable

Explained variable Explanatory variable

Response variable Control variable

Predicted variable Predictor variable

Regressand Regressor



24 Part 1   Regression Analysis with Cross-Sectional Data

E x a m p l e  2 . 1

[Soybean Yield and Fertilizer]

Suppose that soybean yield is determined by the model

 yield � �
0 
� �

1
fertilizer � u, 2.3

so that y � yield and x � fertilizer. The agricultural researcher is interested in the effect of fertilizer 
on yield, holding other factors fixed. This effect is given by �

1
. The error term u contains factors 

such as land quality, rainfall, and so on. The coefficient �
1
 measures the effect of fertilizer on yield, 

holding other factors fixed: �yield � �
1
� fertilizer.

 

E x a m p l e  2 . 2

[A Simple Wage Equation]

A model relating a person’s wage to observed education and other unobserved factors is

 wage � �
0 
� �

1
educ � u. 2.4

If wage is measured in dollars per hour and educ is years of education, then �
1
 measures the change 

in hourly wage given another year of education, holding all other factors fixed. Some of those fac-
tors include labor force experience, innate ability, tenure with current employer, work ethic, and 
innumerable other things.

 

 The linearity of (2.1) implies that a one-unit change in x has the same effect on y, 
regardless of the initial value of x. This is unrealistic for many economic applications. For 
 example, in the wage-education example, we might want to allow for increasing returns: 
the next year of education has a larger effect on wages than did the previous year. We will 
see how to allow for such possibilities in Section 2.4.
 The most difficult issue to address is whether model (2.1) really allows us to draw ceteris 
paribus conclusions about how x affects y. We just saw in equation (2.2) that �

1 
does measure 

the effect of x on y, holding all other factors (in u) fixed. Is this the end of the causality issue? 
Unfortunately, no. How can we hope to learn in general about the ceteris paribus effect of x 
on y, holding other factors fixed, when we are ignoring all those other factors?
 Section 2.5 will show that we are only able to get reliable estimators of �

0 
and �

1 
from 

a random sample of data when we make an assumption restricting how the unobservable 
u is related to the explanatory variable x. Without such a restriction, we will not be able 
to estimate the ceteris paribus effect, �

1
. Because u and x are random variables, we need a 

concept grounded in probability.
 Before we state the key assumption about how x and u are related, we can always make 
one assumption about u. As long as the intercept �

0 
is included in the equation, nothing is 

lost by assuming that the average value of u in the population is zero. Mathematically,

 E(u) � 0. 2.5
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Assumption (2.5) says nothing about the relationship between u and x, but simply makes 
a statement about the distribution of the unobservables in the population. Using the previ-
ous examples for illustration, we can see that assumption (2.5) is not very restrictive. In 
Example 2.1, we lose nothing by normalizing the unobserved factors affecting soybean 
yield, such as land quality, to have an average of zero in the population of all cultivated 
plots. The same is true of the unobserved factors in Example 2.2. Without loss of gener-
ality, we can assume that things such as average ability are zero in the population of all 
working people. If you are not convinced, you should work through Problem 2.2 to see that 
we can always redefine the intercept in equation (2.1) to make (2.5) true.
 We now turn to the crucial assumption regarding how u and x are related. A natural 
measure of the association between two random variables is the correlation coefficient. 
(See Appendix B for definition and properties.) If u and x are uncorrelated, then, as ran-
dom variables, they are not linearly related. Assuming that u and x are uncorrelated goes 
a long way toward defining the sense in which u and x should be unrelated in equation 
(2.1). But it does not go far enough, because correlation measures only linear dependence 
between u and x. Correlation has a somewhat counterintuitive feature: it is possible for u to 
be uncorrelated with x while being correlated with functions of x, such as x2. (See Section B.4 
for further discussion.) This possibility is not acceptable for most regression purposes, as it 
causes problems for interpreting the model and for deriving statistical properties. A better 
assumption involves the expected value of u given x.
 Because u and x are random variables, we can define the conditional distribution of u 
given any value of x. In particular, for any x, we can obtain the expected (or average) value 
of u for that slice of the population described by the value of x. The crucial assumption is that 
the average value of u does not depend on the value of x. We can write this assumption as

 E(u�x) � E(u). 2.6

Equation (2.6) says that the average value of the unobservables is the same across all slices 
of the population determined by the value of x and that the common average is necessar-
ily equal to the average of u over the entire population. When assumption (2.6) holds, we 
say that u is mean independent of x. (Of course, mean independence is implied by full 
independence between u and x, an assumption often used in basic probability and statis-
tics.) When we combine mean independence with assumption (2.5), we obtain the zero 
conditional mean assumption, E(u�x) � 0. It is critical to remember that equation (2.6) is 
the assumption with impact; assumption (2.5) essentially defines the intercept, �

0
.

 Let us see what (2.6) entails in the wage example. To simplify the discussion, 
assume that u is the same as innate ability. Then (2.6) requires that the average level of 
ability is the same regardless of years of education. For example, if E(abil�8) denotes the 
average ability for the group of all people with eight years of education, and E(abil�16) 
denotes the average ability among people in the population with sixteen years of educa-
tion, then (2.6) implies that these must be the same. In fact, the average ability level 
must be the same for all education levels. If, for example, we think that average ability 
increases with years of education, then (2.6) is false. (This would happen if, on aver-
age, people with more ability choose to become more educated.) As we cannot observe 
innate ability, we have no way of knowing whether or not average ability is the same for 
all education levels. But this is an issue that we must address before relying on simple 
regression analysis.
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 In the fertilizer example, if fertilizer 
amounts are chosen independently of 
other features of the plots, then (2.6) 
will hold: the average land quality will 
not depend on the amount of fertilizer. 
However, if more fertilizer is put on 
the higher-quality plots of land, then the 
expected value of u changes with the 
level of fertilizer, and (2.6) fails.

 The zero conditional mean assumption gives �
1 

another interpretation that is often 
useful. Taking the expected value of (2.1) conditional on x and using E(u�x) � 0 gives

 E(y�x) � �
0 
� �

1
x. 2.8

Equation (2.8) shows that the population regression function (PRF), E(y�x), is a  linear 
function of x. The linearity means that a one-unit increase in x changes the expected 
value of y by the amount �

1
. For any given value of x, the distribution of y is centered 

about E(y�x), as illustrated in Figure 2.1.

Q u e s t i o n  2 . 1
Suppose that a score on a final exam, score, depends on classes 
attended (attend) and unobserved factors that affect exam per-
formance (such as student ability). Then

score � �
0
 � �

1
attend � u. 2.7

When would you expect this model to satisfy (2.6)?

y

x1

E(y�x) � b0 � b1x

x2 x3

F I GURE  2 . 1

E(y�x) as a linear function of x.
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 It is important to understand that equation (2.8) tells us how the average value of y 
changes with x; it does not say that y equals �

0
 � �

1
x for all units in the population. For 

example, suppose that x is the high school grade point average and y is the college GPA, and 
we happen to know that E(colGPA�hsGPA) � 1.5 � 0.5 hsGPA. [Of course, in practice, we 
never know the population intercept and slope, but it is useful to pretend momentarily that we 
do to understand the nature of equation (2.8).] This GPA equation tells us the average col-
lege GPA among all students who have a given high school GPA. So suppose that hsGPA � 
3.6. Then the average colGPA for all high school graduates who attend college with 
hsGPA � 3.6 is 1.5 � 0.5(3.6) � 3.3. We are certainly not saying that every student 
with hsGPA � 3.6 will have a 3.3 college GPA; this is clearly false. The PRF gives us 
a relationship between the average level of y at different levels of x. Some students with 
hsGPA � 3.6 will have a college GPA higher than 3.3, and some will have a lower col-
lege GPA. Whether the actual colGPA is above or below 3.3 depends on the unobserv-
able factors in u, and those differ among students even within the slice of the population 
with hsGPA � 3.6.
 Given the zero conditional mean assumption E(u�x) � 0, it is useful to view equation 
(2.1) as breaking y into two components. The piece �

0
 � �

1
x, which represents E(y�x), is 

called the systematic part of y—that is, the part of y explained by x—and u is called the 
unsystematic part, or the part of y not explained by x. In Chapter 3, when we introduce 
more than one explanatory variable, we will discuss how to determine how large the sys-
tematic part is relative to the unsystematic part.
 In the next section, we will use assumptions (2.5) and (2.6) to motivate estimators of �

0
 

and �
1
 given a random sample of data. The zero conditional mean assumption also plays 

a crucial role in the statistical analysis in Section 2.6.

2.2 Deriving the Ordinary Least 
Squares Estimates
Now that we have discussed the basic ingredients of the simple regression model, we will 
address the important issue of how to estimate the parameters �

0 
and �

1 
in equation (2.1). To 

do this, we need a sample from the population. Let {(x
i
,y

i
): i � 1, …, n} denote a random 

sample of size n from the population. Because these data come from (2.1), we can write

 y
i 
� �

0 
� �

1
x

i 
� u

i 
2.9

for each i. Here, u
i 
is the error term for observation i because it contains all factors affect-

ing y
i 
other than x

i
.

 As an example, x
i 
might be the annual income and y

i 
the annual savings for family 

i during a particular year. If we have collected data on fifteen families, then n � 15. A 
scatterplot of such a data set is given in Figure 2.2, along with the (necessarily fictitious) 
 population regression function.
 We must decide how to use these data to obtain estimates of the intercept and slope in 
the population regression of savings on income.
 There are several ways to motivate the following estimation procedure. We will use 
(2.5) and an important implication of assumption (2.6): in the population, u is uncorrelated 
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with x. Therefore, we see that u has zero expected value and that the covariance between 
x and u is zero:

 E(u) � 0 2.10

and

 Cov(x,u) � E(xu) � 0, 2.11

where the first equality in (2.11) follows from (2.10). (See Section B.4 for the defini-
tion and properties of covariance.) In terms of the observable variables x and y and the 
unknown parameters �

0 
and �

1
, equations (2.10) and (2.11) can be written as

 E(y � �
0 
� �

1
x) � 0 2.12

and

 E[x(y � �
0 
� �

1
x)] � 0, 2.13

respectively. Equations (2.12) and (2.13) imply two restrictions on the joint probability 
distribution of (x,y) in the population. Since there are two unknown parameters to estimate, 
we might hope that equations (2.12) and (2.13) can be used to obtain good estimators of 

F I GURE  2 . 2

Scatterplot of savings and income for 15 families, and the population regression 
E(savings�income) � �

0
 � �

1
income.

E(savings�income) � b0 � b1income

savings

0
income

0
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�
0 
and �

1
. In fact, they can be. Given a sample of data, we choose estimates �̂ 

0 and �̂
1 
to 

solve the sample counterparts of (2.12) and (2.13):

 n�1 ∑ 
i�1

   
n

    (y
i 
� �̂

0 
� �̂

1
x

i
) � 0 2.14

and

 n�1 ∑ 
i�1

   
n

    x
i
(y

i 
� �̂

0 
� �̂

1
x

i
) � 0. 2.15

This is an example of the method of moments approach to estimation. (See Section C.4 for a 
discussion of different estimation approaches.) These equations can be solved for �̂

0 
and �̂

1
.

 Using the basic properties of the summation operator from Appendix A, equation (2.14) 
can be rewritten as

 ȳ � �̂
0 
� �̂

1
x̄, 2.16

where ȳ � n�1  ∑ 
i�1

  
n
    y

i 
is the sample average of the y

i 
and likewise for x̄. This equation allows 

us to write �̂
0 
in terms of �̂

1
, ȳ, and x̄:

 �̂
0 
� ȳ � �̂

1
x̄. 2.17

Therefore, once we have the slope estimate �̂
1
, it is straightforward to obtain the intercept 

estimate �̂
0
,
 
given ȳ and x̄.

 Dropping the n�1 in (2.15) (since it does not affect the solution) and plugging (2.17) 
into (2.15) yields

 ∑ 
i�1

   
n

    x
i
 [y

i 
� (ȳ � �̂

1
x̄) � �̂

1
x

i
] � 0,

which, upon rearrangement, gives

 ∑ 
i�1

   
n

    x
i
(y

i 
� ȳ) � �̂

1
  ∑ 

i�1

   
n

    x
i
(x

i 
� x̄).

From basic properties of the summation operator [see (A.7) and (A.8)],

 ∑ 
i�1

   
n

    x
i
(x

i 
� x̄) �  ∑ 

i�1

   
n

    (x
i 
� x̄)2 and  ∑ 

i�1

   
n

    x
i
(y

i 
� ȳ) �  ∑ 

i�1

   
n

    (x
i 
� x̄)(y

i 
� ȳ).

Therefore, provided that

 ∑ 
i�1

   
n

    (x
i 
� x̄)2 � 0, 2.18

the estimated slope is

 �̂
1 
� 

 ∑ 
i�1

   
n

    (x
i 
� x̄) (y

i 
� ȳ)

 ∑ 
i�1

   
n

    (x
i 
� x̄)2 

. 2.19
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Equation (2.19) is simply the sample covariance between x and y divided by the sample 
variance of x. (See Appendix C. Dividing both the numerator and the denominator by 
n � 1 changes nothing.) This makes sense because �

1 
equals the population covariance 

divided by the variance of x when E(u) � 0 and Cov(x,u) � 0. An immediate implication 
is that if x and y are positively correlated in the sample, then �̂

1 
is positive; if x and y are 

negatively correlated, then �̂
1 
is negative.

 Although the method for obtaining (2.17) and (2.19) is motivated by (2.6), the only 
assumption needed to compute the estimates for a particular sample is (2.18). This is 
hardly an assumption at all: (2.18) is true provided the x

i
 in the sample are not all equal to 

the same value. If (2.18) fails, then we have either been unlucky in obtaining our sample 
from the population or we have not specified an interesting problem (x does not vary in 
the population). For example, if y � wage and x � educ, then (2.18) fails only if everyone 
in the sample has the same amount of education (for example, if everyone is a high school 
graduate; see Figure 2.3). If just one person has a different amount of education, then 
(2.18) holds, and the estimates can be computed.
 The estimates given in (2.17) and (2.19) are called the ordinary least squares (OLS) 
estimates of �

0 
and �

1
. To justify this name, for any �̂

0 
and �̂

1
 define a fitted value for y 

when x � x
i
 as

  ̂  y 
i 
� �̂

0
 � �̂

1
x

i
. 2.20

wage

12 educ0

F I GURE  2 . 3

A scatterplot of wage against education when educi � 12 for all i.
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This is the value we predict for y when x � x
i
 for the given intercept and slope. There is 

a fitted value for each observation in the sample. The residual for observation i is the dif-
ference between the actual y

i 
and its fitted value:

 û
i 
� y

i 
�  ̂  y 

i 
� y

i 
� �̂

0 
� �̂

1
x

i
. 2.21

Again, there are n such residuals. [These are not the same as the errors in (2.9), a point we 
return to in Section 2.5.] The fitted values and residuals are indicated in Figure 2.4.
 Now, suppose we choose �̂

0 
and �̂

1 
to make the sum of squared residuals,

  ∑ 
i�1

   
n

    û
i
2 �  ∑ 

i�1

   
n

    (y
i 
� �̂

0 
� �̂

1
x

i
)2, 2.22

as small as possible. The appendix to this chapter shows that the conditions necessary 
for (�̂

0
,�̂

1
) to minimize (2.22) are given exactly by equations (2.14) and (2.15), without 

n�1. Equations (2.14) and (2.15) are often called the first order conditions for the OLS 
estimates, a term that comes from optimization using calculus (see Appendix A). From 
our previous calculations, we know that the solutions to the OLS first order conditions are 
given by (2.17) and (2.19). The name “ordinary least squares” comes from the fact that 
these estimates minimize the sum of squared residuals.

F I GURE  2 . 4

Fitted values and residuals.

y � b0 � b1x

y

ˆ ˆˆ

x1 xi x

yi

yi � fitted value

y1

ûi � residual

ˆ
y1ˆ
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 When we view ordinary least squares as minimizing the sum of squared residuals, it is 
natural to ask: Why not minimize some other function of the residuals, such as the abso-
lute values of the residuals? In fact, as we will discuss in the more advanced Section 9.4, 
minimizing the sum of the absolute values of the residuals is sometimes very useful. But it 
does have some drawbacks. First, we cannot obtain formulas for the resulting estimators; 
given a data set, the estimates must be obtained by numerical optimization routines. As 
a consequence, the statistical theory for estimators that minimize the sum of the absolute 
residuals is very complicated. Minimizing other functions of the residuals, say, the sum 
of the residuals each raised to the fourth power, has similar drawbacks. (We would never 
choose our estimates to minimize, say, the sum of the residuals themselves, as residuals 
large in magnitude but with opposite signs would tend to cancel out.) With OLS, we will 
be able to derive unbiasedness, consistency, and other important statistical properties rela-
tively easily. Plus, as the motivation in equations (2.13) and (2.14) suggests, and as we will 
see in Section 2.5, OLS is suited for estimating the parameters appearing in the conditional 
mean function (2.8).
 Once we have determined the OLS intercept and slope estimates, we form the OLS 
regression line:

  ̂  y  � �̂
0 
� �̂

1
x, 2.23

where it is understood that �̂
0 

and �̂
1 

have been obtained using equations (2.17) and 
(2.19). The notation  ̂  y , read as “y hat,” emphasizes that the predicted values from equa-
tion (2.23) are estimates. The intercept, �̂

0
, is the predicted value of y when x � 0, 

although in some cases it will not make sense to set x � 0. In those situations, �̂
0 
is not, 

in itself, very interesting. When using (2.23) to compute predicted values of y for various 
values of x, we must account for the intercept in the calculations. Equation (2.23) is also 
called the sample regression function (SRF) because it is the estimated version of the 
population regression function E(y�x) � �

0 
� �

1
x. It is important to remember that the 

PRF is something fixed, but unknown, in the population. Because the SRF is obtained 
for a given sample of data, a new sample will generate a different slope and intercept 
in equation (2.23).
 In most cases, the slope estimate, which we can write as

 �̂
1
 � � ̂  y /�x, 2.24

is of primary interest. It tells us the amount by which  ̂  y  changes when x increases by one 
unit. Equivalently,

 � ̂  y  � �̂
1
�x, 2.25

so that given any change in x (whether positive or negative), we can compute the predicted 
change in y.
 We now present several examples of simple regression obtained by using real data. In 
other words, we find the intercept and slope estimates with equations (2.17) and (2.19). 
Since these examples involve many observations, the calculations were done using an 
 econometrics software package. At this point, you should be careful not to read too much 
into these regressions; they are not necessarily uncovering a causal relationship. We 
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have said nothing so far about the statistical properties of OLS. In Section 2.5, we con-
sider  statistical properties after we explicitly impose assumptions on the population model 
 equation (2.1).

E x a m p l e  2 . 3

[CEO Salary and Return on Equity]

For the population of chief executive officers, let y be annual salary (salary) in thousands of dol-
lars. Thus, y � 856.3 indicates an annual salary of $856,300, and y � 1,452.6 indicates a salary of 
$1,452,600. Let x be the average return on equity (roe) for the CEO’s firm for the previous three 
years. (Return on equity is defined in terms of net income as a  percentage of common equity.) For 
example, if roe � 10, then average return on equity is 10%.
 To study the relationship between this measure of firm performance and CEO compensation, we 
postulate the simple model

salary � �
0 
� �

1
roe � u.

The slope parameter �
1
 measures the change in annual salary, in thousands of dollars, when return 

on equity increases by one percentage point. Because a higher roe is good for the company, we 
think �

1
 � 0.

 The data set CEOSAL1.RAW contains information on 209 CEOs for the year 1990; these data 
were obtained from Business Week (5/6/91). In this sample, the average annual salary is $1,281,120, 
with the smallest and largest being $223,000 and $14,822,000, respectively. The average return on 
equity for the years 1988, 1989, and 1990 is 17.18%, with the smallest and largest values being 0.5 
and 56.3%, respectively.
 Using the data in CEOSAL1.RAW, the OLS regression line relating salary to roe is

 2salary � 963.191 � 18.501 roe, 2.26

where the intercept and slope estimates have been rounded to three decimal places; we use “salary 
hat” to indicate that this is an estimated equation. How do we interpret the equation? First, if the 
return on equity is zero, roe � 0, then the predicted salary is the intercept, 963.191, which equals 
$963,191 since salary is measured in thousands. Next, we can write the predicted change in sal-
ary as a function of the change in roe: � 2salary � 18.501 (�roe). This means that if the return on 
equity increases by one percentage point, �roe � 1, then salary is predicted to change by about 
18.5, or $18,500. Because (2.26) is a linear equation, this is the estimated change regardless of the 
initial salary.
 We can easily use (2.26) to compare predicted salaries at different values of roe. Suppose 
roe � 30. Then 2salary � 963.191 � 18.501(30) � 1,518,221, which is just over $1.5 million. 
However, this does not mean that a particular CEO whose firm had a roe � 30 earns $1,518,221. 
Many other factors affect salary. This is just our prediction from the OLS regression line (2.26). The 
estimated line is graphed in Figure 2.5, along with the population regression function E(salary�roe). 
We will never know the PRF, so we cannot tell how close the SRF is to the PRF. Another sample of 
data will give a different regression line, which may or may not be closer to the population regression 
line.
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E x a m p l e  2 . 4

[Wage and Education]

For the population of people in the workforce in 1976, let y � wage, where wage is measured in dol-
lars per hour. Thus, for a particular person, if wage � 6.75, the hourly wage is $6.75. Let x � educ 
denote years of schooling; for example, educ � 12 corresponds to a complete high school education. 
Since the average wage in the sample is $5.90, the Consumer Price Index indicates that this amount 
is equivalent to $19.06 in 2003 dollars.
 Using the data in WAGE1.RAW where n � 526 individuals, we obtain the following OLS 
regression line (or sample regression function):

 2wage � �0.90 � 0.54 educ. 2.27

We must interpret this equation with caution. The intercept of �0.90 literally means that a person 
with no education has a predicted hourly wage of �90¢ an hour. This, of course, is silly. It turns out 
that only 18 people in the sample of 526 have less than eight years of  education. Consequently, it 

F I GURE  2 . 5

The OLS regression line 2salary � 963.191 � 18.501 roe and the (unknown) 
population regression function.

salary

963.191

salary � 963.191 � 18.501 roe

E(salary�roe) � b0 � b1roe

roe
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is not surprising that the regression line does 
poorly at very low levels of education. For a 
person with eight years of education, the pre-
dicted wage is 2wage � �0.90 � 0.54(8) � 
3.42, or $3.42 per hour (in 1976 dollars).
 The slope estimate in (2.27) implies that 
one more year of education increases hourly wage by 54 ¢ an hour. Therefore, four more years of 
education increase the predicted wage by 4(0.54) � 2.16, or $2.16 per hour. These are fairly large 
effects. Because of the linear nature of (2.27), another year of education increases the wage by the 
same amount, regardless of the initial level of education. In Section 2.4, we discuss some methods 
that allow for nonconstant marginal effects of our explanatory variables.

 

E x a m p l e  2 . 5

[Voting Outcomes and Campaign Expenditures]

The file VOTE1.RAW contains data on election outcomes and campaign expenditures for 173 two-
party races for the U.S. House of Representatives in 1988. There are two candidates in each race, 
A and B. Let voteA be the percentage of the vote received by Candidate A and shareA be the percent-
age of total campaign expenditures accounted for by Candidate A. Many factors other than shareA 
affect the election outcome (including the quality of the candidates and possibly the dollar amounts 
spent by A and B). Nevertheless, we can estimate a simple regression model to find out whether 
spending more relative to one’s challenger implies a higher percentage of the vote.
 The estimated equation using the 173 observations is

 2voteA � 26.81 � 0.464 shareA. 2.28

This means that if Candidate A’s share of spending increases by one percentage point, Candidate A 
receives almost one-half a percentage point (0.464) more of the total vote. Whether or not this is 
a causal effect is unclear, but it is not unbelievable. If shareA � 50, voteA is predicted to be about 
50, or half the vote.

 

 In some cases, regression analysis 
is not used to determine causality but to 
simply look at whether two variables are 
positively or negatively related, much 
like a standard correlation analysis. An 
example of this occurs in Computer 
Exercise C2.3, where you are asked to use data from Biddle and Hamermesh (1990) on 
time spent sleeping and working to investigate the tradeoff between these two factors.

A Note on Terminology
In most cases, we will indicate the estimation of a relationship through OLS by writing an 
equation such as (2.26), (2.27), or (2.28). Sometimes, for the sake of brevity, it is useful 
to indicate that an OLS regression has been run without actually writing out the equation. 

Q u e s t i o n  2 . 2
The estimated wage from (2.27), when educ � 8, is $3.42 in 1976 
dollars. What is this value in 2003 dollars? (Hint: You have enough 
information in Example 2.4 to answer this question.)

Q u e s t i o n  2 . 3
In Example 2.5, what is the predicted vote for Candidate A if 
shareA � 60 (which means 60 percent)? Does this answer seem 
reasonable?
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We will often indicate that equation (2.23) has been obtained by OLS in saying that we 
run the regression of

 y on x, 2.29

or simply that we regress y on x. The positions of y and x in (2.29) indicate which is the 
dependent variable and which is the independent variable: we always regress the depen-
dent variable on the independent variable. For specific applications, we replace y and x 
with their names. Thus, to obtain (2.26), we regress salary on roe, or to obtain (2.28), we 
regress voteA on shareA.
 When we use such terminology in (2.29), we will always mean that we plan to  estimate 
the intercept, �̂

0
, along with the slope, �̂

1
. This case is appropriate for the vast majority 

of applications. Occasionally, we may want to estimate the relationship between y and x 
assuming that the intercept is zero (so that x � 0 implies that  ̂  y  � 0); we cover this case 
briefly in Section 2.6. Unless explicitly stated otherwise, we always estimate an intercept 
along with a slope.

2.3 Properties of OLS on Any 
Sample of Data
In the previous section, we went through the algebra of deriving the formulas for the OLS 
intercept and slope estimates.  In this section, we cover some further algebraic properties of the 
fitted OLS regression line. The best way to think about these properties is to remember that 
they hold, by construction, for any sample of data.  The harder task—considering the properties 
of OLS across all possible random samples of data—is postponed until Section 2.5.
 Several of the algebraic properties we are going to derive will appear mundane. Never-
theless, having a grasp of these properties helps us to figure out what happens to the OLS 
estimates and related statistics when the data are manipulated in certain ways, such as 
when the measurement units of the dependent and independent variables change.

Fitted Values and Residuals
We assume that the intercept and slope estimates, �̂

0 
and �̂

1
, have been obtained for the 

given sample of data. Given �̂
0 
and �̂

1
, we can obtain the fitted value  ̂  y 

i 
for each observa-

tion. [This is given by equation (2.20).] By definition, each fitted value of  ̂  y 
i 
is on the 

OLS regression line. The OLS residual associated with observation i, û
i
, is the difference 

between y
i 
and its fitted value, as given in equation (2.21). If û

i 
is positive, the line under-

predicts y
i
; if û

i 
is negative, the line overpredicts y

i
. The ideal case for observation i is when 

û
i 
� 0, but in most cases, every residual is not equal to zero. In other words, none of the 

data points must actually lie on the OLS line.

E x a m p l e  2 . 6

[CEO Salary and Return on Equity]

Table 2.2 contains a listing of the first 15 observations in the CEO data set, along with the fitted 
values, called salaryhat, and the residuals, called uhat.
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TABLE  2 . 2

Fitted Values and Residuals for the First 15 CEOs

obsno roe salary salaryhat uhat

1 14.1 1095 1224.058 �129.0581

2 10.9 1001 1164.854 �163.8542

3 23.5 1122 1397.969 �275.9692

4 5.9 578 1072.348 �494.3484

5 13.8 1368 1218.508 149.4923

6 20.0 1145 1333.215 �188.2151

7 16.4 1078 1266.611 �188.6108

8 16.3 1094 1264.761 �170.7606

9 10.5 1237 1157.454 79.54626

10 26.3 833 1449.773 �616.7726

11 25.9 567 1442.372 �875.3721

12 26.8 933 1459.023 �526.0231

13 14.8 1339 1237.009 101.9911

14 22.3 937 1375.768 �438.7678

15 56.3 2011 2004.808 6.191895

 The first four CEOs have lower salaries than what we predicted from the OLS regression line 
(2.26); in other words, given only the firm’s roe, these CEOs make less than what we predicted. As 
can be seen from the positive uhat, the fifth CEO makes more than predicted from the OLS regres-
sion line.

 

Algebraic Properties of OLS Statistics
There are several useful algebraic properties of OLS estimates and their associated statis-
tics. We now cover the three most important of these.
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 (1) The sum, and therefore the sample average of the OLS residuals, is zero.
Mathematically,

  ∑ 
i�1

   
n

     ̂  u 
i 
� 0. 2.30

This property needs no proof; it follows immediately from the OLS first order condition 
(2.14), when we remember that the residuals are defined by û

i 
� y

i 
� �̂

0 
� �̂

1
x

i
. In other 

words, the OLS estimates �̂
0 
and �̂

1 
are chosen to make the residuals add up to zero (for any 

data set). This says nothing about the residual for any particular observation i.
 (2) The sample covariance between the regressors and the OLS residuals is zero. 
This follows from the first order condition (2.15), which can be written in terms of the 
residuals as

  ∑ 
i�1

   
n

    x
i
û

i 
� 0. 2.31

The sample average of the OLS residuals is zero, so the left-hand side of (2.31) is 
 proportional to the sample covariance between x

i 
and û

i
.

 (3) The point (x̄,ȳ) is always on the OLS regression line. In other words, if we take 
equation (2.23) and plug in x̄ for x, then the predicted value is ȳ. This is exactly what 
 equation (2.16) showed us.

E x a m p l e  2 . 7

[Wage and Education]

For the data in WAGE1.RAW, the average hourly wage in the sample is 5.90, rounded to two deci-
mal places, and the average education is 12.56. If we plug educ � 12.56 into the OLS regression 
line (2.27), we get 1wage � �0.90 � 0.54(12.56) � 5.8824, which equals 5.9 when rounded to the 
first decimal place. These figures do not exactly agree because we have rounded the average wage 
and education, as well as the intercept and slope estimates. If we did not initially round any of the 
values, we would get the answers to agree more closely, but to little useful effect.

 
 Writing each y

i
 as its fitted value, plus its residual, provides another way to interpret 

an OLS regression. For each i, write

 y
i 
�  ̂  y 

i 
� û

i
. 2.32

From property (1), the average of the residuals is zero; equivalently, the sample aver-
age of the fitted values,  ̂  y 

i
, is the same as the sample average of the y

i
, or  ̂  y ̄  � ȳ. Further, 

properties (1) and (2) can be used to show that the sample covariance between  ̂  y 
i 
and û

i 
is 

zero. Thus, we can view OLS as decomposing each y
i 
into two parts, a fitted value and a 

residual. The fitted values and residuals are uncorrelated in the sample.
 Define the total sum of squares (SST), the explained sum of squares (SSE), and 
the residual sum of squares (SSR) (also known as the sum of squared residuals), as 
 follows:

 SST �  ∑ 
i�1

   
n

    (y
i 
� ȳ)2. 2.33



 Chapter 2   The Simple Regression Model 39

SSE �  ∑ 
i�1

   
n

    (  ̂  y 
i 
� ȳ)2. 2.34

SSR �  ∑ 
i�1

   
n

    û
i
2. 2.35

SST is a measure of the total sample variation in the y
i
; that is, it measures how spread 

out the y
i 
are in the sample. If we divide SST by n � 1, we obtain the sample variance 

of y, as discussed in Appendix C. Similarly, SSE measures the sample variation in the  ̂  y 
i 

(where we use the fact that ȳ̂ � ȳ), and SSR measures the sample variation in the û
i 
. The 

total variation in y can always be expressed as the sum of the explained variation and the 
unexplained variation SSR. Thus,

SST � SSE � SSR. 2.36

Proving (2.36) is not difficult, but it requires us to use all of the properties of the summa-
tion operator covered in Appendix A. Write

  ∑ 
i�1

   
n

   (y
i 
� ȳ)2 �  ∑ 

i�1

   
n

    [(y
i 
�  ̂  y 

i
) � (  ̂  y 

i 
� ȳ)]2

  �  ∑ 
i�1

   
n

    [û
i 
� (  ̂  y 

i 
� ȳ)]2

  �  ∑ 
i�1

   
n

    û
i
2 � 2  ∑ 

i�1

   
n

    û
i
(  ̂  y 

i 
� ȳ) �  ∑ 

i�1

   
n

    (  ̂  y 
i 
� ȳ)2

  � SSR � 2 ∑ 
i�1

   
n

    û
i
(  ̂  y 

i 
� ȳ) � SSE.

Now, (2.36) holds if we show that

  ∑ 
i�1

   
n

    û
i
(  ̂  y 

i 
� ȳ) � 0. 2.37

But we have already claimed that the sample covariance between the residuals and the 
fitted values is zero, and this covariance is just (2.37) divided by n�1. Thus, we have 
established (2.36).
 Some words of caution about SST, SSE, and SSR are in order. There is no uniform 
agreement on the names or abbreviations for the three quantities defined in equations (2.33), 
(2.34), and (2.35). The total sum of squares is called either SST or TSS, so there is little con-
fusion here. Unfortunately, the explained sum of squares is sometimes called the “regression 
sum of squares.” If this term is given its natural abbreviation, it can  easily be confused with 
the term “residual sum of squares.” Some regression packages refer to the explained sum of 
squares as the “model sum of squares.”
 To make matters even worse, the residual sum of squares is often called the “error sum 
of squares.” This is especially unfortunate because, as we will see in Section 2.5, the errors 
and the residuals are different quantities. Thus, we will always call (2.35) the residual sum 
of squares or the sum of squared residuals. We prefer to use the abbreviation SSR to denote 
the sum of squared residuals, because it is more common in  econometric packages.
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Goodness-of-Fit

So far, we have no way of measuring how well the explanatory or independent variable, x, 
explains the dependent variable, y. It is often useful to compute a number that summarizes 
how well the OLS regression line fits the data. In the following  discussion, be sure to 
remember that we assume that an intercept is estimated along with the slope.
 Assuming that the total sum of squares, SST, is not equal to zero—which is true except 
in the very unlikely event that all the y

i
 equal the same value—we can divide (2.36) by 

SST to get 1 � SSE/SST � SSR/SST. The R-squared of the regression, sometimes called 
the coefficient of determination, is defined as

 R2 � SSE/SST � 1 � SSR/SST. 2.38

R2 is the ratio of the explained variation compared to the total variation; thus, it is 
 interpreted as the fraction of the sample variation in y that is explained by x. The second 
equality in (2.38) provides another way for computing R2.
 From (2.36), the value of R2 is always between zero and one, because SSE can be 
no greater than SST. When interpreting R2, we usually multiply it by 100 to change it 
into a percent: 100 �R2 is the percentage of the sample variation in y that is explained 
by x.
 If the data points all lie on the same line, OLS provides a perfect fit to the data. 
In this case, R2 � 1. A value of R2 that is nearly equal to zero indicates a poor fit of 
the OLS line: very little of the variation in the y

i
 is captured by the variation in the  ̂  y 

i 

(which all lie on the OLS regression line). In fact, it can be shown that R2 is equal to 
the square of the sample correlation coefficient between y

i 
and  ̂  y 

i
. This is where the 

term “R-squared” came from. (The letter R was traditionally used to denote an esti-
mate of a population correlation coefficient, and its usage has survived in regression 
analysis.)

E x a m p l e  2 . 8

[CEO Salary and Return on Equity]

In the CEO salary regression, we obtain the following:

 2salary � 963.191 � 18.501 roe 2.39

n � 209, R2 � 0.0132.

We have reproduced the OLS regression line and the number of observations for clarity. Using the 
R-squared (rounded to four decimal places) reported for this equation, we can see how much of 
the variation in salary is actually explained by the return on equity. The answer is: not much. The 
firm’s return on equity explains only about 1.3 percent of the variation in salaries for this sample of 
209 CEOs. That means that 98.7 percent of the salary variations for these CEOs is left unexplained! 
This lack of explanatory power may not be too surprising because many other characteristics of both 
the firm and the individual CEO should influence salary; these factors are necessarily included in the 
errors in a simple regression analysis.
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 In the social sciences, low R-squareds in regression equations are not uncommon, 
 especially for cross-sectional analysis. We will discuss this issue more generally under 
multiple regression analysis, but it is worth emphasizing now that a seemingly low 
R-squared does not necessarily mean that an OLS regression equation is useless. It is 
still possible that (2.39) is a good estimate of the ceteris paribus relationship between 
salary and roe; whether or not this is true does not depend directly on the size of 
R-squared.  Students who are first learning econometrics tend to put too much weight 
on the size of the R-squared in evaluating regression equations. For now, be aware that 
using R-squared as the main gauge of success for an econometric analysis can lead to 
trouble.
 Sometimes, the explanatory variable explains a substantial part of the sample variation 
in the dependent variable.

E x a m p l e  2 . 9

[Voting Outcomes and Campaign Expenditures]

In the voting outcome equation in (2.28), R2 � 0.856. Thus, the share of campaign expenditures 
explains over 85% of the variation in the election outcomes for this sample. This is a sizable 
portion.

 

2.4 Units of Measurement 
and Functional Form
Two important issues in applied economics are (1) understanding how changing the units 
of measurement of the dependent and/or independent variables affects OLS estimates and 
(2) knowing how to incorporate popular functional forms used in economics into regres-
sion analysis. The mathematics needed for a full understanding of functional form issues 
is reviewed in Appendix A.

The Effects of Changing Units 

of Measurement on OLS Statistics

In Example 2.3, we chose to measure annual salary in thousands of dollars, and the return 
on equity was measured as a percentage (rather than as a decimal). It is crucial to know 
how salary and roe are measured in this example in order to make sense of the estimates 
in equation (2.39).
 We must also know that OLS estimates change in entirely expected ways when the 
units of measurement of the dependent and independent variables change. In Example 2.3, 
suppose that, rather than measuring salary in thousands of dollars, we measure it in  dollars. 
Let salardol be salary in dollars (salardol � 845,761 would be interpreted as $845,761). 
Of course, salardol has a simple relationship to the salary measured in thousands of 
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 dollars: salardol � 1,000�salary. We do not need to actually run the regression of salardol 
on roe to know that the estimated equation is:

2salardol � 963,191 � 18,501 roe. 2.40

We obtain the intercept and slope in (2.40) simply by multiplying the intercept and 
the slope in (2.39) by 1,000. This gives equations (2.39) and (2.40) the same interpretation. 
Looking at (2.40), if roe � 0, then 2salardol � 963,191, so the predicted salary is $963,191 
[the same value we obtained from equation (2.39)]. Furthermore, if roe increases by one, 
then the predicted salary increases by $18,501; again, this is what we concluded from our 
earlier analysis of equation (2.39).
 Generally, it is easy to figure out what happens to the intercept and slope estimates 
when the dependent variable changes units of measurement. If the dependent variable is 
multiplied by the constant c—which means each value in the sample is multiplied by 
c—then the OLS intercept and slope estimates are also multiplied by c. (This assumes 
nothing has changed about the independent variable.) In the CEO salary example, c � 
1,000 in moving from salary to salardol.
 We can also use the CEO salary example to see what happens when we change the 

units of measurement of the indepen-
dent variable. Define roedec � 
roe/100 to be the decimal equivalent 
of roe; thus, roedec � 0.23 means 
a return on equity of 23 percent. To 
focus on changing the units of mea-
surement of the independent variable, 
we return to our original dependent 

variable, salary, which is measured in thousands of  dollars. When we regress salary 
on roedec, we obtain

 2salary � 963.191 � 1,850.1 roedec. 2.41

The coefficient on roedec is 100 times the coefficient on roe in (2.39). This is as it should 
be. Changing roe by one percentage point is equivalent to �roedec � 0.01. From (2.41), 
if �roedec � 0.01, then �2salary � 1,850.1(0.01) � 18.501, which is what is obtained 
by using (2.39). Note that, in moving from (2.39) to (2.41), the independent variable was 
divided by 100, and so the OLS slope estimate was multiplied by 100, preserving the inter-
pretation of the equation. Generally, if the independent variable is divided or multiplied 
by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by 
c, respectively.
 The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.
 In the previous section, we defined R-squared as a goodness-of-fit measure for OLS 
regression. We can also ask what happens to R2 when the unit of measurement of either 
the independent or the dependent variable changes. Without doing any algebra, we should 
know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained 

Q u e s t i o n  2 . 4
Suppose that salary is measured in hundreds of dollars, rather than 
in thousands of dollars, say, salarhun. What will be the OLS inter-
cept and slope estimates in the regression of salarhun on roe?
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by the return on equity should not depend on whether salary is measured in dollars or in 
thousands of dollars or on whether return on equity is a percentage or a decimal. This 
 intuition can be verified mathematically: using the definition of R2, it can be shown that 
R2 is, in fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression

So far, we have focused on linear relationships between the dependent and indepen- 
dent variables. As we mentioned in Chapter 1, linear relationships are not nearly general 
enough for all economic applications. Fortunately, it is rather easy to incorporate many 
nonlinearities into simple regression analysis by appropriately defining the dependent 
and independent variables. Here, we will cover two possibilities that often appear in 
applied work.
 In reading applied work in the social sciences, you will often encounter regression 
equations where the dependent variable appears in logarithmic form. Why is this done? 
Recall the wage-education example, where we regressed hourly wage on years of educa-
tion. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each 
additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
the twentieth year; this may not be reasonable.
 Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � �
0 
� �

1
educ � u, 2.42

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if �u � 0, then

 %�wage � (100 ��
1
)�educ. 2.43

Notice how we multiply �
1 

by 100 to get the percentage change in wage given one 
additional year of education. Since the percentage change in wage is the same for 
each additional year of education, the change in wage for an extra year of education 
increases as education increases; in other words, (2.42) implies an increasing return to 
education. By exponentiating (2.42), we can write wage � exp(�

0 
� �

1
educ � u). This 

equation is graphed in Figure 2.6, with u � 0.
 Estimating a model such as (2.42) is straightforward when using simple regression. 
Just define the dependent variable, y, to be y � log(wage). The independent variable is 
represented by x � educ. The mechanics of OLS are the same as before: the intercept and 
slope estimates are given by the formulas (2.17) and (2.19). In other words, we obtain �̂

0 

and �̂
1 
from the OLS regression of log(wage) on educ.
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E x a m p l e  2 . 1 0

[A Log Wage Equation]

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we obtain 
the following relationship:

2log(wage) � 0.584 � 0.083 educ 2.44

n � 526, R2 � 0.186. 

The coefficient on educ has a percentage interpretation when it is multiplied by 100:  
�

 wage  increases 
by 8.3% for every additional year of education. This is what economists mean when they refer to 
the “return to another year of education.”
 It is important to remember that the main reason for using the log of wage in (2.42) is to impose 
a constant percentage effect of education on wage. Once equation (2.42) is obtained, the natural 
log of wage is rarely mentioned. In particular, it is not correct to say that another year of education 
increases log(wage) by 8.3%.
 The intercept in (2.42) is not very meaningful, because it gives the predicted log(wage), when 
educ � 0. The R-squared shows that educ explains about 18.6% of the variation in log(wage) (not 
wage). Finally, equation (2.44) might not capture all of the nonlinearity in the relationship between 
wage and schooling. If there are “diploma effects,” then the twelfth year of education—graduation 
from high school—could be worth much more than the eleventh year. We will learn how to allow 
for this kind of nonlinearity in Chapter 7.

 

F I GURE  2 . 6

wage � exp(�
0
 � �

1
educ), with �

1
 > 0.

wage

educ0



 Chapter 2   The Simple Regression Model 45

Another important use of the natural log is in obtaining a constant elasticity model.

E x a m p l e  2 . 1 1

[CEO Salary and Firm Sales]

We can estimate a constant elasticity model relating CEO salary to firm sales. The data set is the 
same one used in Example 2.3, except we now relate salary to sales. Let sales be annual firm sales, 
measured in millions of dollars. A constant elasticity model is

 log(salary) � �
0 
� �

1
log(sales) � u, 2.45

where �
1
 is the elasticity of salary with respect to sales. This model falls under the simple regression 

model by defining the dependent variable to be y � log(salary) and the independent variable to be 
x � log(sales). Estimating this equation by OLS gives

 2log(salary) � 4.822 � 0.257 log(sales) 2.46

n � 209, R2 � 0.211.

The coefficient of log(sales) is the estimated elasticity of salary with respect to sales. It implies that a 1% 
increase in firm sales increases CEO salary by about 0.257%—the usual interpretation of an elasticity.

 

 The two functional forms covered in this section will often arise in the remainder of 
this text. We have covered models containing natural logarithms here because they appear 
so frequently in applied work. The interpretation of such models will not be much different 
in the multiple regression case.
 It is also useful to note what happens to the intercept and slope estimates if we change 
the units of measurement of the dependent variable when it appears in logarithmic form. 
Because the change to logarithmic form approximates a proportionate change, it makes 
sense that nothing happens to the slope. We can see this by writing the rescaled variable 
as c

1
y

i 
for each observation i. The original equation is log(y

i
) � �

0 
� �

1
x

i 
� u

i
. If we add 

log(c
1
) to both sides, we get log(c

1
) � log(y

i
) � [log(c

1
) � �

0
] � �

1
x

i 
� u

i
, or log(c

1
y

i
) �

[log(c
1
) � �

0
] � �

1
x

i 
� u

i
.
 
(Remember that the sum of the logs is equal to the log of their 

product, as shown in Appendix A.) Therefore, the slope is still �
1
, but the intercept is 

now log(c
1
) � �

0
. Similarly, if the independent variable is log(x), and we change the units 

of measurement of x before taking the log, the slope remains the same, but the intercept 
changes. You will be asked to verify these claims in Problem 2.9.
 We end this subsection by summarizing four combinations of functional forms available 
from using either the original variable or its natural log. In Table 2.3, x and y stand for the 
variables in their original form. The model with y as the dependent variable and x as the inde-
pendent variable is called the level-level model because each variable appears in its level form. 
The model with log(y) as the dependent variable and x as the independent variable is called 
the log-level model. We will not explicitly discuss the level-log model here, because it arises 
less often in practice. In any case, we will see examples of this model in later chapters.
 The last column in Table 2.3 gives the interpretation of �

1
. In the log-level model, 

100 ��
1 
is sometimes called the semi-elasticity of y with respect to x. As we mentioned in 
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Example 2.11, in the log-log model, �
1 
is the elasticity of y with respect to x. Table 2.3 

warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression

The simple regression model that we have studied in this chapter is also called the simple 
linear regression model. Yet, as we have just seen, the general model also allows for certain 
nonlinear relationships. So what does “linear” mean here? You can see by looking at equa-
tion (2.1) that y � �

0 
� �

1
x � u. The key is that this equation is linear in the param e ters �

0 

and �
1
. There are no restrictions on how y and x relate to the original explained and explana-

tory variables of interest. As we saw in Examples 2.10 and 2.11, y and x can be natural 
logs of variables, and this is quite common in applications. But we need not stop there. For 
example, nothing prevents us from using simple regression to estimate a model such as 
cons � �

0 
� �

1
 √

___
 inc   � u, where cons is annual consumption and inc is annual income.

 Whereas the mechanics of simple regression do not depend on how y and x are defined, 
the interpretation of the coefficients does depend on their definitions. For successful empiri-
cal work, it is much more important to become proficient at interpreting coefficients than to 
become efficient at computing formulas such as (2.19). We will get much more practice with 
interpreting the estimates in OLS regression lines when we study multiple regression.
 Plenty of models cannot be cast as a linear regression model because they are not 
linear in their parameters; an example is cons � 1/(�

0 
� �

1
inc) � u. Estimation of such 

models takes us into the realm of the nonlinear regression model, which is beyond the 
scope of this text. For most applications, choosing a model that can be put into the linear 
regression framework is sufficient.

2.5 Expected Values and Variances 
of the OLS Estimators
In Section 2.1, we defined the population model y � �

0 
� �

1
x � u, and we claimed that 

the key assumption for simple regression analysis to be useful is that the expected value 
of u given any value of x is zero. In Sections 2.2, 2.3, and 2.4, we discussed the algebraic 

TABLE  2 . 3

Summary of Functional Forms Involving Logarithms

Model
Dependent
Variable

Independent
Variable

Interpretation
of �1

Level-level y x �y � �
1
�x

Level-log y log(x) �y � (�
1
/100)%�x

Log-level log(y) x %�y � (100�
1
)�x

Log-log log(y) log(x) %�y � �
1
%�x
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properties of OLS estimation. We now return to the population model and study the  statistical 
properties of OLS. In other words, we now view �̂

0 
and �̂

1 
as estimators for the parameters �

0 

and �
1 
that appear in the population model. This means that we will study properties of the 

distributions of �̂
0 
and �̂

1 
over different random samples from the population. (Appendix C 

contains definitions of estimators and reviews some of their important properties.)

Unbiasedness of OLS

We begin by establishing the unbiasedness of OLS under a simple set of assumptions. 
For future reference, it is useful to number these assumptions using the prefix “SLR” for 
simple linear regression. The first assumption defines the population model.

Assumption SLR.1   (Linear in Parameters)

In the population model, the dependent variable, y, is related to the independent variable, x, 
and the error (or disturbance), u, as

 y � �
0 
� �

1
x � u, 2.47

where �0 and �1 are the population intercept and slope parameters, respectively.

To be realistic, y, x, and u are all viewed as random variables in stating the population 
model. We discussed the interpretation of this model at some length in Section 2.1 and 
gave several examples. In the previous section, we learned that equation (2.47) is not as 
restrictive as it initially seems; by choosing y and x appropriately, we can obtain interesting 
nonlinear relationships (such as constant elasticity models).
 We are interested in using data on y and x to estimate the parameters �

0 
and, especially, 

�
1
. We assume that our data were obtained as a random sample. (See Appendix C for a 

review of random sampling.)

Assumption SLR.2   (Random Sampling)

We have a random sample of size n, {(xi,yi): i � 1, 2, …, n}, following the population model 
in equation (2.47).

We will have to address failure of the random sampling assumption in later chapters that 
deal with time series analysis and sample selection problems. Not all cross-sectional sam-
ples can be viewed as outcomes of random samples, but many can be.
 We can write (2.47) in terms of the random sample as

 y
i 
� �

0 
� �

1
x

i 
� u

i
, i � 1, 2, …, n, 2.48

where u
i 
is the error or disturbance for observation i (for example, person i, firm i, city i, 

and so on). Thus, u
i 
contains the unobservables for observation i that affect y

i
. The u

i 
should 

not be confused with the residuals, û
i
, that we defined in Section 2.3. Later on, we will 
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explore the relationship between the errors and the residuals. For interpreting �
0 
and �

1 
in 

a particular application, (2.47) is most informative, but (2.48) is also needed for some of 
the statistical derivations.
 The relationship (2.48) can be plotted for a particular outcome of data as shown in 
Figure 2.7.
 As we already saw in Section 2.2, the OLS slope and intercept estimates are not 
defined unless we have some sample variation in the explanatory variable. We now add 
variation in the x

i
 to our list of assumptions.

Assumption SLR.3   (Sample Variation in the Explanatory Variable)

The sample outcomes on x, namely, {xi, i � 1, …, n}, are not all the same value.

 This is a very weak assumption—certainly not worth emphasizing, but needed never-
theless. If x varies in the population, random samples on x will typically contain variation, 
unless the population variation is minimal or the sample size is small. Simple inspection 
of summary statistics on x

i
 reveals whether Assumption SLR.3 fails: if the sample standard 

deviation of x
i
 is zero, then Assumption SLR.3 fails; otherwise, it holds.

 Finally, in order to obtain unbiased estimators of �
0 
and �

1
, we need to impose the zero 

conditional mean assumption that we discussed in some detail in Section 2.1. We now 
explicitly add it to our list of assumptions.

y

x1 xi x

yi

u1

y1

ui

E(y�x) � b0 � b1x
PRF

F I GURE  2 . 7

Graph of yi � �
0
 � �

1
xi � ui.
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Assumption SLR.4   (Zero Conditional Mean)

The error u has an expected value of zero given any value of the explanatory variable. In other 
words,

E(u�x) � 0.

For a random sample, this assumption implies that E(u
i
�x

i
) � 0, for all i � 1, 2, …, n.

 In addition to restricting the relationship between u and x in the population, the zero 
conditional mean assumption—coupled with the random sampling assumption—allows 
for a convenient technical simplification. In particular, we can derive the statistical 
 properties of the OLS estimators as conditional on the values of the x

i
 in our sample. 

Technically, in statistical derivations, conditioning on the sample values of the indepen-
dent variable is the same as treating the x

i
 as fixed in repeated samples, which we think 

of as follows. We first choose n sample values for x
1
, x

2
, …, x

n
. (These can be repeated.) 

Given these values, we then obtain a sample on y (effectively by obtaining a random 
sample of the u

i
). Next, another sample of y is obtained, using the same values for 

x
1
, x

2
, …, x

n
. Then another sample of y is obtained, again using the same x

1
, x

2
, …, x

n
. And 

so on.
 The fixed-in-repeated-samples scenario is not very realistic in nonexperimental con-
texts. For instance, in sampling individuals for the wage-education example, it makes little 
sense to think of choosing the values of educ ahead of time and then sampling individuals 
with those particular levels of education. Random sampling, where individuals are chosen 
randomly and their wage and education are both recorded, is representative of how most 
data sets are obtained for empirical analysis in the social sciences. Once we assume that 
E(u�x) � 0, and we have random sampling, nothing is lost in derivations by treating the 
x

i 
as nonrandom. The danger is that the fixed-in-repeated-samples assumption always 

implies that u
i 
and x

i 
are independent. In deciding when simple regression analysis is going 

to produce unbiased estimators, it is critical to think in terms of Assumption SLR.4.
 Now, we are ready to show that the OLS estimators are unbiased. To this end, we use 
the fact that  ∑ 

i�1
  

n
   (x

i
 � x̄)( y

i
 � ȳ) �  ∑ 

i�1
  

n
   (x

i
 � x̄)y

i
 (see Appendix A) to write the OLS slope 

estimator in equation (2.19) as

 �̂
1 
�

 ∑ 
i�1

   
n

   (x
i 
� x̄)y

i 

 ∑ 
i�1

   
n

   (x
i 
� x̄)2 

. 2.49

Because we are now interested in the behavior of �̂
1 
across all possible samples, �̂

1 
is prop-

erly viewed as a random variable.
 We can write �̂

1 
in terms of the population coeffi cients and errors by substituting the 

right-hand side of (2.48) into (2.49). We have

 �̂
1
 � 

 ∑ 
i�1

   
n

   (x
i 
� x̄)y

i

SST
x

 � 

 ∑ 
i�1

   
n

   (x
i 
� x̄)(�

0
 � �

1
x

i
 � u

i
)

SST
x

, 2.50
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where we have defined the total variation in x
i 
as SST

x
�  ∑ 

i�1
  

n
   (x

i 
� x̄)2  to simplify the notation. 

(This is not quite the sample variance of the x
i 
because we do not  divide by n � 1.) Using 

the algebra of the summation operator, write the numerator of �̂
1 
as

 ∑ 
i�1

   
n

   (x
i 
� x̄)�

0 
� ∑ 

i�1

   
n

   (x
i 
� x̄)�

1
x

i 
� ∑ 

i�1

   
n

   (x
i 
� x̄)u

i

� �
0
  ∑ 

i�1

   
n

    (x
i 
� x̄) � �

1
  ∑ 

i�1

   
n

    (x
i 
� x̄)x

i 
� ∑ 

i�1

   
n

   (x
i 
� x̄)u

i
. 

2.51

As shown in Appendix A,  ∑ 
i�1

  
n
   (x

i 
� x̄) � 0 and  ∑ 

i�1
  

n
    (x

i 
� x̄)x

i 
�  ∑ 

i�1
  

n
    (x

i 
� x̄)2 � SST

x
.

Therefore, we can write the numerator of �̂
1 
as �

1
SST

x
 �  ∑ 

i�1
  

n
    (x

i 
� x̄)u

i
. Putting this over 

the denominator gives

 �̂
1
 � �

1 
� 

 ∑ 
i�1

   
n

   (x
i 
� x̄)u

i

SST
x

 � �
1 
� (1/SST

x
) ∑ 

i�1

   
n

    d
i
u

i
, 2.52

where d
i 
� x

i 
� x̄. We now see that the estimator �̂

1 
equals the population slope, �

1
,
 
plus 

a term that is a linear combination in the errors {u
1
, u

2
, …, u

n
}. Conditional on the values 

of x
i
, the randomness in �̂

1 
is due entirely to the errors in the sample. The fact that these 

errors are generally different from zero is what causes �̂
1 
to differ from �

1
.

 Using the representation in (2.52), we can prove the first important statistical property 
of OLS.

Theorem 2.1   (Unbiasedness of OLS)

Using Assumptions SLR.1 through SLR.4,

E(�̂
0
) � �

0
, and E(�̂

1
) � �

1
, 2.53

for any values of �0 and �1. In other words, �̂0 is unbiased for �0, and �̂1 is unbiased for �1.

PROOF: In this proof, the expected values are conditional on the sample values of the inde-
pendent variable. Because SSTx and di are functions only of the xi, they are nonrandom in the 
conditioning. Therefore, from (2.52), and keeping the conditioning on {x1, x2, ..., xn } implicit, 
we have

E(�̂
1
) � �

1 
� E[(1/SST

x
)  ∑ 

i�1

   
n

   d
i
 u

i
] � �

1 
� (1/SST

x
)  ∑ 

i�1

   
n

    E(d
i
 u

i
)

 � �
1 
� (1/SST

x
)  ∑ 

i�1

   
n

   d
i 
E(u

i
) � �

1 
� (1/SST

x
)  ∑ 

i�1

   
n

    d
i
�0 � �

1
,

where we have used the fact that the expected value of each ui (conditional on {x1, x2, ..., xn}) 
is zero under Assumptions SLR.2 and SLR.4. Since unbiasedness holds for any outcome on 
{x1, x2, ..., xn}, unbiasedness also holds without conditioning on {x1, x2, ..., xn}.
 The proof for �̂0 is now straightforward. Average (2.48) across i to get ȳ � �0 � �1x̄ � ū, 
and plug this into the formula for �̂0 :
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 Remember that unbiasedness is a feature of the sampling distributions of �̂
1 

and �̂
0
, 

which says nothing about the estimate that we obtain for a given sample. We hope that, 
if the sample we obtain is somehow “typical,” then our estimate should be “near” the 
population value. Unfortunately, it is always possible that we could obtain an unlucky 
 sample that would give us a point estimate far from �

1
, and we can never know for sure 

whether this is the case. You may want to review the material on unbiased estimators in 
 Appendix C, especially the simulation exercise in Table C.1 that illustrates the concept of 
 unbiasedness.
 Unbiasedness generally fails if any of our four assumptions fail. This means that it 
is important to think about the veracity of each assumption for a particular application. 
Assumption SLR.1 requires that y and x be linearly related, with an additive disturbance. 
This can certainly fail. But we also know that y and x can be chosen to yield interesting 
nonlinear relationships. Dealing with the failure of (2.47) requires more advanced methods 
that are beyond the scope of this text.
 Later, we will have to relax Assumption SLR.2, the random sampling assumption, 
for time series analysis. But what about using it for cross-sectional analysis? Random 
 sampling can fail in a cross section when samples are not representative of the underlying 
population; in fact, some data sets are constructed by intentionally oversampling  different 
parts of the population. We will discuss problems of nonrandom sampling in Chapters 9 
and 17.
 As we have already discussed, Assumption SLR.3 almost always holds in interesting 
regression applications. Without it, we cannot even obtain the OLS estimates.
 The assumption we should concentrate on for now is SLR.4. If SLR.4 holds, the OLS 
estimators are unbiased. Likewise, if SLR.4 fails, the OLS estimators generally will be 
biased. There are ways to determine the likely direction and size of the bias, which we will 
study in Chapter 3.
 The possibility that x is correlated with u is almost always a concern in simple 
 regression analysis with nonexperimental data, as we indicated with several examples in 
 Section 2.1. Using simple regression when u contains factors affecting y that are also cor-
related with x can result in spurious correlation: that is, we find a relationship between 
y and x that is really due to other unobserved factors that affect y and also happen to be 
correlated with x.

�̂
0 
� ȳ � �̂

1
x̄ � �

0 
� �

1
x̄ � ū � �̂

1
x̄ � �

0 
� (�

1 
� �̂

1
)x̄ � ū.

Then, conditional on the values of the xi,

E(�̂
0
) � �

0 
� E[(�

1 
� �̂

1
)x̄] � E(ū) � �

0 
� E[(�

1 
� �̂

1
)]x̄,

since E(ū) � 0 by Assumptions SLR.2 and SLR.4. But, we showed that E(�̂1) � �1, which implies 
that E[(�̂1 � �1)] � 0. Thus, E(�̂0) � �0. Both of these arguments are valid for any values of �0 

and �1, and so we have established unbiasedness.
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E x a m p l e  2 . 1 2

[Student Math Performance and the School Lunch Program]

Let math10 denote the percentage of tenth graders at a high school receiving a passing score on 
a standardized mathematics exam. Suppose we wish to estimate the effect of the federally funded 
school lunch program on student performance. If anything, we expect the lunch program to have a 
positive ceteris paribus effect on performance: all other factors being equal, if a student who is too 
poor to eat regular meals becomes eligible for the school lunch program, his or her performance 
should improve. Let lnchprg denote the percentage of students who are eligible for the lunch pro-
gram. Then, a simple regression model is

 math10 � �
0 
� �

1
lnchprg � u, 2.54

where u contains school and student characteristics that affect overall school performance. Using the 
data in MEAP93.RAW on 408 Michigan high schools for the 1992–1993 school year, we obtain

 2math10 � 32.14 � 0.319 lnchprg

n � 408, R2 � 0.171.

This equation predicts that if student eligibility in the lunch program increases by 10 percentage 
points, the percentage of students passing the math exam falls by about 3.2 percentage points. Do 
we really believe that higher participation in the lunch program actually causes worse performance? 
Almost certainly not. A better explanation is that the error term u in equation (2.54) is correlated with 
lnchprg. In fact, u contains factors such as the poverty rate of children attending school, which affects 
student performance and is highly correlated with eligibility in the lunch program. Variables such as 
school quality and resources are also contained in u, and these are likely correlated with lnchprg. It 
is important to remember that the estimate �0.319 is only for this particular sample, but its sign and 
magnitude make us suspect that u  and x are correlated, so that simple regression is biased.

 
 In addition to omitted variables, there are other reasons for x to be correlated with u in 
the simple regression model. Because the same issues arise in multiple regression analysis, 
we will postpone a systematic treatment of the problem until then.

Variances of the OLS Estimators

In addition to knowing that the sampling distribution of �̂
1 

is centered about �
1 

(�̂
1 

is 
 unbiased), it is important to know how far we can expect �̂

1 
to be away from �

1 
on aver-

age. Among other things, this allows us to choose the best estimator among all, or at least 
a broad class of, unbiased estimators. The measure of spread in the distribution of �̂

1 
(and 

�̂
0
) that is easiest to work with is the variance or its square root, the standard deviation. 

(See Appendix C for a more detailed discussion.)
 It turns out that the variance of the OLS estimators can be computed under  Assumptions 
SLR.1 through SLR.4. However, these expressions would be somewhat  complicated. 
Instead, we add an assumption that is traditional for cross-sectional analysis. This assump-
tion states that the variance of the unobservable, u, conditional on x, is constant. This is 
known as the homoskedasticity or “constant variance” assumption.



Assumption SLR.5   (Homoskedasticity)

The error u has the same variance given any value of the explanatory variable. In other words,

Var(u�x) � � 2.

 We must emphasize that the homoskedasticity assumption is quite distinct from 
the zero conditional mean assumption, E(u�x) � 0. Assumption SLR.4 involves the 
 expected value of u, while Assumption SLR.5 concerns the variance of u (both conditional 
on x). Recall that we established the unbiasedness of OLS without Assumption SLR.5: the 
homoskedasticity assumption plays no role in showing that �̂

0 
and �̂

1 
are unbiased. We add 

Assumption SLR.5 because it simplifi es the variance calculations for �̂
0 
and �̂

1 
and because 

it implies that ordinary least squares has certain effi ciency properties, which we will see 
in Chapter 3. If we were to assume that u and x are independent, then the distribution of u 
given x does not depend on x, and so E(u�x) � E(u) � 0 and Var(u�x) � � 2. But indepen-
dence is sometimes too strong of an assumption.
 Because Var(u�x) � E(u 2�x) � [E(u�x)] 2 and E(u�x) � 0, � 2 � E(u 2�x), which means � 2 is 
also the unconditional expectation of u 2. Therefore, � 2 � E(u2) � Var(u), because E(u) � 0. 
In other words, � 2 is the unconditional variance of u, and so � 2 is often called the error vari-
ance or disturbance variance. The square root of � 2, � , is the standard deviation of the error. 
A larger �  means that the distribution of the unobservables affecting y is more spread out.
 It is often useful to write Assumptions SLR.4 and SLR.5 in terms of the condi-
tional mean and conditional variance of y:

 E(y�x) � �
0 
� �

1
x. 2.55

 Var(y�x) � � 2. 2.56

In other words, the conditional expectation of y given x is linear in x, but the variance of y 
given x is constant. This situation is graphed in Figure 2.8 where �

0 
� 0 and �

1 
� 0.

 When Var(u�x) depends on x, the error term is said to exhibit heteroskedasticity 
(or nonconstant variance). Because Var(u�x) � Var(y�x), heteroskedasticity is present 
whenever Var(y�x) is a function of x.

E x a m p l e  2 . 1 3

[Heteroskedasticity in a Wage Equation]

In order to get an unbiased estimator of the ceteris paribus effect of educ on wage, we must assume 
that E(u�educ) � 0, and this implies E(wage�educ) � �

0
 � �

1
educ. If we also make the homoskedas-

ticity assumption, then Var(u�educ) � � 2 does not depend on the level of education, which is the same 
as assuming Var(wage�educ) � � 2. Thus, while average wage is allowed to increase with education 
level—it is this rate of increase that we are interested in estimating—the variability in wage about its 
mean is assumed to be constant across all education levels. This may not be realistic. It is likely that 
people with more education have a wider variety of interests and job opportunities, which could lead 
to more wage variability at higher levels of education. People with very low levels of education have 
fewer opportunities and often must work at the minimum wage; this serves to reduce wage variability 
at low education levels. This situation is shown in Figure 2.9. Ultimately, whether Assumption SLR.5 
holds is an empirical issue, and in Chapter 8 we will show how to test Assumption SLR.5.
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With the homoskedasticity assumption in place, we are ready to prove the following:

F I GURE  2 . 8

The simple regression model under homoskedasticity.

x1

x2

x

E(y�x) � b0 � b1x

f(y�x)

x3

y

Theorem 2.2   (Sampling Variances of the OLS Estimators)

Under Assumptions SLR.1 through SLR.5,

 Var(  �̂1
) � 

�2

 ∑ 
i�1

   
n

   (x
i 
� x̄)2

 � � 2/SST
x
, 2.57

and

 Var( �̂
0
) � 

�2n�1  ∑ 
i�1

   
n

   x
i
2

 ∑ 
i�1

   
n

   (x
i 
� x̄)2

, 2.58

where these are conditional on the sample values {x1, …, xn}.
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PROOF: We derive the formula for Var(�̂1), leaving the other derivation as Problem 2.10. 
The starting point is equation (2.52): �̂1 � �1 � (1/SSTx)  ∑ i�1  

n
    diui. Because �1 is just a constant, 

and we are conditioning on the xi, SSTx and di � xi � x̄ are also nonrandom. Further more, 
because the ui are independent random variables across i (by random sampling), the variance 
of the sum is the sum of the variances. Using these facts, we have

 Var(�̂
1
) � (1/SST

x
)2Var �  ∑ 

i�1

   
n

   d
i
u

i
 �  � (1/SST

x
)2 �  ∑ 

i�1

   
n

   d
i
2Var(u

i
) � 

  � (1/SST
x
)2  �  ∑ 

i�1

   
n

   d
i
2� 2 �      [since Var(u

i
) � � 2 for all i ]

  � � 2(1/SST
x
)2  �  ∑ 

i�1

   
n

   d
i
2 �   � � 2(1/SST

x
)2SST

x
 � � 2/SST

x
,

which is what we wanted to show.

 Equations (2.57) and (2.58) are the “standard” formulas for simple regression analysis, 
which are invalid in the presence of heteroskedasticity. This will be important when we 
turn to confidence intervals and hypothesis testing in multiple regression analysis.

8
12

educ

E(wage�educ) �
             b0 � b1educ

f(wage�educ)

16

wage

F I GURE  2 . 9

Var(wage�educ) increasing with educ.
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 For most purposes, we are interested in Var(�̂
1
). It is easy to summarize how this variance 

depends on the error variance, �2, and the total variation in {x
1
,  x

2
, …, x

n
}, SST

x
. First, the 

larger the error variance, the larger is Var( �̂
1
). This makes sense since more variation in the 

unobservables affecting y makes it more difficult to precisely estimate �
1
. On the other hand, 

more variability in the independent variable is preferred: as the variability in the x
i
 increases, 

the variance of �̂
1 
decreases. This also makes intuitive sense since the more spread out is the 

sample of independent variables, the easier it is to trace out the relationship between E(y�x) 
and x. That is, the easier it is to estimate �

1
. If there is little variation in the x

i
, then it can be 

hard to pinpoint how E(y�x) varies with x. As the sample size increases, so does the total vari-
ation in the x

i
. Therefore, a larger sample size results in a smaller variance for �̂

1
.

 This analysis shows that, if we are interested in �
1
 and we have a choice, then we 

should choose the x
i 
to be as spread out as 

possible. This is sometimes possible with 
experimental data, but rarely do we have 
this luxury in the social sciences: usually, 
we must take the x

i 
that we obtain via 

random sampling. Sometimes, we have an 
opportunity to obtain larger sample sizes, 
although this can be costly.

 For the purposes of constructing confidence intervals and deriving test statistics, we 
will need to work with the standard deviations of �̂

1 
and �̂

0
, sd(�̂

1
) and sd(�̂

0
). Recall that 

these are obtained by taking the square roots of the variances in (2.57) and (2.58). In 
 particular, sd(�̂

1
) � � � √

_____
 SST

x
  , where �  is the square root of � 2, and  √

_____
 SST

x
   is the square 

root of SST
x
.

Estimating the Error Variance

The formulas in (2.57) and (2.58) allow us to isolate the factors that contribute to Var(�̂
1
) 

and Var(�̂
0
). But these formulas are unknown, except in the extremely rare case that � 2 is 

known. Nevertheless, we can use the data to estimate � 2, which then allows us to estimate 
Var( �̂

1
) and Var( �̂

0
).

 This is a good place to emphasize the difference between the errors (or disturbances) 
and the residuals, since this distinction is crucial for constructing an estimator of � 2. 
Equation (2.48) shows how to write the population model in terms of a randomly sampled 
observation as y

i 
� �

0 
� �

1
x

i 
� u

i
, where u

i 
is the error for observation i. We can also 

express y
i 
in terms of its fitted value and residual as in equation (2.32): y

i
 � �̂

0 
� �̂

1
x

i  
� û

i
. 

Comparing these two equations, we see that the error shows up in the equation contain-
ing the population parameters, �

0 
and �

1
. On the other hand, the residuals show up in the 

estimated equation with �̂
0 
and �̂

1
. The errors are never observable, while the residuals are 

computed from the data.
 We can use equations (2.32) and (2.48) to write the residuals as a function of the errors:

û
i 
� y

i 
� �̂

0 
� �̂

1
x

i 
� (�

0 
� �

1
x

i 
� u

i
) � �̂

0 
� �̂

1
x

i
,

or

 û
i 
� u

i 
� ( �̂

0 
� �

0
) � (�̂

1 
� �

1
)x

i
. 2.59

Q u e s t i o n  2 . 5
Show that, when estimating �0, it is best to have x̄ � 0. What is

Var(�̂0) in this case? [Hint: For any sample of numbers,  ∑ i�1  
n
    x2

i 

�  ∑ i�1  
n
    (xi � x̄ )2, with equality only if x̄ � 0.]
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Although the expected value of �̂
0 
equals �

0
, and similarly for �̂

1
, û

i 
is not the same as u

i
. 

The difference between them does have an expected value of zero.
 Now that we understand the difference between the errors and the residuals, we can 
return to estimating �2. First, �2 � E(u2), so an unbiased “estimator” of �2 is n�1 ∑ 

i�1
  

n
    u

i
2. 

Unfortunately, this is not a true estimator, because we do not observe the errors u
i
. But, 

we do have estimates of the u
i
, namely, the OLS residuals û

i
. If we replace the errors with 

the OLS residuals, we have n�1 ∑ 
i�1

  
n
   û

i
2 � SSR/n. This is a true estimator, because it gives a 

computable rule for any sample of data on x and y. One slight drawback to this estimator 
is that it turns out to be biased (although for large n the bias is small). Because it is easy 
to compute an unbiased estimator, we use that instead.
 The estimator SSR/n is biased essentially because it does not account for two restric-
tions that must be satisfied by the OLS residuals. These restrictions are given by the two 
OLS first order conditions:

 ∑ 
i�1

   
n

   û
i 
� 0,  ∑ 

i�1

   
n

   x
i
û

i 
� 0. 2.60

One way to view these restrictions is this: if we know n � 2 of the residuals, we can always 
get the other two residuals by using the restrictions implied by the first order conditions in 
(2.60). Thus, there are only n � 2 degrees of freedom in the OLS residuals, as opposed 
to n degrees of freedom in the errors. If we replace û

i 
with u

i 
in (2.60), the restrictions 

would no longer hold. The unbiased estimator of � 2 that we will use makes a degrees of 
freedom adjustment:

�̂ 2 � 
1

(n � 2)
 ∑ 
i�1

   
n

   û
i
2

 
� SSR/(n � 2). 2.61

(This estimator is sometimes denoted as s2, but we continue to use the convention of 
putting “hats” over estimators.)

Theorem 2.3   (Unbiased Estimation of � 2)

Under Assumptions SLR.1 through SLR.5,

 E(�̂2) � � 2.

PROOF: If we average equation (2.59) across all i and use the fact that the OLS residuals 
average out to zero, we have 0 � ū � (�̂0 � �0) � (�̂1 � �1)x̄; subtracting this from (2.59) 
gives ûi � (ui � ū) � (�̂1 � �1)(xi � x̄). Therefore, ûi

2 � (ui � ū)2 � (�̂1 � �1)
2 (xi � x̄)2 � 

2(ui � ū)(�̂1 � �1)(xi � x̄). Summing across all i gives  ∑ i�1  
n
     û i

2 �  ∑ i�1  
n
     (ui � ū)2 � 

(�̂1 � �1)
2  ∑ i�1  

n
    (xi � x̄)2 � 2(�̂1 � �1)  ∑ i�1  

n
     ui(xi � x̄). Now, the expected value of the first 

term is (n � 1)� 2, something that is shown in Appendix C. The expected value of the second 

term is simply � 2  because E[(�̂1 � �1)
2] � Var(�̂1) � � 2/sx

2. Finally, the third term can be written 

as 2(�̂1 � �1)
2s2

x; taking expectations gives 2�2. Putting these three terms together gives 
E �  ∑ i�1  

n
    ûi

2 � � (n � 1)�2 � � 2 � 2� 2 � (n � 2)� 2, so that E[SSR/(n � 2)] � � 2.
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 If �̂ 2 is plugged into the variance formulas (2.57) and (2.58), then we have unbiased 
estimators of Var(�̂

1
) and Var(�̂

0
). Later on, we will need estimators of the standard devia-

tions of �̂
1 
and �̂

0
, and this requires estimating � . The natural estimator of �  is

 �̂ �  √
___

 �̂ 2    2.62

and is called the standard error of the regression (SER). (Other names for �̂ are the 
standard error of the estimate and the root mean squared error, but we will not use these.) 
Although �̂  is not an unbiased estimator of � , we can show that it is a consistent estimator 
of �  (see Appendix C), and it will serve our purposes well.
 The estimate �̂  is interesting because it is an estimate of the standard deviation in the 
unobservables affecting y; equivalently, it estimates the standard deviation in y after the 
effect of x has been taken out. Most regression packages report the value of �̂  along with 
the R-squared, intercept, slope, and other OLS statistics (under one of the several names 
listed above). For now, our primary interest is in using �̂  to estimate the standard devia-
tions of �̂

0 
and �̂

1
. Since sd( �̂

1
) � � � √

_____
 SST

x
  , the natural estimator of sd(�̂

1
) is

se(�̂
1
) � �̂� √

_____
 SST

x
  
 
� �̂/�  ∑ 

i�1

   
n

   (x
i 
� x̄)2 � 1/2

;

this is called the standard error of �̂1. Note that se(�̂
1
) is viewed as a random variable 

when we think of running OLS over different samples of y; this is true because �̂ var-
ies with different samples. For a given sample, se(�̂

1
) is a number, just as �̂

1 
is simply a 

number when we compute it from the given data.
 Similarly, se(�̂

0
) is obtained from sd(�̂

0
) by replacing �  with �̂ . The standard error of 

any estimate gives us an idea of how precise the estimator is. Standard errors play a cen-
tral role throughout this text; we will use them to construct test statistics and confidence 
intervals for every econometric procedure we cover, starting in Chapter 4.

2.6 Regression through the Origin
In rare cases, we wish to impose the restriction that, when x � 0, the expected value of y 
is zero. There are certain relationships for which this is reasonable. For example, if income 
(x) is zero, then income tax revenues (y) must also be zero. In addition, there are settings 
where a model that originally has a nonzero intercept is transformed into a model without 
an intercept.
 Formally, we now choose a slope estimator, which we call �̃

1
, and a line of the form

 ỹ � �̃
1
x, 2.63

where the tildes over �̃
1 
and ỹ are used to distinguish this problem from the much more 

common problem of estimating an intercept along with a slope. Obtaining (2.63) is called 
regression through the origin because the line (2.63) passes through the point x � 0, 
ỹ � 0. To obtain the slope estimate in (2.63), we still rely on the method of ordinary least 
squares, which in this case minimizes the sum of squared residuals:

  ∑ 
i�1

   
n

   (y
i 
� �̃

1
x

i
)2. 2.64
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Using one-variable calculus, it can be shown that �̃
1 
must solve the fi rst order condition:

 ∑ 
i�1

   
n

    x
i
(y

i 
� �̃

1
x

i
) � 0. 2.65

From this, we can solve for �̃
1
:

�̃
1 
� 

 ∑ 
i�1

   
n

    x
i
y

i

 ∑ 
i�1

   
n

    x
i
2

, 2.66

provided that not all the x
i 
are zero, a case we rule out.

 Note how �̃
1 

compares with the slope estimate when we also estimate the intercept 
(rather than set it equal to zero). These two estimates are the same if, and only if, x̄ � 0. 
[See equation (2.49) for �̂

1
.] Obtaining an estimate of �

1 
using regression through the ori-

gin is not done very often in applied work, and for good reason: if the intercept �
0 
	 0, 

then �̃
1 
is a biased estimator of �

1
. You will be asked to prove this in Problem 2.8.

S U M M A R Y

We have introduced the simple linear regression model in this chapter, and we have  covered 
its basic properties. Given a random sample, the method of ordinary least squares is used to 
estimate the slope and intercept parameters in the population model. We have demonstrated the 
algebra of the OLS regression line, including computation of fitted  values and residuals, and 
the obtaining of predicted changes in the dependent variable for a given change in the indepen-
dent variable. In Section 2.4, we discussed two issues of practical importance: (1) the behavior 
of the OLS estimates when we change the units of measurement of the dependent variable or 
the independent variable and (2) the use of the natural log to allow for constant elasticity and 
constant semi-elasticity models.
 In Section 2.5, we showed that, under the four Assumptions SLR.1 through SLR.4, the 
OLS estimators are unbiased. The key assumption is that the error term u has zero mean given 
any value of the independent variable x. Unfortunately, there are reasons to think this is false 
in many social science applications of simple regression, where the omitted factors in u are 
often correlated with x. When we add the assumption that the variance of the error given x is 
constant, we get simple formulas for the sampling variances of the OLS estimators. As we saw, 
the variance of the slope estimator �̂

1 
increases as the error variance increases, and it decreases 

when there is more sample variation in the independent  variable. We also derived an unbiased 
estimator for � 2 � Var(u).
 In Section 2.6, we briefly discussed regression through the origin, where the slope  estimator 
is obtained under the assumption that the intercept is zero. Sometimes, this is useful, but it 
appears infrequently in applied work.
 Much work is left to be done. For example, we still do not know how to test hypotheses 
about the population parameters, �

0 
and �

1
. Thus, although we know that OLS is unbiased for 

the population parameters under Assumptions SLR.1 through SLR.4, we have no way of draw-
ing inference about the population. Other topics, such as the efficiency of OLS relative to other 
possible procedures, have also been omitted.
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 The issues of confidence intervals, hypothesis testing, and efficiency are central to multiple 
regression analysis as well. Since the way we construct confidence intervals and test  statistics 
is very similar for multiple regression—and because simple regression is a special case of 
multiple regression—our time is better spent moving on to multiple regression, which is much 
more widely applicable than simple regression. Our purpose in Chapter 2 was to get you think-
ing about the issues that arise in econometric analysis in a fairly simple setting.

The Gauss-Markov Assumptions 
for Simple Regression

For convenience, we summarize the Gauss-Markov assumptions that we used in this chapter.  
It is important to remember that only SLR.1 through SLR.4 are needed to show �̂

0
 and �̂

1
 are 

unbiased. We added the homoskedasticity assumption, SLR.5, to obtain the usual OLS vari-
ance formulas (2.57) and (2.58).

Assumption SLR.1 (Linear in Parameters)

In the population model, the dependent variable, y, is related to the independent variable, 
x, and the error (or disturbance), u, as

y � �
0 
� �

1
x � u,

where �
0 
and �

1 
are the population intercept and slope parameters, respectively.

Assumption SLR.2 (Random Sampling)

We have a random sample of size n, {(x
i
,y

i
): i � 1, 2, …, n}, following the population 

model in Assumption SLR.1.

Assumption SLR.3 (Sample Variation in the Explanatory Variable)

The sample outcomes on x, namely, {x
i
, i � 1, …, n}, are not all the same value.

Assumption SLR.4 (Zero Conditional Mean)

The error u has an expected value of zero given any value of the explanatory variable. In 
other words,

E(u�x) � 0.

Assumption SLR.5 (Homoskedasticity)

The error u has the same variance given any value of the explanatory variable. In other 
words,

Var(u�x) � � 2.

K E Y  T E R M S

Coefficient of 
Determination

Constant Elasticity Model
Control Variable
Covariate

Degrees of Freedom
Dependent Variable
Elasticity
Error Term (Disturbance)
Error Variance

Explained Sum of Squares 
(SSE)

Explained Variable
Explanatory Variable
First Order Conditions
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P R O B L E M S

2.1  Let kids denote the number of children ever born to a woman, and let educ denote years 
of education for the woman. A simple model relating fertility to years of education is

kids � �
0 
� �

1
educ � u,

where u is the unobserved error.
(i)  What kinds of factors are contained in u? Are these likely to be correlated with level 

of education?
(ii)  Will a simple regression analysis uncover the ceteris paribus effect of education 

on fertility? Explain.

2.2  In the simple linear regression model y � �
0 
� �

1
x � u, suppose that E(u) 	 0. Letting 

�
0 
� E(u), show that the model can always be rewritten with the same slope, but a new 

intercept and error, where the new error has a zero expected value.

2.3  The following table contains the ACT scores and the GPA (grade point average) for eight 
college students. Grade point average is based on a four-point scale and has been rounded 
to one digit after the decimal.

Student GPA ACT

1 2.8 21

2 3.4 24

3 3.0 26

4 3.5 27

5 3.6 29

6 3.0 25

7 2.7 25

8 3.7 30

Fitted Value
Gauss-Markov Assumptions
Heteroskedasticity
Homoskedasticity
Independent Variable
Intercept Parameter
Mean Independent
OLS Regression Line
Ordinary Least Squares (OLS)
Population Regression 

Function (PRF)
Predicted Variable

Predictor Variable
Regressand
Regression through the Origin
Regressor
Residual
Residual Sum of Squares 

(SSR) 
Response Variable
R-squared
Sample Regression Function 

(SRF)
Semi-elasticity

Simple Linear Regression 
Model

Slope Parameter
Standard Error of �̂

1

Standard Error of the 
Regression (SER)

Sum of Squared Residuals 
(SSR)

Total Sum of Squares (SST)
Zero Conditional Mean 

Assumption
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 (i)  Estimate the relationship between GPA and ACT using OLS; that is, obtain the 
intercept and slope estimates in the equation

1GPA � �̂
0 
� �̂

1
ACT.

   Comment on the direction of the relationship. Does the intercept have a useful inter-
pretation here? Explain. How much higher is the GPA predicted to be if the ACT 
score is increased by five points?

 (ii)  Compute the fitted values and residuals for each observation, and verify that the 
residuals (approximately) sum to zero.

 (iii) What is the predicted value of GPA when ACT � 20?
 (iv)  How much of the variation in GPA for these eight students is explained by ACT? 

Explain.

2.4  The data set BWGHT.RAW contains data on births to women in the United States. Two 
variables of interest are the dependent variable, infant birth weight in ounces (bwght), 
and an explanatory variable, average number of cigarettes the mother smoked per day 
 during pregnancy (cigs). The following simple regression was estimated using data on 
n � 1,388 births:

1bwght � 119.77 � 0.514 cigs

 (i)  What is the predicted birth weight when cigs � 0? What about when 
cigs � 20 (one pack per day)? Comment on the difference.

 (ii)  Does this simple regression necessarily capture a causal relationship between the 
child’s birth weight and the mother’s smoking habits? Explain.

 (iii) To predict a birth weight of 125 ounces, what would cigs have to be?  Comment.
 (iv)  The proportion of women in the sample who do not smoke while pregnant is about 

.85. Does this help reconcile your finding from part (iii)?

2.5 In the linear consumption function

1cons � �̂
0 
� �̂

1
inc,

the (estimated) marginal propensity to consume (MPC) out of income is simply the slope, 
�̂

1
, while the average propensity to consume (APC) is 1cons/inc � �̂

0
/inc � �̂

1
. Using 

observations for 100 families on annual income and consumption (both measured in dol-
lars), the following equation is obtained:

1cons � �124.84 � 0.853 inc

n � 100, R2 � 0.692.

 (i) Interpret the intercept in this equation, and comment on its sign and magnitude.
 (ii) What is the predicted consumption when family income is $30,000?
 (iii) With inc on the x-axis, draw a graph of the estimated MPC and APC.

2.6  Using data from 1988 for houses sold in Andover, Massachusetts, from Kiel and McClain 
(1995), the following equation relates housing price (price) to the distance from a recently 
built garbage incinerator (dist):

2log(price) � 9.40 � 0.312 log(dist)

n � 135, R2 � 0.162.
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 (i)  Interpret the coefficient on log(dist). Is the sign of this estimate what you expect it 
to be?

 (ii)  Do you think simple regression provides an unbiased estimator of the ceteris paribus 
elasticity of price with respect to dist? (Think about the city’s decision on where to 
put the incinerator.)

 (iii)  What other factors about a house affect its price? Might these be correlated with 
distance from the incinerator?

2.7 Consider the savings function

sav � �
0 
� �

1
inc � u, u �  √

___
 inc  ·e,

  where e is a random variable with E(e) � 0 and Var(e) � �
e
2. Assume that e is indepen-

dent of inc.
 (i)  Show that E(u�inc) � 0, so that the key zero conditional mean assumption (Assumption 

SLR.4) is satisfied. [Hint: If e is independent of inc, then E(e�inc) � E(e).]
 (ii)  Show that Var(u�inc) � �

e
2inc, so that the homoskedasticity Assumption SLR.5 is 

violated. In particular, the variance of sav increases with inc. [Hint: Var(e�inc) � 
Var(e), if e and inc are independent.]

 (iii)  Provide a discussion that supports the assumption that the variance of savings 
increases with family income.

2.8  Consider the standard simple regression model y � �
0 
� �

1
x � u under the Gauss-Markov 

Assumptions SLR.1 through SLR.5. The usual OLS estimators �̂
0 
and �̂

1 
are unbiased for 

their respective population parameters. Let �̃ 
1 
be the estimator of �

1 
obtained by assuming 

the intercept is zero (see Section 2.6).
 (i)  Find E(�̃

1
) in terms of the x

i
, �

0
, and �

1
. Verify that �̃

1 
is unbiased for �

1 
when the 

population intercept (�
0
) is zero. Are there other cases where �̃

1 
is unbiased?

 (ii) Find the variance of �̃
1
. (Hint: The variance does not depend on �

0
.)

 (iii)  Show that Var(�̃
1
) 
 Var(�̂

1
). [Hint: For any sample of data,  ∑ 

i�1
  

n
    x

i
2 � 

 ∑ 
i�1

  
n
    (x

i 
� x̄)2, with strict inequality unless x̄ � 0.]

 (iv)  Comment on the tradeoff between bias and variance when choosing between �̂
1 

and �̃
1
.

2.9 (i)   Let �̂
0
 and �̂

1
 be the intercept and slope from the regression of y

i 
on x

i
, using n 

observations. Let c
1 
and c

2
, with c

2 
	 0, be constants. Let �̃

0 
and �̃ 

1 
be the intercept 

and slope from the regression of c
1
y

i 
on c

2
x

i
. Show that �̃

1 
� (c

1
/c

2
)�̂

0
 and �̃

0
 � c

1 
�̂

0
, 

thereby verifying the claims on units of measurement in Section 2.4. [Hint: To 
obtain �̃

1
, plug the scaled versions of x and y into (2.19). Then, use (2.17) for �̃

0
, 

being sure to plug in the scaled x and y and the correct slope.]
 (ii)  Now, let �̃

0 
and �̃

1 
be from the regression of (c

1 
� y

i
) on (c

2 
� x

i
) (with no restriction 

on c
1 
or c

2
). Show that �̃

1 
� �̂

1
 and �̃

0 
� �̂

0
 � c

1 
� c

2 
�̂

1
.

 (iii)  Now, let �̂
0
 and �̂

1 
be the OLS estimates from the regression log(y

i
) on x

i
, where we 

must assume y
i 
� 0 for all i. For c

1 
� 0, let �̃

0 
and �̃

1 
be the intercept and slope from 

the regression of log(c
1
y

i
) on x

i
. Show that �̃

1 
� �̂

1 
and �̃

0 
� log(c

1
) � �̂

0
.

 (iv)  Now, assuming that x
i
 � 0 for all i, let �̃

0
 and �̃

1
 be the intercept and slope from the 

regression of y
i
 on log(c

2
 x

i
). How do �̃

0 
and �̃

1
 compare with the intercept and slope 

from the regression of y
i
 on log(x

i
)?
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2.10  Let �̂
0 
 and �̂

1 
 be the OLS intercept and slope estimators, respectively, and let ū be the 

sample average of the errors (not the residuals!).
 (i) Show that �̂

1
 can be written as �̂

1
 � �

1
 �  ∑ 

i�1
  

n
    w

i
 u

i
 where w

i
 � d

i 
/SST

x
 and d

i
 � x

i
 � x̄.

 (ii)  Use part (i), along with  ∑ 
i�1

  
n
    w

i
 � 0, to show that �̂

1
 and ū are uncorrelated. [Hint: 

You are being asked to show that E[( �̂
1
 � �

1
) . ū] � 0.]

 (iii) Show that �̂
0
 can be written as �̂

0
 � �

0
 � ū � ( �̂

1
 � �

1
)x̄.

 (iv) Use parts (ii) and (iii) to show that Var(�̂
0
) � � 2/n � � 2(x̄)2/SST

x
.

 (v)  Do the algebra to simplify the expression in part (iv) to equation (2.58). [Hint:  
SST

x
/n � n�1 ∑ 

i�1
  

n
    x

i
2 � (x̄)2.]

2.11  Suppose you are interested in estimating the effect of hours spent in an SAT preparation 
course (hours) on total SAT score (sat). The population is all college-bound high school 
seniors for a particular year.

 (i)  Suppose you are given a grant to run a controlled experiment. Explain how you would 
structure the experiment in order to estimate the causal effect of hours on sat.

 (ii)  Consider the more realistic case where students choose how much time to spend 
in a preparation course, and you can only randomly sample sat and hours from the 
population. Write the population model as

sat � �
0
 � �

1
hours � u

   where, as usual in a model with an intercept, we can assume E(u) � 0. List at least 
two factors contained in u. Are these likely to have positive or negative correlation 
with hours?

 (iii)  In the equation from part (ii), what should be the sign of �
1
 if the preparation course 

is effective?
 (iv) In the equation from part (ii), what is the interpretation of �

0
?

C O M P U T E R  E X E R C I S E S

C2.1  The data in 401K.RAW are a subset of data analyzed by Papke (1995) to study the 
relationship between participation in a 401(k) pension plan and the generosity of the 
plan. The variable prate is the percentage of eligible workers with an active account; 
this is the variable we would like to explain. The measure of generosity is the plan 
match rate, mrate. This variable gives the average amount the firm contributes to each 
worker’s plan for each $1 contribution by the worker. For example, if mrate � 0.50, 
then a $1 contribution by the worker is matched by a 50¢ contribution by the firm.

 (i)  Find the average participation rate and the average match rate in the sample of 
plans.

 (ii) Now, estimate the simple regression equation

1prate � �̂
0 
� �̂

1 
mrate,

  and report the results along with the sample size and R-squared.
 (iii) Interpret the intercept in your equation. Interpret the coefficient on mrate.
 (iv)  Find the predicted prate when mrate � 3.5. Is this a reasonable prediction? Explain 

what is happening here.
 (v)  How much of the variation in prate is explained by mrate? Is this a lot in your opinion?
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C2.2  The data set in CEOSAL2.RAW contains information on chief executive officers for 
U.S. corporations. The variable salary is annual compensation, in thousands of dollars, 
and ceoten is prior number of years as company CEO.

 (i) Find the average salary and the average tenure in the sample.
 (ii)  How many CEOs are in their first year as CEO (that is, ceoten � 0)? What is the 

longest tenure as a CEO?
 (iii) Estimate the simple regression model

log(salary) � �
0 
� �

1
ceoten � u,

    and report your results in the usual form. What is the (approximate)  predicted 
percentage increase in salary given one more year as a CEO?

C2.3  Use the data in SLEEP75.RAW from Biddle and Hamermesh (1990) to study whether 
there is a tradeoff between the time spent sleeping per week and the time spent in paid 
work. We could use either variable as the dependent variable. For concreteness, estimate 
the model

sleep � �
0 
� �

1
totwrk � u,

where sleep is minutes spent sleeping at night per week and totwrk is total minutes 
worked during the week.

 (i)  Report your results in equation form along with the number of observations and 
R2. What does the intercept in this equation mean?

 (ii)  If totwrk increases by 2 hours, by how much is sleep estimated to fall? Do you find 
this to be a large effect?

C2.4  Use the data in WAGE2.RAW to estimate a simple regression explaining monthly sal-
ary (wage) in terms of IQ score (IQ).

 (i)  Find the average salary and average IQ in the sample. What is the sample standard 
deviation of IQ? (IQ scores are standardized so that the average in the population 
is 100 with a standard deviation equal to 15.)

 (ii)  Estimate a simple regression model where a one-point increase in IQ changes 
wage by a constant dollar amount. Use this model to find the  predicted increase in 
wage for an increase in IQ of 15 points. Does IQ explain most of the variation in 
wage?

 (iii)  Now, estimate a model where each one-point increase in IQ has the same percent-
age effect on wage. If IQ increases by 15 points, what is the approximate percent-
age increase in predicted wage?

C2.5  For the population of firms in the chemical industry, let rd denote annual expenditures 
on research and development, and let sales denote annual sales (both are in  millions of 
dollars).

 (i)  Write down a model (not an estimated equation) that implies a constant elasticity 
between rd and sales. Which parameter is the elasticity?

 (ii)  Now, estimate the model using the data in RDCHEM.RAW. Write out the esti-
mated equation in the usual form. What is the estimated elasticity of rd with respect 
to sales? Explain in words what this elasticity means.

C2.6  We used the data in MEAP93.RAW for Example 2.12. Now we want to explore 
the relationship between the math pass rate (math10) and spending per student 
(expend ).
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 (i)  Do you think each additional dollar spent has the same effect on the pass rate, or 
does a diminishing effect seem more appropriate? Explain.

 (ii) In the population model

math10 � �
0
 � �

1
 log(expend ) � u,

     argue that �
1
/10 is the percentage point change in math10 given a 10% increase in 

expend.
 (iii)  Use the data in MEAP93.RAW to estimate the model from part (ii). Report the 

estimated equation in the usual way, including the sample size and R-squared.
 (iv)  How big is the estimated spending effect? Namely, if spending increases by 10%, 

what is the estimated percentage point increase in math10?
 (v)  One might worry that regression analysis can produce fitted values for math10 that 

are greater than 100. Why is this not much of a worry in this data set?

C2.7  Use the data in CHARITY.RAW [obtained from Franses and Paap (2001)] to answer the 
following questions:

 (i)  What is the average gift in the sample of 4,268 people (in Dutch guilders)? What 
percentage of people gave no gift?

 (ii)  What is the average mailings per year? What are the minimum and maximum 
values? 

 (iii) Estimate the model

gift � �
0
 � �

1
mailsyear � u

 by OLS and report the results in the usual way, including the sample size and 
R-squared.

 (iv)  Interpret the slope coefficient. If each mailing costs one guilder, is the charity 
expected to make a net gain on each mailing? Does this mean the charity makes a 
net gain on every mailing? Explain.

 (v)  What is the smallest predicted charitable contribution in the sample? Using this 
simple regression analysis, can you ever predict zero for gift?

Appendix 2A

Minimizing the Sum of Squared Residuals

We show that the OLS estimates �̂
0 
and �̂

1 
do minimize the sum of squared residuals, as 

asserted in Section 2.2. Formally, the problem is to characterize the solutions �̂
0 
and �̂

1 

to the minimization problem

min
b

0
,b

1

 ∑ 
i�1

   
n

    (y
i 
� b

0 
� b

1
x

i
)2,

where b
0 

and b
1 

are the dummy arguments for the optimization problem; for simplic-
ity, call this function Q(b

0
, b

1
). By a fundamental result from multivariable calculus (see 

Appendix A), a necessary condition for �̂
0 
and �̂

1 
to solve the minimization problem is that 

the partial derivatives of Q(b
0
, b

1
) with respect to b

0 
and b

1 
must be zero when evaluated at 
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�̂
0
, �̂

1
: ∂Q(�̂

0
, �̂

1
)/∂b

0 
� 0 and ∂Q(�̂

0
, �̂

1
)/∂b

1 
� 0. Using the chain rule from calculus, these 

two equations become

�2  ∑ 
i�1

   
n

   (y
i 
� �̂

0 
� �̂

1
x

i
) � 0.

�2  ∑ 
i�1

   
n

   x
i
(y

i 
� �̂

0 
� �̂

1
x

i
) � 0.

These two equations are just (2.14) and (2.15) multiplied by �2n and, therefore, are 
solved by the same �̂

0 
and �̂

1
.

 How do we know that we have actually minimized the sum of squared residuals? The 
first order conditions are necessary but not sufficient conditions. One way to verify that 
we have minimized the sum of squared residuals is to write, for any b

0 
and b

1
,

Q(b
0
, b

1
) � ∑ 

i�1

   
n

   [y
i 
� �̂

0 
� �̂

1
x

i 
� (�̂

0 
� b

0
) � (�̂

1 
� b

1
)x

i
]2

� ∑ 
i�1

   
n

   [û
i 
� (�̂

0 
� b

0
) � (�̂

1 
� b

1
)x

i
]2

� ∑ 
i�1

   
n

   û
i
2 � n(�̂

0 
� b

0
)2 � (�̂

1 
� b

1
)2 ∑ 

i�1

   
n

   x
i 
2 � 2(�̂

0 
� b

0
)(�̂

1 
� b

1
) ∑ 

i�1

   
n

   x
i
,

where we have used equations (2.30) and (2.31). The fi rst term does not depend on 
b

0
 or b

1
, while the sum of the last three terms can be written as

 ∑ 
i�1

   
n

   [(�̂
0 
� b

0
) � (�̂

1 
� b

1
)x

i
]2,

as can be verified by straightforward algebra. Because this is a sum of squared 
terms, the smallest it can be is zero. Therefore, it is smallest when b

0
 � �̂

0
 and 

b
1
 � �̂

1
.
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Multiple Regression Analysis: 
Estimation

C H A P T E R 3

In Chapter 2, we learned how to use simple regression analysis to explain a dependent 
variable, y, as a function of a single independent variable, x. The primary drawback in 
using simple regression analysis for empirical work is that it is very difficult to draw 

ceteris paribus conclusions about how x affects y: the key assumption, SLR.4 —that all 
other factors affecting y are uncorrelated with x—is often unrealistic.
 Multiple regression analysis is more amenable to ceteris paribus analysis because 
it allows us to explicitly control for many other factors that simultaneously affect the de-
pendent variable. This is important both for testing economic theories and for evaluating 
policy effects when we must rely on nonexperimental data. Because multiple regression 
models can accommodate many explanatory variables that may be correlated, we can hope 
to infer causality in cases where simple regression analysis would be misleading.
 Naturally, if we add more factors to our model that are useful for explaining y, then 
more of the variation in y can be explained. Thus, multiple regression analysis can be used 
to build better models for predicting the dependent variable.
 An additional advantage of multiple regression analysis is that it can incorporate fairly 
general functional form relationships. In the simple regression model, only one function 
of a single explanatory variable can appear in the equation. As we will see, the multiple 
regression model allows for much more flexibility.
 Section 3.1 formally introduces the multiple regression model and further discusses the 
advantages of multiple regression over simple regression. In Section 3.2, we demonstrate 
how to estimate the parameters in the multiple regression model using the method of ordi-
nary least squares. In Sections 3.3, 3.4, and 3.5, we describe various statistical properties 
of the OLS estimators, including unbiasedness and efficiency.
 The multiple regression model is still the most widely used vehicle for empirical analy-
sis in economics and other social sciences. Likewise, the method of ordinary least squares 
is popularly used for estimating the parameters of the multiple regression model.

3.1 Motivation for Multiple Regression
The Model with Two Independent Variables

We begin with some simple examples to show how multiple regression analysis can be 
used to solve problems that cannot be solved by simple regression.
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 The first example is a simple variation of the wage equation introduced in Chapter 2 
for obtaining the effect of education on hourly wage:

 wage � �
0
 � �

1
educ � �

2
exper � u, 3.1

where exper is years of labor market experience. Thus, wage is determined by the two 
explanatory or independent variables, education and experience, and by other unobserved 
factors, which are contained in u. We are still primarily interested in the effect of educ 
on wage, holding fixed all other factors affecting wage; that is, we are interested in the 
parameter �

1
.

 Compared with a simple regression analysis relating wage to educ, equation (3.1) 
effectively takes exper out of the error term and puts it explicitly in the equation. Because 
exper appears in the equation, its coefficient, �

2
, measures the ceteris paribus effect of 

exper on wage, which is also of some interest.
 Not surprisingly, just as with simple regression, we will have to make assumptions 
about how u in (3.1) is related to the independent variables, educ and exper. However, as 
we will see in Section 3.2, there is one thing of which we can be confident: because (3.1) 
contains experience explicitly, we will be able to measure the effect of education on wage, 
holding experience fixed. In a simple regression analysis—which puts exper in the error 
term—we would have to assume that experience is uncorrelated with education, a tenuous 
assumption.
 As a second example, consider the problem of explaining the effect of per student 
spending (expend ) on the average standardized test score (avgscore) at the high school 
level. Suppose that the average test score depends on funding, average family income 
(avginc), and other unobservables:

 avgscore � �
0
 � �

1
expend � �

2
avginc � u. 3.2

The coefficient of interest for policy purposes is �
1
, the ceteris paribus effect of expend 

on avgscore. By including avginc explicitly in the model, we are able to control for its 
effect on avgscore. This is likely to be important because average family income tends 
to be correlated with per student spending: spending levels are often determined by both 
property and local income taxes. In simple regression analysis, avginc would be included 
in the error term, which would likely be correlated with expend, causing the OLS estimator 
of �

1
 in the two-variable model to be biased.

 In the two previous similar examples, we have shown how observable factors other 
than the variable of primary interest [educ in equation (3.1) and expend in equation (3.2)] 
can be included in a regression model. Generally, we can write a model with two inde-
pendent variables as

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � u, 3.3

where 
 �

0
 is the intercept.

 �
1
 measures the change in y with respect to x

1
, holding other factors fixed.

 �
2
 measures the change in y with respect to x

2
, holding other factors fixed.
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 Multiple regression analysis is also useful for generalizing functional relationships 
between variables. As an example, suppose family consumption (cons) is a quadratic func-
tion of family income (inc):

 cons � �
0
 � �

1
inc � �

2
inc2 � u, 3.4

where u contains other factors affecting consumption. In this model, consumption depends 
on only one observed factor, income; so it might seem that it can be handled in a simple 
regression framework. But the model falls outside simple regression because it contains 
two functions of income, inc and inc2 (and therefore three parameters, �

0
, �

1
, and �

2
). 

Nevertheless, the consumption function is easily written as a regression model with two 
independent variables by letting x

1 
� inc and x

2 
� inc2.

 Mechanically, there will be no difference in using the method of ordinary least squares 
(introduced in Section 3.2) to estimate equations as different as (3.1) and (3.4). Each equa-
tion can be written as (3.3), which is all that matters for computation. There is, however, 
an important difference in how one interprets the parameters. In equation (3.1), �

1
 is the 

ceteris paribus effect of educ on wage. The parameter �
1
 has no such interpretation in 

(3.4). In other words, it makes no sense to measure the effect of inc on cons while holding 
inc2 fixed, because if inc changes, then so must inc2! Instead, the change in consumption 
with respect to the change in income—the marginal propensity to consume—is approxi-
mated by

   ∆cons ______ 
∆inc

   � �
1
 � 2�

2
inc.

See Appendix A for the calculus needed to derive this equation. In other words, the mar-
ginal effect of income on consumption depends on �

2
 as well as on �

1
 and the level of 

income. This example shows that, in any particular application, the definitions of the inde-
pendent variables are crucial. But for the theoretical development of multiple regression, 
we can be vague about such details. We will study examples like this more completely in 
Chapter 6.
 In the model with two independent variables, the key assumption about how u is 
related to x

1 
and x

2 
is

 E(u�x
1
, x

2
) � 0. 3.5

The interpretation of condition (3.5) is similar to the interpretation of Assumption SLR.4 
for simple regression analysis. It means that, for any values of x

1 
and x

2 
in the population, 

the average unobservable is equal to zero. As with simple regression, the important part 
of the assumption is that the expected value of u is the same for all combinations of 
x

1
 and x

2
; that this common value is zero is no assumption at all as long as the intercept �

0 

is included in the model (see Section 2.1).
 How can we interpret the zero conditional mean assumption in the previous examples? 
In equation (3.1), the assumption is E(u�educ,exper) � 0. This implies that other factors 
affecting wage are not related on average to educ and exper. Therefore, if we think innate 
ability is part of u, then we will need average ability levels to be the same across all com-
binations of education and experience in the working population. This may or may not 
be true, but, as we will see in Section 3.3, this is the question we need to ask in order to 
determine whether the method of ordinary least squares produces unbiased estimators.
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 The example measuring student 
 performance [equation (3.2)] is similar 
to the wage equation. The zero condi-
tional mean assumption is E(u�expend, 
avginc) � 0, which means that other 
factors affecting test scores—school or 
student characteristics—are, on aver-
age, unrelated to per student funding 
and average family income.
 When applied to the quadratic con-
sumption function in (3.4), the zero conditional mean assumption has a slightly different 
interpretation. Written literally, equation (3.5) becomes E(u�inc,inc2) � 0. Since inc2 is 
known when inc is known, including inc2 in the expectation is redundant: E(u�inc,inc2) � 0 
is the same as E(u�inc) � 0. Nothing is wrong with putting inc2 along with inc in the expec-
tation when stating the assumption, but E(u�inc) � 0 is more concise.

The Model with k Independent Variables

Once we are in the context of multiple regression, there is no need to stop with two inde-
pendent variables. Multiple regression analysis allows many observed factors to affect y. 
In the wage example, we might also include amount of job training, years of tenure with 
the current employer, measures of ability, and even demographic variables like the number 
of siblings or mother’s education. In the school funding example, additional variables 
might include measures of teacher quality and school size.
 The general multiple linear regression model (also called the multiple regression 
model) can be written in the population as

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � … � �

k
x

k
 � u, 3.6

where 
 �

0
 is the intercept. 

 �
1
 is the parameter associated with x

1
. 

 �
2
 is the parameter associated with x

2
, and so on. 

Since there are k independent variables and an intercept, equation (3.6) contains k � 1 
(unknown) population parameters. For shorthand purposes, we will sometimes refer to the 
parameters other than the intercept as slope parameters, even though this is not always 
literally what they are. [See equation (3.4), where neither �

1 
nor �

2 
is itself a slope, but 

together they determine the slope of the relationship between consumption and income.]
 The terminology for multiple regression is similar to that for simple regression and 
is given in Table 3.1. Just as in simple regression, the variable u is the error term or 
 disturbance. It contains factors other than x

1
, x

2
, …, x

k
 that affect y. No matter how many 

explanatory variables we include in our model, there will always be factors we cannot 
include, and these are collectively contained in u.
 When applying the general multiple regression model, we must know how to interpret 
the parameters. We will get plenty of practice now and in subsequent chapters, but it is 

Q u e s t i o n  3 . 1
A simple model to explain city murder rates (murdrate) in terms 
of the probability of conviction (prbconv) and average sentence 
length (avgsen) is

murdrate � �
0 
� �

1
prbconv � �

2
avgsen � u.

What are some factors contained in u? Do you think the key 
assumption (3.5) is likely to hold?



72 Part 1   Regression Analysis with Cross-Sectional Data

useful at this point to be reminded of some things we already know. Suppose that CEO 
salary (salary) is related to firm sales (sales) and CEO tenure (ceoten) with the firm by

 log(salary) � �
0
 � �

1
log(sales) � �

2
ceoten � �

3
ceoten2 � u. 3.7

This fits into the multiple regression model (with k � 3) by defining y � log(salary), 
x

1
 � log(sales), x

2 
� ceoten, and x

3 
� ceoten2. As we know from Chapter 2, the parameter 

�
1 
is the (ceteris paribus) elasticity of salary with respect to sales. If �

3
 � 0, then 100�

2
 

is approximately the ceteris paribus percentage increase in salary when ceoten increases 
by one year. When �

3
 	 0, the effect of ceoten on salary is more complicated. We will 

postpone a detailed treatment of general models with quadratics until Chapter 6.
 Equation (3.7) provides an important reminder about multiple regression analysis. The 
term “linear” in multiple linear regression model means that equation (3.6) is linear in the 
parameters, �

j
. Equation (3.7) is an example of a multiple regression model that, while 

linear in the �
j
, is a nonlinear relationship between salary and the variables sales and ceo-

ten. Many applications of multiple linear regression involve nonlinear relationships among 
the underlying variables.
 The key assumption for the general multiple regression model is easy to state in terms 
of a conditional expectation:

 E(u�x
1
, x

2
, …, x

k
) � 0. 3.8

At a minimum, equation (3.8) requires that all factors in the unobserved error term be 
uncorrelated with the explanatory variables. It also means that we have correctly accounted 
for the functional relationships between the explained and explanatory variables. Any 
problem that causes u to be correlated with any of the independent variables causes (3.8) 
to fail. In Section 3.3, we will show that assumption (3.8) implies that OLS is unbiased and 
will derive the bias that arises when a key variable has been omitted from the equation. In 
Chapters 15 and 16, we will study other reasons that might cause (3.8) to fail and show 
what can be done in cases where it does fail.

TABLE  3 . 1

Terminology for Multiple Regression

y x1, x2, …, x
k

Dependent variable Independent variables

Explained variable Explanatory variables

Response variable Control variables

Predicted variable Predictor variables

Regressand Regressors
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3.2 Mechanics and Interpretation 
of Ordinary Least Squares
We now summarize some computational and algebraic features of the method of ordinary 
least squares as it applies to a particular set of data. We also discuss how to interpret the 
estimated equation.

Obtaining the OLS Estimates

We first consider estimating the model with two independent variables. The estimated 
OLS equation is written in a form similar to the simple regression case:

  ̂  y  �   ̂  � 
0
�  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
, 3.9

where 
  ̂  � 

0
 � the estimate of �

0
.

  ̂  � 
1
 � the estimate of �

1
.

  ̂  � 
2
 � the estimate of �

2
. 

But how do we obtain  ̂  � 
0
,  ̂  � 

1
, and  ̂  � 

2
? The method of ordinary least squares chooses the 

estimates to minimize the sum of squared residuals. That is, given n observations on y, 
x

1
, and x

2
, {(x

i1
, x

i2
, y

i
): i � 1, 2, …, n}, the estimates  ̂  � 

0
,  ̂  � 

1
, and  ̂  � 

2
 are chosen simultane-

ously to make

  ∑ 
i�1

   
n

    (y
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 �  ̂  � 

2
x

i2
)2 3.10

as small as possible.
 To understand what OLS is doing, it is important to master the meaning of the index-
ing of the independent variables in (3.10). The independent variables have two subscripts 
here, i followed by either 1 or 2. The i subscript refers to the observation number. Thus, 
the sum in (3.10) is over all i � 1 to n observations. The second index is simply a 
method of distinguishing between different independent variables. In the example relat-
ing wage to educ and exper, x

i1
 � educ

i
 is education for person i in the sample, and x

i2
 � 

exper
i
 is experience for person i. The sum of squared residuals in equation (3.10) is

 ∑ 
i�1

  
n
    (wage

i
 �  ̂  � 

0
 �  ̂  � 

1
educ

i
 �  ̂  � 

2
exper

i
)2. In what follows, the i subscript is reserved for 

indexing the observation number. If we write x
ij
, then this means the ith observation on 

the jth independent variable. (Some authors prefer to switch the order of the observation 
number and the variable number, so that x

1i
 is observation i on variable one. But this is 

just a matter of notational taste.)
 In the general case with k independent variables, we seek estimates  ̂  � 

0
,  ̂  � 

1
, …,  ̂  � 

k
 in the 

equation

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
 � … �  ̂  � 

k
x

k
. 3.11
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The OLS estimates, k � 1 of them, are chosen to minimize the sum of squared residuals:

  ∑ 
i�1

   
n

    (y
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
)2. 3.12

This minimization problem can be solved using multivariable calculus (see Appendix 3A). 
This leads to k � 1 linear equations in k � 1 unknowns  ̂  � 

0
,  ̂  � 

1
, …,  ̂  � 

k
:

  ∑ 
i�1

   
n

    (y
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0

  ∑ 
i�1

   
n

    x
i1
(y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0

  ∑ 
i�1

   
n

    x
i2
(y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0 3.13

 
. 
. 
.

  ∑ 
i�1

   
n

    x
ik
(y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0.

These are often called the OLS first order conditions. As with the simple regression 
model in Section 2.2, the OLS first order conditions can be obtained by the method of 
moments: under assumption (3.8), E(u) � 0 and E(x

j
u) � 0, where j � 1, 2, …, k. The 

equations in (3.13) are the sample counterparts of these population moments, although we 
have omitted the division by the sample size n.
 For even moderately sized n and k, solving the equations in (3.13) by hand calculations 
is tedious. Nevertheless, modern computers running standard statistics and econometrics 
software can solve these equations with large n and k very quickly.
 There is only one slight caveat: we must assume that the equations in (3.13) can 
be solved uniquely for the  ̂  � 

j
. For now, we just assume this, as it is usually the case in 

well-specified models. In Section 3.3, we state the assumption needed for unique OLS 
estimates to exist (see Assumption MLR.3).
 As in simple regression analysis, equation (3.11) is called the OLS regression line or the 
sample regression function (SRF). We will call  ̂  � 

0
 the OLS intercept estimate and  ̂  � 

1
, … ,

  ̂  � 
k
 the OLS slope estimates (corresponding to the independent variables x

1
, x

2
, …, x

k
).

 To indicate that an OLS regression has been run, we will either write out equation (3.11) 
with y and x

1
, …, x

k
 replaced by their variable names (such as wage, educ, and exper), or 

we will say that “we ran an OLS regression of y on x
1
, x

2
, …, x

k
” or that “we regressed 

y on x
1
, x

2
, …, x

k
.” These are shorthand for saying that the method of ordinary least squares 

was used to obtain the OLS equation (3.11). Unless explicitly stated otherwise, we always 
estimate an intercept along with the slopes.

Interpreting the OLS Regression Equation

More important than the details underlying the computation of the  ̂  � 
j
 is the interpretation 

of the estimated equation. We begin with the case of two independent variables:

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
. 3.14
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The intercept  ̂  � 
0
 in equation (3.14) is the predicted value of y when x

1 
� 0 and x

2 
� 0. 

Sometimes, setting x
1 
and x

2 
both equal to zero is an interesting scenario; in other cases, it 

will not make sense. Nevertheless, the intercept is always needed to obtain a prediction of 
y from the OLS regression line, as (3.14) makes clear.
 The estimates   ̂  � 

1
 and  ̂  � 

2
 have partial effect, or ceteris paribus, interpretations. From 

equation (3.14), we have

 ∆ ̂  y  �  ̂  � 
1
∆x

1
 �  ̂  � 

2
∆x

2
,

so we can obtain the predicted change in y given the changes in x
1 
and x

2
. (Note how the 

intercept has nothing to do with the changes in y.) In particular, when x
2 
is held fixed, so 

that ∆x
2
 � 0, then

 ∆ ̂  y  �  ̂  � 
1
∆x

1
,

holding x
2 
fixed. The key point is that, by including x

2 
in our model, we obtain a coefficient 

on x
1 
with a ceteris paribus interpretation. This is why multiple regression analysis is so 

useful. Similarly,

 ∆ ̂  y  �  ̂  � 
2
∆x

2
,

holding x
1 
fixed.

E x a m p l e  3 . 1

[Determinants of College GPA]

The variables in GPA1.RAW include the college grade point average (colGPA), high school GPA 
(hsGPA), and achievement test score (ACT ) for a sample of 141 students from a large university; 
both college and high school GPAs are on a four-point scale. We obtain the following OLS regres-
sion line to predict college GPA from high school GPA and achievement test score:

 2colGPA � 1.29 � .453 hsGPA � .0094 ACT. 3.15

How do we interpret this equation? First, the intercept 1.29 is the predicted college GPA if hsGPA 
and ACT are both set as zero. Since no one who attends college has either a zero high school GPA 
or a zero on the achievement test, the intercept in this equation is not, by itself, meaningful.
 More interesting estimates are the slope coefficients on hsGPA and ACT. As expected, there is 
a positive partial relationship between colGPA and hsGPA: Holding ACT fixed, another point on 
hsGPA is associated with .453 of a point on the college GPA, or almost half a point. In other words, 
if we choose two students, A and B, and these students have the same ACT score, but the high 
school GPA of Student A is one point higher than the high school GPA of Student B, then we predict 
Student A to have a college GPA .453 higher than that of Student B. (This says nothing about any 
two actual people, but it is our best prediction.)
 The sign on ACT implies that, while holding hsGPA fixed, a change in the ACT score of 
 10 points—a very large change, since the average score in the sample is about 24 with a standard 
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deviation less than three—affects colGPA by less than one-tenth of a point. This is a small effect, 
and it suggests that, once high school GPA is accounted for, the ACT score is not a strong predictor 
of college GPA. (Naturally, there are many other factors that contribute to GPA, but here we focus 
on statistics available for high school students.) Later, after we discuss statistical inference, we will 
show that not only is the coefficient on ACT practically small, it is also statistically insignificant.
 If we focus on a simple regression analysis relating colGPA to ACT only, we obtain

 2colGPA � 2.40 � .0271 ACT ;

thus, the coefficient on ACT is almost three times as large as the estimate in (3.15). But this equation 
does not allow us to compare two people with the same high school GPA; it corresponds to a differ-
ent experiment. We say more about the differences between multiple and simple regression later.

 The case with more than two independent variables is similar. The OLS regression 
line is

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
 � … �  ̂  � 

k
x

k
. 3.16

Written in terms of changes,

 ∆ ̂  y  �  ̂  � 
1
∆x

1
 �  ̂  � 

2
∆x

2
 � … �  ̂  � 

k
∆x

k
. 3.17

The coefficient on x
1 
measures the change in  ̂  y  due to a one-unit increase in x

1
, holding all 

other independent variables fixed. That is,

 ∆ ̂  y  �  ̂  � 
1
∆x

1
, 3.18

holding x
2
, x

3
, …, x

k
 fixed. Thus, we have controlled for the variables x

2
, x

3
, …, x

k
 when 

estimating the effect of x
1 
on y. The other coefficients have a similar interpretation.

 The following is an example with three independent variables.

E x a m p l e  3 . 2

[Hourly Wage Equation]

Using the 526 observations on workers in WAGE1.RAW, we include educ (years of education), 
exper (years of labor market experience), and tenure (years with the current employer) in an equation 
explaining log(wage). The estimated equation is

  2log(wage) � .284 � .092 educ � .0041 exper � .022 tenure. 3.19

As in the simple regression case, the coefficients have a percentage interpretation. The only dif-
ference here is that they also have a ceteris paribus interpretation. The coefficient .092 means that, 
holding exper and tenure fixed, another year of education is predicted to increase log(wage) by .092, 
which translates into an approximate 9.2% [100(.092)] increase in wage. Alternatively, if we take 
two people with the same levels of experience and job tenure, the coefficient on educ is the propor-
tionate difference in predicted wage when their education levels differ by one year. This measure of 
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the return to education at least keeps two important productivity factors fixed; whether it is a good 
estimate of the ceteris paribus return to another year of education requires us to study the statistical 
properties of OLS (see Section 3.3).

On the Meaning of “Holding Other Factors Fixed” 

in Multiple Regression

The partial effect interpretation of slope coefficients in multiple regression analysis can 
cause some confusion, so we provide a further discussion now.
 In Example 3.1, we observed that the coefficient on ACT measures the predicted differ-
ence in colGPA, holding hsGPA fixed. The power of multiple regression analysis is that it 
provides this ceteris paribus interpretation even though the data have not been collected in 
a ceteris paribus fashion. In giving the coefficient on ACT a partial effect interpretation, it 
may seem that we actually went out and sampled people with the same high school GPA 
but possibly with different ACT scores. This is not the case. The data are a random sample 
from a large university: there were no restrictions placed on the sample values of hsGPA 
or ACT in obtaining the data. Rarely do we have the luxury of holding certain variables 
fixed in obtaining our sample. If we could collect a sample of individuals with the same 
high school GPA, then we could perform a simple regression analysis relating colGPA to 
ACT. Multiple regression effectively allows us to mimic this situation without restricting 
the values of any independent variables.
 The power of multiple regression analysis is that it allows us to do in nonexperimental 
environments what natural scientists are able to do in a controlled laboratory setting: keep 
other factors fixed.

Changing More Than One Independent Variable 

 Simultaneously

Sometimes, we want to change more than one independent variable at the same time to 
find the resulting effect on the dependent variable. This is easily done using equation 
(3.17). For example, in equation (3.19), we can obtain the estimated effect on wage when 
an individual stays at the same firm for another year: exper (general workforce experience) 
and tenure both increase by one year. The total effect (holding educ fixed) is

 ∆2log(wage) � .0041 ∆exper � .022 ∆tenure � .0041 � .022 � .0261,

or about 2.6%. Since exper and tenure each increase by one year, we just add the coef-
ficients on exper and tenure and multiply by 100 to turn the effect into a percentage.

OLS Fitted Values and Residuals

After obtaining the OLS regression line (3.11), we can obtain a fitted or predicted value 
for each observation. For observation i, the fitted value is simply

  ̂  y 
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 �  ̂  � 

2
x

i2
 � … �  ̂  � 

k
x

ik
, 3.20
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which is just the predicted value obtained by plugging the values of the independent vari-
ables for observation i into equation (3.11). We should not forget about the intercept in 
obtaining the fitted values; otherwise, the answer can be very misleading. As an example, 
if in (3.15), hsGPA

i
 � 3.5 and ACT

i
 � 24, 2colGPA

i
 � 1.29 � .453(3.5) � .0094(24) � 

3.101 (rounded to three places after the decimal).
 Normally, the actual value y

i
 for any observation i will not equal the predicted value,  

ˆ y 
i
: OLS minimizes the average squared prediction error, which says nothing about the 

prediction error for any particular observation. The residual for observation i is defined 
just as in the simple regression case,

  ̂  u 
i
 � y

i
 �  ̂  y 

i
. 3.21

There is a residual for each observation. If û
i
 � 0, then  ̂  y 

i
 is below y

i
, which means that, for 

this observation, y
i
 is underpredicted. If û

i
 � 0, then y

i
 �  ̂  y 

i
, and y

i
 is overpredicted.

 The OLS fitted values and residuals have some important properties that are immediate 
extensions from the single variable case:

 1.  The sample average of the residuals is zero and so  
_
 y  �  

_
  ̂  y  .

 2.  The sample covariance between each independent variable and the OLS residuals is 
zero. Consequently, the sample covariance between the OLS fitted values and the 
OLS residuals is zero.

 3.  The point ( 
_
 x 
1
,  

_
 x 
2
, …,  

_
 x 
k
,  

_
 y ) is always on the OLS regression line:  

_
 y  �  ̂  � 

0
 �  ̂  � 

1
 
_
 x 
1
 �  

ˆ � 
2
 
_
 x 
2
 � … �  ̂  � 

k
 
_
 x 
k
.

The first two properties are immediate 
consequences of the set of equations 
used to obtain the OLS estimates. The 
first equation in (3.13) says that the sum 
of the residuals is zero. The remaining 
equations are of the form  ∑ 

i�1
  

n
    x

ij  
 ̂  u 

i
 � 0, 

which implies that each independent var-
iable has zero sample covariance with  ̂  u 

i
. 

Property (3) follows immediately from 
property (1).

A “Partialling Out” Interpretation of Multiple Regression

When applying OLS, we do not need to know explicit formulas for the  ̂  � 
j
 that solve the 

system of equations in (3.13). Nevertheless, for certain derivations, we do need explicit 
formulas for the  ̂  � 

j
. These formulas also shed further light on the workings of OLS.

 Consider again the case with k � 2 independent variables,  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
. For 

concreteness, we focus on  ̂  � 
1
. One way to express  ̂  � 

1
 is

  ̂  � 
1
 �  �  ∑ 

i�1

   
n

     ̂  r 
i1
y

i
 �  �  �  ∑ 

i�1

   
n

     ̂  r   2   i1  � , 3.22

Q u e s t i o n  3 . 2
In Example 3.1, the OLS fitted line explaining college GPA in terms 
of high school GPA and ACT score is

2colGPA � 1.29 � .453 hsGPA � .0094 ACT.

If the average high school GPA is about 3.4 and the average 
ACT score is about 24.2, what is the average college GPA in the 
sample?
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where the  ̂  r 
i1
 are the OLS residuals from a simple regression of x

1 
on x

2
, using the sample 

at hand. We regress our first independent variable, x
1
, on our second independent variable, 

x
2
, and then obtain the residuals (y plays no role here). Equation (3.22) shows that we can 

then do a simple regression of y on  ̂  r 
1
 to obtain  ̂  � 

1
. (Note that the residuals  ̂  r 

i1
 have a zero 

sample average, and so  ̂  � 
1
 is the usual slope estimate from simple regression.)

 The representation in equation (3.22) gives another demonstration of  ̂  � 
1
’s partial 

effect interpretation. The residuals  ̂  r 
i1
 are the part of x

i1
 that is uncorrelated with x

i2
. 

Another way of saying this is that   ̂  r 
i1
 is x

i1
 after the effects of x

i2
 have been partialled out, 

or netted out. Thus,  ̂  � 
1
 measures the sample relationship between y and x

1 
after x

2 
has been 

partialled out.
 In simple regression analysis, there is no partialling out of other variables because no 
other variables are included in the regression. Computer Exercise C3.5 steps you through 
the partialling out process using the wage data from Example 3.2. For practical purposes, 
the important thing is that  ̂  � 

1
 in the equation  ̂  y  �  ̂  � 

0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
 measures the change in 

y given a one-unit increase in x
1
, holding x

2 
fixed.

 In the general model with k explanatory variables,  ̂  � 
1
 can still be written as in equation 

(3.22), but the residuals  ̂  r 
i1
 come from the regression of x

1 
on x

2
, …, x

k
. Thus,  ̂  � 

1
 measures 

the effect of x
1 
on y after x

2
, …, x

k
 have been partialled or netted out.

Comparison of Simple and Multiple Regression Estimates

Two special cases exist in which the simple regression of y on x
1 
will produce the same 

OLS estimate on x
1 
as the regression of y on x

1 
and x

2
. To be more precise, write the simple 

regression of y on x
1 
as  ̃  y  �  ̃  � 

0
 �   ̃  � 

1
x

1
, and write the multiple regression as  ̂  y  �  ̂  � 

0
 �  ̂  � 

1
x

1
 �

 ̂  � 
2
x

2
. We know that the simple regression coefficient  ̃  � 

1
 does not usually equal the multi-

ple regression coefficient  ̂  � 
1
. It turns out there is a simple relationship between  ̃  � 

1
 and  ̂  � 

1
, 

which allows for interesting comparisons between simple and multiple regression:

   ̃  � 
1
 �  ̂  � 

1
 �  ̂  � 

2 
 ̃  � 

1
, 3.23

where 
 
 ̃  � 

1
 is the slope coefficient from the simple regression of x

i2
 on x

i1
, i � 1, …, n. 

This equation shows how  ̃  � 
1
 differs from the partial effect of x

1 
on  ̂  y . The confounding 

term is the partial effect of x
2 
on  ̂  y  times the slope in the sample regression of x

2 
on x

1
. (See 

Section 3A.4 in the chapter appendix for a more general verification.)
 The relationship between  ̃  � 

1
 and  ̂  � 

1
 also shows there are two distinct cases where they 

are equal:

 1. The partial effect of x
2 
on  ̂  y  is zero in the sample. That is,  ̂  � 

2
 � 0.

 2. x
1
 and x

2 
are uncorrelated in the sample. That is,  ̃  � 

1
 � 0.

 Even though simple and multiple regression estimates are almost never identical, we 
can use the above formula to characterize why they might be either very different or quite 
similar. For example, if  ̂  � 

2
 is small, we might expect the multiple and simple regression 

estimates of �
1 
to be similar. In Example 3.1, the sample correlation between hsGPA and 

ACT is about 0.346, which is a nontrivial correlation. But the coefficient on ACT is fairly 
little. It is not surprising to find that the simple regression of colGPA on hsGPA produces 
a slope estimate of .482, which is not much different from the estimate .453 in (3.15).
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E x a m p l e  3 . 3

[Participation in 401(k) Pension Plans]

We use the data in 401K.RAW to estimate the effect of a plan’s match rate (mrate) on the participa-
tion rate (prate) in its 401(k) pension plan. The match rate is the amount the firm contributes to a 
worker’s fund for each dollar the worker contributes (up to some limit); thus, mrate � .75 means 
that the firm contributes 75¢ for each dollar contributed by the worker. The participation rate is the 
percentage of eligible workers having a 401(k) account. The variable age is the age of the 401(k) 
plan. There are 1,534 plans in the data set, the average prate is 87.36, the average mrate is .732, and 
the average age is 13.2.
 Regressing prate on mrate, age gives

 2prate � 80.12 � 5.52 mrate � .243 age.

Thus, both mrate and age have the expected effects. What happens if we do not control for age? The 
estimated effect of age is not trivial, and so we might expect a large change in the estimated effect 
of mrate if age is dropped from the regression. However, the simple regression of prate on mrate 
yields 2prate � 83.08 � 5.86 mrate. The simple regression estimate of the effect of mrate on prate 
is clearly different from the multiple regression estimate, but the difference is not very big. (The 
simple regression estimate is only about 6.2% larger than the multiple regression estimate.) This can 
be explained by the fact that the sample correlation between mrate and age is only .12.

 In the case with k independent variables, the simple regression of y on x
1 
and the mul-

tiple regression of y on x
1
, x

2
, …, x

k
 produce an identical estimate of x

1 
only if (1) the OLS 

coefficients on x
2 
through x

k
 are all zero or (2) x

1 
is uncorrelated with each of x

2
, …, x

k
. 

Neither of these is very likely in practice. But if the coefficients on x
2 
through x

k
 are small, 

or the sample correlations between x
1 
and the other independent variables are insubstantial, 

then the simple and multiple regression estimates of the effect of x
1 
on y can be similar.

Goodness-of-Fit

As with simple regression, we can define the total sum of squares (SST), the explained 
sum of squares (SSE), and the residual sum of squares or sum of squared residuals 
(SSR) as

 SST �  ∑ 
i�1

   
n

    (y
i
 �  

_
 y )2 3.24

 SSE �  ∑ 
i�1

   
n

    ( ̂  y 
i
 �  

_
 y )2 3.25

 SSR �  ∑ 
i�1

   
n

     ̂  u 
i
2. 3.26

Using the same argument as in the simple regression case, we can show that

 SST � SSE � SSR. 3.27
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In other words, the total variation in {y
i
} is the sum of the total variations in { ̂  y 

i
} and 

in { ̂  u 
i
}.

 Assuming that the total variation in y is nonzero, as is the case unless y
i
 is constant in 

the sample, we can divide (3.27) by SST to get

 SSR/SST � SSE/SST � 1.

Just as in the simple regression case, the R-squared is defined to be

 R2 � SSE/SST � 1 � SSR/SST, 3.28

and it is interpreted as the proportion of the sample variation in y
i
 that is explained by the 

OLS regression line. By definition, R2 is a number between zero and one.
 R2 can also be shown to equal the squared correlation coefficient between the actual y

i
 

and the fitted values  ̂  y 
i
. That is,

 R2 �   

 �  ∑ 
i�1

   
n

    ( y
i
 �  

_
 y  ) (   ̂  y 

i
 �  

_
  ̂  y  ) � 

2

  ______________________   

 �  ∑ 
i�1

   
n

    ( y
i
 �  

_
 y )2 �   �  ∑ 

i�1

   
n

    (  ̂    ̂  y 
i
 �  

_
  ̂  y  )2 � 

  . 3.29

[We have put the average of the  ̂  y 
i
 in (3.29) to be true to the formula for a correlation coef-

ficient; we know that this average equals  
_
 y  because the sample average of the residuals is 

zero and y
i
 �  ̂  y 

i
 �  ̂  u 

i
.]

 An important fact about R2 is that it never decreases, and it usually increases when 
another independent variable is added to a regression. This algebraic fact follows because, 
by definition, the sum of squared residuals never increases when additional regressors are 
added to the model. For example, the last digit of one’s social security number has nothing 
to do with one’s hourly wage, but adding this digit to a wage equation will increase the R2 
(by a little, at least).
 The fact that R2 never decreases when any variable is added to a regression makes 
it a poor tool for deciding whether one variable or several variables should be added to 
a model. The factor that should determine whether an explanatory variable belongs in a 
model is whether the explanatory variable has a nonzero partial effect on y in the popula-
tion. We will show how to test this hypothesis in Chapter 4 when we cover statistical infer-
ence. We will also see that, when used properly, R2 allows us to test a group of variables 
to see if it is important for explaining y. For now, we use it as a goodness-of-fit measure 
for a given model.

E x a m p l e  3 . 4

[Determinants of College GPA]

From the grade point average regression that we did earlier, the equation with R2 is

2colGPA � 1.29 � .453 hsGPA � .0094 ACT

 n � 141, R2 � .176.

This means that hsGPA and ACT together explain about 17.6% of the variation in college GPA for 
this sample of students. This may not seem like a high percentage, but we must remember that there 
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are many other factors—including family background, personality, quality of high school educa-
tion, affinity for college—that contribute to a student’s college performance. If hsGPA and ACT 
explained almost all of the variation in colGPA, then performance in college would be preordained 
by high school performance!

 

E x a m p l e  3 . 5

[Explaining Arrest Records]

CRIME1.RAW contains data on arrests during the year 1986 and other information on 2,725 men 
born in either 1960 or 1961 in California. Each man in the sample was arrested at least once prior 
to 1986. The variable narr86 is the number of times the man was arrested during 1986: it is zero 
for most men in the sample (72.29%), and it varies from 0 to 12. (The percentage of men arrested 
once during 1986 was 20.51.) The variable pcnv is the proportion (not percentage) of arrests prior 
to 1986 that led to conviction, avgsen is average sentence length served for prior convictions (zero 
for most people), ptime86 is months spent in prison in 1986, and qemp86 is the number of quarters 
during which the man was employed in 1986 (from zero to four).
 A linear model explaining arrests is

narr86 � �
0
 � �

1 
pcnv � �

2
avgsen � �

3 
ptime86 � �

4
qemp86 � u,

where pcnv is a proxy for the likelihood for being convicted of a crime and avgsen is a measure 
of expected severity of punishment, if convicted. The variable ptime86 captures the incarcerative 
effects of crime: if an individual is in prison, he cannot be arrested for a crime outside of prison. 
Labor market opportunities are crudely captured by qemp86.
 First, we estimate the model without the variable avgsen. We obtain

 2narr86 � .712 � .150 pcnv � .034 ptime86 � .104 qemp86

 n � 2,725, R2 � .0413.

This equation says that, as a group, the three variables pcnv, ptime86, and qemp86 explain about 
4.1% of the variation in narr86.
 Each of the OLS slope coefficients has the anticipated sign. An increase in the proportion of 
convictions lowers the predicted number of arrests. If we increase pcnv by .50 (a large increase in 
the probability of conviction), then, holding the other factors fixed, ∆ 2narr86 � �.150(.50) � �.075. 
This may seem unusual because an arrest cannot change by a fraction. But we can use this value 
to obtain the predicted change in expected arrests for a large group of men. For example, among 
100 men, the predicted fall in arrests when pcnv increases by .50 is �7.5.
 Similarly, a longer prison term leads to a lower predicted number of arrests. In fact, if ptime86 
increases from 0 to 12, predicted arrests for a particular man fall by .034(12) � .408. Another quarter 
in which legal employment is reported lowers predicted arrests by .104, which would be 10.4 arrests 
among 100 men.
 If avgsen is added to the model, we know that R2 will increase. The estimated equation is

 2narr86 � .707 � .151 pcnv � .0074 avgsen � .037 ptime86 � .103 qemp86

  n � 2,725, R2 � .0422.
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Thus, adding the average sentence variable increases R2 from .0413 to .0422, a practically small 
effect. The sign of the coefficient on avgsen is also unexpected: it says that a longer average sentence 
length increases criminal activity.

 

 Example 3.5 deserves a final word of caution. The fact that the four explanatory vari-
ables included in the second regression explain only about 4.2% of the variation in narr86 
does not necessarily mean that the equation is useless. Even though these variables col-
lectively do not explain much of the variation in arrests, it is still possible that the OLS 
estimates are reliable estimates of the ceteris paribus effects of each independent variable 
on narr86. As we will see, whether this is the case does not directly depend on the size of 
R2. Generally, a low R2 indicates that it is hard to predict individual outcomes on y with 
much accuracy, something we study in more detail in Chapter 6. In the arrest example, 
the small R2 reflects what we already suspect in the social sciences: it is generally very 
difficult to predict individual behavior.

Regression through the Origin

Sometimes, an economic theory or common sense suggests that �
0 
should be zero, and so 

we should briefly mention OLS estimation when the intercept is zero. Specifically, we 
now seek an equation of the form

 ỹ �  ̃  � 
1
x

1
 �  ̃  � 

2
x

2
 � … �  ̃  � 

k
x

k
, 3.30

where the symbol “~” over the estimates is used to distinguish them from the OLS estimates 
obtained along with the intercept [as in (3.11)]. In (3.30), when x

1 
� 0, x

2 
� 0, …, x

k
 � 0,

the predicted value is zero. In this case,  ̃  � 
1
, …,  ̃  � 

k
 are said to be the OLS estimates from 

the regression of y on x
1
, x

2
, …, x

k
 through the origin.

 The OLS estimates in (3.30), as always, minimize the sum of squared residuals, 
but with the intercept set at zero. You should be warned that the properties of OLS that 
we derived earlier no longer hold for regression through the origin. In particular, the OLS 
residuals no longer have a zero sample average. Further, if R2 is defined as 1 � SSR/SST, 
where SST is given in (3.24) and SSR is now  ∑ 

i�1
  

n
    (y

i
 �  ̃  � 

1
x

i1
 � … �  ̃  � 

k
x

ik
)2, then R2 

can actually be negative. This means that the sample average,  
_
 y , “explains” more of the 

variation in the y
i
 than the explanatory variables. Either we should include an intercept 

in the regression or conclude that the explanatory variables poorly explain y. To always 
have a nonnegative R-squared, some economists prefer to calculate R2 as the squared 
correlation coefficient between the actual and fitted values of y, as in (3.29). (In this 
case, the average fitted value must be computed directly since it no longer equals  

_
 y .)

However, there is no set rule on computing R-squared for regression through the 
origin.
 One serious drawback with regression through the origin is that, if the intercept �

0 

in the population model is different from zero, then the OLS estimators of the slope 
parameters will be biased. The bias can be severe in some cases. The cost of estimating 
an intercept when �

0 
is truly zero is that the variances of the OLS slope estimators are 

larger.
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3.3 The Expected Value of the 
OLS Estimators
We now turn to the statistical properties of OLS for estimating the parameters in an under-
lying population model. In this section, we derive the expected value of the OLS estima-
tors. In particular, we state and discuss four assumptions, which are direct extensions of 
the simple regression model assumptions, under which the OLS estimators are unbiased 
for the population parameters. We also explicitly obtain the bias in OLS when an impor-
tant variable has been omitted from the regression.
 You should remember that statistical properties have nothing to do with a particular 
sample, but rather with the property of estimators when random sampling is done repeat-
edly. Thus, Sections 3.3, 3.4, and 3.5 are somewhat abstract. Although we give examples 
of deriving bias for particular models, it is not meaningful to talk about the statistical 
properties of a set of estimates obtained from a single sample.
 The first assumption we make simply defines the multiple linear regression (MLR) 
model.

Assumption MLR.1  (Linear in Parameters)

The model in the population can be written as

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � ... � �

k
x

k
 � u, 3.31

where �0, �1, …, �k are the unknown parameters (constants) of interest and u is an unobserv-
able random error or disturbance term.

Equation (3.31) formally states the population model, sometimes called the true model, 
to allow for the possibility that we might estimate a model that differs from (3.31). The 
key feature is that the model is linear in the parameters �

0
, �

1
, …, �

k
. As we know, (3.31) 

is quite flexible because y and the independent variables can be arbitrary functions of the 
underlying variables of interest, such as natural logarithms and squares [see, for example, 
equation (3.7)].

Assumption MLR.2  (Random Sampling)

We have a random sample of n observations, {(xi1, xi2, ..., xik, yi ): i � 1, 2, ..., n}, following the 
population model in Assumption MLR.1.

 Sometimes, we need to write the equation for a particular observation i: for a randomly 
drawn observation from the population, we have

 y
i
 � �

0
 � �

1
x

i1
 � �

2
x

i 2
 � … � �

k
x

ik
 � u

i 
. 3.32
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Remember that i refers to the observation, and the second subscript on x is the variable 
number. For example, we can write a CEO salary equation for a particular CEO i as

 log(salary
i
) � �

0
 � �

1
log(sales

i
) � �

2
ceoten

i
 � �

3
ceoten

i
2 � u

i 
. 3.33

The term u
i
 contains the unobserved factors for CEO i that affect his or her salary. For 

applications, it is usually easiest to write the model in population form, as in (3.31). It 
contains less clutter and emphasizes the fact that we are interested in estimating a popula-
tion relationship.
 In light of model (3.31), the OLS estimators  ̂  � 

0
,  ̂  � 

1
,  ̂  � 

2
, …,  ̂  � 

k
 from the regression of 

y on x
1
, …, x

k
 are now considered to be estimators of �

0
, �

1
, …, �

k
. In Section 3.2, we 

saw that OLS chooses the intercept and slope estimates for a particular sample so that the 
residuals average to zero and the sample correlation between each independent variable 
and the residuals is zero. Still, we did not include conditions under which the OLS esti-
mates are well-defined for a given sample. The next assumption fills that gap.

Assumption MLR.3  (No Perfect Collinearity)

In the sample (and therefore in the population), none of the independent variables is constant, 
and there are no exact linear relationships among the independent variables.

Assumption MLR.3 is more complicated than its counterpart for simple regression because 
we must now look at relationships between all independent variables. If an independent 
variable in (3.31) is an exact linear combination of the other independent variables, then 
we say the model suffers from perfect collinearity, and it cannot be estimated by OLS.
 It is important to note that Assumption MLR.3 does allow the independent variables to 
be correlated; they just cannot be perfectly correlated. If we did not allow for any correla-
tion among the independent variables, then multiple regression would be of very limited 
use for econometric analysis. For example, in the model relating test scores to educational 
expenditures and average family income,

 avgscore � �
0
 � �

1
expend � �

2
avginc � u,

we fully expect expend and avginc to be correlated: school districts with high average 
family incomes tend to spend more per student on education. In fact, the primary motiva-
tion for including avginc in the equation is that we suspect it is correlated with expend, 
and so we would like to hold it fixed in the analysis. Assumption MLR.3 only rules out 
perfect correlation between expend and avginc in our sample. We would be very unlucky 
to obtain a sample where per student expenditures are perfectly correlated with average 
family income. But some correlation, perhaps a substantial amount, is expected and cer-
tainly allowed.
 The simplest way that two independent variables can be perfectly correlated is when 
one variable is a constant multiple of another. This can happen when a researcher inad-
vertently puts the same variable measured in different units into a regression equation. 
For example, in estimating a relationship between consumption and income, it makes no 
sense to include as independent variables income measured in dollars as well as income 
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measured in thousands of dollars. One of these is redundant. What sense would it make 
to hold income measured in dollars fixed while changing income measured in thousands 
of dollars?
 We already know that different nonlinear functions of the same variable can appear 
among the regressors. For example, the model cons � �

0 
� �

1
inc � �

2
inc2 � u does not 

violate Assumption MLR.3: even though x
2 
� inc2 is an exact function of x

1 
� inc, inc2 

is not an exact linear function of inc. Including inc2 in the model is a useful way to gen-
eralize functional form, unlike including income measured in dollars and in thousands of 
dollars.
 Common sense tells us not to include the same explanatory variable measured in dif-
ferent units in the same regression equation. There are also more subtle ways that one 
independent variable can be a multiple of another. Suppose we would like to estimate an 
extension of a constant elasticity consumption function. It might seem natural to specify a 
model such as

 log(cons) � �
0
 � �

1
log(inc) � �

2
log(inc2) � u, 3.34

where x
1 
� log(inc) and x

2 
� log(inc2). Using the basic properties of the natural log (see 

Appendix A), log(inc2) � 2�log(inc). That is, x
2 

� 2x
1
, and naturally this holds for all 

observations in the sample. This violates Assumption MLR.3. What we should do instead 
is include [log(inc)]2, not log(inc2), along with log(inc). This is a sensible extension of the 
constant elasticity model, and we will see how to interpret such models in Chapter 6.
 Another way that independent variables can be perfectly collinear is when one inde-
pendent variable can be expressed as an exact linear function of two or more of the other 
independent variables. For example, suppose we want to estimate the effect of campaign 
spending on campaign outcomes. For simplicity, assume that each election has two candi-
dates. Let voteA be the percentage of the vote for Candidate A, let expendA be campaign 
expenditures by Candidate A, let expendB be campaign expenditures by Candidate B, and 
let totexpend be total campaign expenditures; the latter three variables are all measured in 
dollars. It may seem natural to specify the model as

 voteA � �
0
 � �

1
expendA � �

2
expend� � �

3
totexpend � u, 3.35

in order to isolate the effects of spending by each candidate and the total amount of spend-
ing. But this model violates Assumption MLR.3 because x

3 
� x

1 
� x

2 
by definition. Trying 

to interpret this equation in a ceteris paribus fashion reveals the problem. The parameter 
of �

1 
in equation (3.35) is supposed to measure the effect of increasing expenditures by 

Candidate A by one dollar on Candidate A’s vote, holding Candidate B’s spending and 
total spending fixed. This is nonsense, because if expendB and totexpend are held fixed, 
then we cannot increase expendA.
 The solution to the perfect collinearity in (3.35) is simple: drop any one of the three 
variables from the model. We would probably drop totexpend, and then the coefficient on 
expendA would measure the effect of increasing expenditures by A on the percentage of 
the vote received by A, holding the spending by B fixed.
 The prior examples show that Assumption MLR.3 can fail if we are not careful 
in specifying our model. Assumption MLR.3 also fails if the sample size, n, is too small in 
relation to the number of parameters being estimated. In the general regression model in 
equation (3.31), there are k � 1 parameters, and MLR.3 fails if n � k � 1. Intuitively, this 
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makes sense: to estimate k � 1 param-
eters, we need at least k � 1 observa-
tions. Not surprisingly, it is better to 
have as many observations as possible, 
something we will see with our vari-
ance calculations in Section 3.4.
 If the model is carefully specified 
and n � k � 1, Assumption MLR.3 can fail in rare cases due to bad luck in collecting the 
sample. For example, in a wage equation with education and experience as variables, it is 
possible that we could obtain a random sample where each individual has exactly twice 
as much education as years of experience. This scenario would cause Assumption MLR.3 
to fail, but it can be considered very unlikely unless we have an extremely small sample 
size.
 The final, and most important, assumption needed for unbiasedness is a direct exten-
sion of Assumption SLR.4.

Assumption MLR.4  (Zero Conditional Mean)

The error u has an expected value of zero given any values of the independent variables. In 
other words,

 E(u�x
1
, x

2
, ..., x

k
) � 0. 3.36

One way that Assumption MLR.4 can fail is if the functional relationship between the 
explained and explanatory variables is misspecified in equation (3.31): for example, if we 
forget to include the quadratic term inc2 in the consumption function cons � �

0 
� �

1
inc � 

�
2
inc2 � u when we estimate the model. Another functional form misspecification occurs 

when we use the level of a variable when the log of the variable is what actually shows up 
in the population model, or vice versa. For example, if the true model has log(wage) as the 
dependent variable but we use wage as the dependent variable in our regression analysis, 
then the estimators will be biased. Intuitively, this should be pretty clear. We will discuss 
ways of detecting functional form misspecification in Chapter 9.
 Omitting an important factor that is correlated with any of x

1
, x

2
, …, x

k
 causes 

Assumption MLR.4 to fail also. With multiple regression analysis, we are able to include 
many factors among the explanatory variables, and omitted variables are less likely to be 
a problem in multiple regression analysis than in simple regression analysis. Nevertheless, 
in any application, there are always factors that, due to data limitations or ignorance, we 
will not be able to include. If we think these factors should be controlled for and they are 
correlated with one or more of the independent variables, then Assumption MLR.4 will be 
violated. We will derive this bias later.
 There are other ways that u can be correlated with an explanatory variable. In 
Chapter 15, we will discuss the problem of measurement error in an explanatory variable. 
In Chapter 16, we cover the conceptually more difficult problem in which one or more 
of the explanatory variables is determined jointly with y. We must postpone our study of 
these problems until we have a firm grasp of multiple regression analysis under an ideal 
set of assumptions.

Q u e s t i o n  3 . 3
In the previous example, if we use as explanatory variables 
expendA, expendB, and shareA, where shareA � 100�(expendA/
totexpend) is the percentage share of total campaign expenditures 
made by Candidate A, does this violate Assumption MLR.3?
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 When Assumption MLR.4 holds, we often say that we have exogenous explanatory 
variables. If x

j
 is correlated with u for any reason, then x

j
 is said to be an endogenous 

explanatory variable. The terms “exogenous” and “endogenous” originated in simul-
taneous equations analysis (see Chapter 16), but the term “endogenous explanatory 
variable” has evolved to cover any case in which an explanatory variable may be cor-
related with the error term.
 Before we show the unbiasedness of the OLS estimators under MLR.1 to MLR.4, a 
word of caution. Beginning students of econometrics sometimes confuse Assumptions 
MLR.3 and MLR.4, but they are quite different. Assumption MLR.3 rules out certain 
relationships among the independent or explanatory variables and has nothing to do with 
the error, u. You will know immediately when carrying out OLS estimation whether or 
not Assumption MLR.3 holds. On the other hand, Assumption MLR.4—the much more 
important of the two—restricts the relationship between the unobservables in u and the 
explanatory variables. Unfortunately, we will never know for sure whether the average 
value of the unobservables is unrelated to the explanatory variables. But this is the critical 
assumption.
 We are now ready to show unbiasedness of OLS under the first four multiple regres-
sion assumptions. As in the simple regression case, the expectations are conditional on 
the values of the explanatory variables in the sample, something we show explicitly in 
Appendix 3A but not in the text.

Theorem 3.1  (Unbiasedness of OLS)

Under Assumptions MLR.1 through MLR.4,

 E( ̂  � 
j
) � �

j 
, j � 0, 1, …, k, 3.37

for any values of the population parameter �j. In other words, the OLS estimators are unbiased 
estimators of the population parameters.

 In our previous empirical examples, Assumption MLR.3 has been satisfied (because 
we have been able to compute the OLS estimates). Furthermore, for the most part, the 
samples are randomly chosen from a well-defined population. If we believe that the speci-
fied models are correct under the key Assumption MLR.4, then we can conclude that OLS 
is unbiased in these examples.
 Since we are approaching the point where we can use multiple regression in serious 
empirical work, it is useful to remember the meaning of unbiasedness. It is tempting, in 
examples such as the wage equation in (3.19), to say something like “9.2% is an unbiased 
estimate of the return to education.” As we know, an estimate cannot be unbiased: an esti-
mate is a fixed number, obtained from a particular sample, which usually is not equal to 
the population parameter. When we say that OLS is unbiased under Assumptions MLR.1 
through MLR.4, we mean that the procedure by which the OLS estimates are obtained 
is unbiased when we view the procedure as being applied across all possible random 
samples. We hope that we have obtained a sample that gives us an estimate close to the 
population value, but, unfortunately, this cannot be assured. What is assured is that we 
have no reason to believe our estimate is more likely to be too big or more likely to be too 
small.
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Including Irrelevant Variables in a Regression Model

One issue that we can dispense with fairly quickly is that of inclusion of an irrelevant 
variable or overspecifying the model in multiple regression analysis. This means that 
one (or more) of the independent variables is included in the model even though it has no 
partial effect on y in the population. (That is, its population coefficient is zero.)
 To illustrate the issue, suppose we specify the model as

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � u, 3.38

and this model satisfies Assumptions MLR.1 through MLR.4. However, x
3 
has no effect 

on y after x
1 
and x

2 
have been controlled for, which means that �

3
 � 0. The variable x

3 
may 

or may not be correlated with x
1 
or x

2
; all that matters is that, once x

1 
and x

2 
are controlled 

for, x
3 
has no effect on y. In terms of conditional expectations, E(y�x

1
, x

2
, x

3
) � E(y�x

1
, x

2
) � 

�
0 
� �

1
x

1
 � �

2
x

2
.

 Because we do not know that �
3
 � 0, we are inclined to estimate the equation includ-

ing x
3
:

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
 �  ̂  � 

3
x

3
. 3.39

We have included the irrelevant variable, x
3
, in our regression. What is the effect of includ-

ing x
3 
in (3.39) when its coefficient in the population model (3.38) is zero? In terms of the 

unbiasedness of  ̂  � 
1
 and  ̂  � 

2
, there is no effect. This conclusion requires no special derivation, 

as it follows immediately from Theorem 3.1. Remember, unbiasedness means E( ̂  � 
j
) � �

j
 

for any value of �
j
, including �

j
 � 0. Thus, we can conclude that E( ̂  � 

0
) � �

0
, E( ̂  � 

1
) � 

�
1
, E( ̂  � 

2
) � �

2
, and E( ̂  � 

3
) � 0 (for any values of �

0
, �

1
, and �

2
). Even though  ̂  � 

3
 itself will 

never be exactly zero, its average value across all random samples will be zero.
 The conclusion of the preceding example is much more general: including one or more 
irrelevant variables in a multiple regression model, or overspecifying the model, does not 
affect the unbiasedness of the OLS estimators. Does this mean it is harmless to include 
irrelevant variables? No. As we will see in Section 3.4, including irrelevant variables can 
have undesirable effects on the variances of the OLS estimators.

Omitted Variable Bias: The Simple Case

Now suppose that, rather than including an irrelevant variable, we omit a variable that 
actually belongs in the true (or population) model. This is often called the problem of 
excluding a relevant variable or underspecifying the model. We claimed in Chapter 2 
and earlier in this chapter that this problem generally causes the OLS estimators to be 
biased. It is time to show this explicitly and, just as importantly, to derive the direction 
and size of the bias.
 Deriving the bias caused by omitting an important variable is an example of mis-
specification analysis. We begin with the case where the true population model has two 
explanatory variables and an error term:

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � u, 3.40

and we assume that this model satisfies Assumptions MLR.1 through MLR.4.
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 Suppose that our primary interest is in �
1
, the partial effect of x

1 
on y. For example, y 

is hourly wage (or log of hourly wage), x
1 
is education, and x

2 
is a measure of innate abil-

ity. In order to get an unbiased estimator of �
1
, we should run a regression of y on x

1 
and 

x
2 
(which gives unbiased estimators of �

0
, �

1
, and �

2
). However, due to our ignorance or 

data unavailability, we estimate the model by excluding x
2
. In other words, we perform a 

simple regression of y on x
1 
only, obtaining the equation

  ̃  y  �  ̃  � 
0
 �  ̃  � 

1
x

1
. 3.41

We use the symbol “~” rather than “^” to emphasize that  ̃  � 
1
 comes from an underspecified 

model.
 When first learning about the omitted variable problem, it can be difficult to distin-
guish between the underlying true model, (3.40) in this case, and the model that we actu-
ally estimate, which is captured by the regression in (3.41). It may seem silly to omit the 
variable x

2 
if it belongs in the model, but often we have no choice. For example, suppose 

that wage is determined by

 wage � �
0
 � �

1
educ � �

2
abil � u. 3.42

Since ability is not observed, we instead estimate the model

 wage � �
0
 � �

1
educ � v,

where v � �
2
abil � u. The estimator of �

1 
from the simple regression of wage on educ is 

what we are calling  ̃  � 
1
.

 We derive the expected value of  ̃  � 
1
 conditional on the sample values of x

1 
and x

2
. 

Deriving this expectation is not difficult because  ̃  � 
1
 is just the OLS slope estimator 

from a simple regression, and we have already studied this estimator extensively in 
Chapter 2. The difference here is that we must analyze its properties when the simple 
regression model is misspecified due to an omitted variable.
 As it turns out, we have done almost all of the work to derive the bias in the sim-
ple regression estimator of  ̃  � 

1
. From equation (3.23) we have the algebraic relationship

 ̃  � 
1
 �  ̂  � 

1
 �  ̂  � 

2 
 ̃  δ 

1
, where  ̂  � 

1
 and  ̂  � 

2
 are the slope estimators (if we could have them) from 

the multiple regression

 y
i
 on x

i1
, x

i2
, i � 1, …, n 3.43

and  ̃  δ 
1
 is the slope from the simple regression

 x
i2
 on x

i1
, i � 1, …, n. 3.44

Because  ̃  δ 
1
 depends only on the independent variables in the sample, we treat it as 

fixed (nonrandom) when computing E( ̃  � 
1
). Further, since the model in (3.40) satisfies 

Assumptions MLR.1 to MLR.4, we know that  ̂  � 
1
 and  ̂  � 

2
 would be unbiased for �

1 
and �

2
, 

respectively. Therefore,

 E( ̃  � 
1
) � E( ̂  � 

1
 �  ̂  � 

2 
 ̃  δ 

1
) � E( ̂  � 

1
) � E( ̂  � 

2
)

 
 ̃  δ 

1

 3.45
 � �

1
 � �

2 
 ̃  δ 

1
,



 Chapter 3   Multiple Regression Analysis: Estimation 91

which implies the bias in  ̃  � 
1
 is

 Bias( ̃  � 
1
) � E( ̃  � 

1
) � �

1
 � �

2 
 ̃  δ 

1
. 3.46

Because the bias in this case arises from omitting the explanatory variable x
2
, the term on 

the right-hand side of equation (3.46) is often called the omitted variable bias.
 From equation (3.46), we see that there are two cases where  ̃  � 

1
 is unbiased. The first 

is pretty obvious: if �
2 
� 0—so that x

2 
does not appear in the true model (3.40)—then  ̃  � 

1
 

is unbiased. We already know this from the simple regression analysis in Chapter 2. The 
second case is more interesting. If 

 
 ̃  δ 

1
 � 0, then  ̃  � 

1
 is unbiased for �

1
, even if �

2 
	 0.

 Because 
 
 ̃  δ 

1
 is the sample covariance between x

1 
and x

2 
over the sample variance of x

1
, 

 
 ̃  δ 

1
 � 0 if, and only if, x

1 
and x

2 
are uncorrelated in the sample. Thus, we have the important 

conclusion that, if x
1 
and x

2 
are uncorrelated in the sample, then  ̃  � 

1
 is unbiased. This is not 

surprising: in Section 3.2, we showed that the simple regression estimator  ̃  � 
1
 and the mul-

tiple regression estimator  ̂  � 
1
 are the same when x

1 
and x

2 
are uncorrelated in the sample. 

[We can also show that  ̃  � 
1
 is unbiased without conditioning on the x

i2
 if E(x

2
�x

1
) � E(x

2
); 

then, for estimating �
1
, leaving x

2 
in the error term does not violate the zero conditional 

mean assumption for the error, once we adjust the intercept.]
 When x

1 
and x

2 
are correlated, 

 
 ̃  δ 

1
 has the same sign as the correlation between x

1 
and 

x
2
: 

 
 ̃  δ 

1
 � 0 if x

1 
and x

2 
are positively correlated and 

 
 ̃  δ 

1
 � 0 if x

1 
and x

2 
are negatively corre-

lated. The sign of the bias in  ̃  � 
1
 depends on the signs of both �

2 
and 

 
 ̃  δ 

1
 and is summarized 

in Table 3.2 for the four possible cases when there is bias. Table 3.2 warrants careful 
study. For example, the bias in  ̃  � 

1
 is positive if �

2 
� 0 (x

2
 has a positive effect on y) and x

1 

and x
2 
are positively correlated, the bias is negative if �

2 
� 0 and x

1 
and x

2 
are negatively 

 correlated, and so on.
 Table 3.2 summarizes the direction of the bias, but the size of the bias is also very 
important. A small bias of either sign need not be a cause for concern. For example, if the 
return to education in the population is 8.6% and the bias in the OLS estimator is 0.1% (a 
tenth of one percentage point), then we would not be very concerned. On the other hand, a 
bias on the order of three percentage points would be much more serious. The size of the 
bias is determined by the sizes of �

2 
and 

 
 ̃  δ 

1
.

 In practice, since �
2 
is an unknown population parameter, we cannot be certain whether 

�
2 
is positive or negative. Nevertheless, we usually have a pretty good idea about the direc-

tion of the partial effect of x
2 
on y. Further, even though the sign of the correlation between 

TABLE  3 . 2

Summary of Bias in  ̃  � 
1
 when x

2
 Is Omitted in Estimating Equation (3.40)

Corr(x1, x2) � 0 Corr(x1, x2) � 0

�
2
 � 0 Positive bias Negative bias

�
2
 � 0 Negative bias Positive bias
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x
1 
and x

2 
cannot be known if x

2 
is not observed, in many cases, we can make an educated 

guess about whether x
1 
and x

2 
are positively or negatively correlated.

 In the wage equation (3.42), by definition, more ability leads to higher productivity 
and therefore higher wages: �

2 
� 0. Also, there are reasons to believe that educ and abil 

are positively correlated: on average, individuals with more innate ability choose higher 
levels of education. Thus, the OLS estimates from the simple regression equation wage � 
�

0 
� �

1
educ � v are on average too large. This does not mean that the estimate obtained 

from our sample is too big. We can only say that if we collect many random samples and 
obtain the simple regression estimates each time, then the average of these estimates will 
be greater than �

1
.

E x a m p l e  3 . 6

[Hourly Wage Equation]

Suppose the model log(wage) � �
0
 � �

1
educ � �

2
abil � u satisfies Assumptions MLR.1 through 

MLR.4. The data set in WAGE1.RAW does not contain data on ability, so we estimate �
1
 from the 

simple regression

 log(wage) � .584 � .083 educ
 3.47

 n � 526, R2 � .186.

This is the result from only a single sample, so we cannot say that .083 is greater than �
1
; the 

true return to education could be lower or higher than 8.3% (and we will never know for sure). 
Nevertheless, we know that the average of the estimates across all random samples would be too 
large.

 As a second example, suppose that, at the elementary school level, the average score 
for students on a standardized exam is determined by

 avgscore � �
0
 � �

1
expend � �

2  
povrate � u, 3.48

where expend is expenditure per student and povrate is the poverty rate of the children 
in the school. Using school district data, we only have observations on the percentage of 
students with a passing grade and per student expenditures; we do not have information on 
poverty rates. Thus, we estimate �

1 
from the simple regression of avgscore on expend.

 We can again obtain the likely bias in  ̃  � 
1
. First, �

2 
is probably negative: there is ample 

evidence that children living in poverty score lower, on average, on standardized tests. 
Second, the average expenditure per student is probably negatively correlated with the 
poverty rate: The higher the poverty rate, the lower the average per student spending, so 
that Corr(x

1
, x

2
) � 0. From Table 3.2,  ̃  � 

1
 will have a positive bias. This observation has 

important implications. It could be that the true effect of spending is zero; that is, �
1 
� 0. 

However, the simple regression estimate of �
1 
will usually be greater than zero, and this 

could lead us to conclude that expenditures are important when they are not.
 When reading and performing empirical work in economics, it is important to master 
the terminology associated with biased estimators. In the context of omitting a vari-
able from model (3.40), if E( ̃  � 

1
) � �

1
, then we say that  ̃  � 

1
 has an upward bias. When 
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E( ̃  � 
1
) � �

1
,  ̃  � 

1
 has a downward bias. These definitions are the same whether �

1 
is positive 

or negative. The phrase biased toward zero refers to cases where E( ̃  � 
1
) is closer to zero 

than �
1
. Therefore, if �

1 
is positive, then  ̃  � 

1
 is biased toward zero if it has a downward bias. 

On the other hand, if �
1 
� 0, then  ̃  � 

1
 is biased toward zero if it has an upward bias.

Omitted Variable Bias: More General Cases

Deriving the sign of omitted variable bias when there are multiple regressors in the 
estimated model is more difficult. We must remember that correlation between a single 
explanatory variable and the error generally results in all OLS estimators being biased. For 
example, suppose the population model

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � u 3.49

satisfies Assumptions MLR.1 through MLR.4. But we omit x
3 
and estimate the model as

  ̃  y  �  ̃  � 
0
 �  ̃  � 

1
x

1
 �  ̃  � 

2
x

2
. 3.50

Now, suppose that x
2 

and x
3 

are uncorrelated, but that x
1 

is correlated with x
3
. In other 

words, x
1 
is correlated with the omitted variable, but x

2 
is not. It is tempting to think that, 

while  ̃  � 
1
 is probably biased based on the derivation in the previous subsection,  ̃  � 

2
 is unbi-

ased because x
2 
is uncorrelated with x

3
. Unfortunately, this is not generally the case: both  

˜ � 
1
 and  ̃  � 

2
 will normally be biased. The only exception to this is when x

1 
and x

2 
are also 

uncorrelated.
 Even in the fairly simple model above, it can be difficult to obtain the direction of bias 
in  ̃  � 

1
 and  ̃  � 

2
. This is because x

1
, x

2
, and x

3 
can all be pairwise correlated. Nevertheless, an 

approximation is often practically useful. If we assume that x
1 
and x

2 
are uncorrelated, then 

we can study the bias in  ̃  � 
1
 as if x

2 
were absent from both the population and the estimated 

models. In fact, when x
1 
and x

2 
are uncorrelated, it can be shown that

 E( ̃  � 
1
) � �

1
 � �

3
   

 ∑ 
i�1

   
n

    (x
i1
 �  

_
 x 
1
)x

i3

  _____________________  

  ∑ 
i�1

   
n

    (x
i1
 �  

_
 x 
1
)2

  .

This is just like equation (3.45), but �
3
 replaces �

2
, and x

3 
replaces x

2 
in regression (3.44). 

Therefore, the bias in  ̃  � 
1
 is obtained by replacing �

2 
with �

3
 and x

2 
with x

3 
in Table 3.2. If 

�
3
 � 0 and Corr(x

1
, x

3
) � 0, the bias in  ̃  � 

1
 is positive, and so on.

 As an example, suppose we add exper to the wage model:

 wage � �
0
 � �

1
educ � �

2
exper � �

3
abil � u.

If abil is omitted from the model, the estimators of both �
1 
and �

2 
are biased, even if we 

assume exper is uncorrelated with abil. We are mostly interested in the return to educa-
tion, so it would be nice if we could conclude that  ̃  � 

1
 has an upward or a downward bias 

due to omitted ability. This conclusion is not possible without further assumptions. As an 
approximation, let us suppose that, in addition to exper and abil being uncorrelated, educ 
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and exper are also uncorrelated. (In reality, they are somewhat negatively correlated.) 
Since �

3
 � 0 and educ and abil are positively correlated,  ̃  � 

1
 would have an upward bias, 

just as if exper were not in the model.
 The reasoning used in the previous example is often followed as a rough guide for 
obtaining the likely bias in estimators in more complicated models. Usually, the focus 
is on the relationship between a particular explanatory variable, say, x

1
, and the key 

omitted factor. Strictly speaking, ignoring all other explanatory variables is a valid 
 practice only when each one is uncorrelated with x

1
, but it is still a useful guide. 

Appendix 3A contains a more careful analysis of omitted variable bias with multiple 
explanatory variables.

3.4 The Variance of the OLS Estimators
We now obtain the variance of the OLS estimators so that, in addition to knowing the cen-
tral tendencies of the  ̂  � 

j
, we also have a measure of the spread in its sampling  distribution. 

Before finding the variances, we add a homoskedasticity assumption, as in Chapter 2. We 
do this for two reasons. First, the formulas are simplified by imposing the constant error 
variance assumption. Second, in Section 3.5, we will see that OLS has an important effi-
ciency property if we add the homoskedasticity assumption.
 In the multiple regression framework, homoskedasticity is stated as follows:

Assumption MLR.5  (Homoskedasticity)

The error u has the same variance given any values of the explanatory variables. In other 
words, Var(u�x1, …, xk) � �2.

Assumption MLR.5 means that the variance in the error term, u, conditional on the 
explanatory variables, is the same for all combinations of outcomes of the explanatory 
variables. If this assumption fails, then the model exhibits heteroskedasticity, just as in 
the two-variable case.
 In the equation

 wage � �
0
 � �

1
educ � �

2
exper � �

3
tenure � u,

homoskedasticity requires that the variance of the unobserved error u does not depend on 
the levels of education, experience, or tenure. That is,

 Var(u�educ, exper, tenure) � �2.

If this variance changes with any of the three explanatory variables, then  heteroskedasticity 
is present.
 Assumptions MLR.1 through MLR.5 are collectively known as the Gauss-Markov 
assumptions (for cross-sectional regression). So far, our statements of the assumptions are 
suitable only when applied to cross-sectional analysis with random sampling. As we will 
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see, the Gauss-Markov assumptions for time series analysis, and for other situations such 
as panel data analysis, are more difficult to state, although there are many similarities.
 In the discussion that follows, we will use the symbol x to denote the set of all inde-
pendent variables, (x

1
, …, x

k
). Thus, in the wage regression with educ, exper, and tenure as 

independent variables, x � (educ, exper, tenure). Then we can write Assumptions MLR.1 
and MLR.4 as

 E(y�x) � �
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
,

and Assumption MLR.5 is the same as Var(y�x) � �2. Stating the assumptions in this 
way clearly illustrates how Assumption MLR.5 differs greatly from Assumption MLR.4. 
Assumption MLR.4 says that the expected value of y, given x, is linear in the parameters, 
but it certainly depends on x

1
, x

2
, …, x

k
. Assumption MLR.5 says that the variance of y, 

given x, does not depend on the values of the independent variables.
 We can now obtain the variances of the  ̂  � 

j
, where we again condition on the sample 

values of the independent variables. The proof is in the appendix to this chapter.

Theorem 3.2   (Sampling Variances of the OLS Slope Estimators)

Under Assumptions MLR.1 through MLR.5, conditional on the sample values of the independent 
variables,

 Var( ̂  � 
j
) �   �2

 __________ 
SST

j
(1 � R 2   j  )

  , 3.51

for j � 1, 2, …, k, where SSTj �  ∑ i�1  
n
   (xij �  

_
 x j)

2 is the total sample variation in xj, and R 2   j   is the 
R-squared from regressing xj on all other independent variables (and including an intercept).

 Before we study equation (3.51) in more detail, it is important to know that all of the 
Gauss-Markov assumptions are used in obtaining this formula. Whereas we did not need 
the homoskedasticity assumption to conclude that OLS is unbiased, we do need it to vali-
date equation (3.51).
 The size of Var( ̂  � 

j
) is practically important. A larger variance means a less precise 

 estimator, and this translates into larger confidence intervals and less accurate hypotheses 
tests (as we will see in Chapter 4). In the next subsection, we discuss the elements compris-
ing (3.51).

The Components of the OLS Variances: Multicollinearity

Equation (3.51) shows that the variance of  ̂  � 
j
 depends on three factors: �2, SST

j
, and R 2   j  . 

Remember that the index j simply denotes any one of the independent variables (such as 
education or poverty rate). We now consider each of the factors affecting Var( ̂  � 

j
) in turn.

The Error Variance, �2.  From equation (3.51), a larger �2 means larger variances 
for the OLS estimators. This is not at all surprising: more “noise” in the equation (a 
larger �2) makes it more difficult to estimate the partial effect of any of the independent 
variables on y, and this is reflected in higher variances for the OLS slope estimators. 
Because �2 is a feature of the population, it has nothing to do with the sample size. It is 
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the one component of (3.51) that is unknown. We will see later how to obtain an unbiased 
estimator of �2.
 For a given dependent variable y, there is really only one way to reduce the error vari-
ance, and that is to add more explanatory variables to the equation (take some factors out 
of the error term). Unfortunately, it is not always possible to find additional legitimate 
factors that affect y.

The Total Sample Variation in xj , SSTj  . From equation (3.51), we see that the larger 
the total variation in x

j
 is, the smaller is Var( ̂  � 

j
). Thus, everything else being equal, for 

estimating �
j
, we prefer to have as much sample variation in x

j
 as possible. We already 

discovered this in the simple regression case in Chapter 2. Although it is rarely possible 
for us to choose the sample values of the independent variables, there is a way to increase 
the sample variation in each of the independent variables: increase the sample size. In fact, 
when sampling randomly from a population, SST

j
 increases without bound as the sam-

ple size gets larger and larger. This is the component of the variance that systematically 
depends on the sample size.
 When SST

j
 is small, Var( ̂  � 

j
) can get very large, but a small SST

j
 is not a violation 

of Assumption MLR.3. Technically, as SST
j
 goes to zero, Var( ̂  � 

j
) approaches infinity. 

The extreme case of no sample variation in x
j
, SST

j
 � 0, is not allowed by Assumption 

MLR.3.

The Linear Relationships among the Independent Variables, R 2   j  . The term R 2   j   in 
equation (3.51) is the most difficult of the three components to understand. This term does 
not appear in simple regression analysis because there is only one independent variable in 
such cases. It is important to see that this R-squared is distinct from the R-squared in the 
regression of y on x

1
, x

2
, …, x

k
: R 2   j   is obtained from a regression involving only the inde-

pendent variables in the original model, where x
j
 plays the role of a dependent variable.

 Consider first the k � 2 case: y � �
0 

� �
1
x

1
 � �

2
x

2
 � u. Then, Var( ̂  � 

1
) � �2/

[SST
1
(1 � R 2   1 )], where R 2   1  is the R-squared from the simple regression of x

1 
on x

2 
(and an 

intercept, as always). Because the R-squared measures goodness-of-fit, a value of R 2   1  close 
to one indicates that x

2 
explains much of the variation in x

1 
in the sample. This means that 

x
1 
and x

2 
are highly correlated.

 As R 2   1  increases to one, Var( ̂  � 
1
) gets larger and larger. Thus, a high degree of linear 

relationship between x
1 
and x

2 
can lead to large variances for the OLS slope estimators. (A 

similar argument applies to  ̂  � 
2
.) See Figure 3.1 for the relationship between Var( ̂  � 

1
) and 

the R-squared from the regression of x
1 
on x

2
.

 In the general case, R 2   j   is the proportion of the total variation in x
j
 that can be explained 

by the other independent variables appearing in the equation. For a given �2 and SST
j
, the 

smallest Var( ̂  � 
j
) is obtained when R 2   j   � 0, which happens if, and only if, x

j
 has zero sample 

correlation with every other independent variable. This is the best case for estimating �
j
, 

but it is rarely encountered.
 The other extreme case, R 2   j   � 1, is ruled out by Assumption MLR.3, because 
R 2   j   � 1 means that, in the sample, x

j
 is a perfect linear combination of some of the other 

independent variables in the regression. A more relevant case is when R 2   j   is “close” to 
one. From equation (3.51) and Figure 3.1, we see that this can cause Var( ̂  � 

j
) to be large: 

Var( ̂  � 
j
) →  as R 2   j   → 1. High (but not perfect) correlation between two or more independent 

variables is called multicollinearity.
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 Before we discuss the multicollinearity issue further, it is important to be very clear on 
one thing: a case where R 2   j   is close to one is not a violation of Assumption MLR.3.
 Since multicollinearity violates none of our assumptions, the “problem” of multicol-
linearity is not really well-defined. When we say that multicollinearity arises for estimat-
ing �

j
 when R 2   j   is “close” to one, we put “close” in quotation marks because there is no 

absolute number that we can cite to conclude that multicollinearity is a problem. For 
example, R 2   j   � .9 means that 90% of the sample variation in x

j
 can be explained by the 

other independent variables in the regression model. Unquestionably, this means that 
x

j
 has a strong linear relationship to the other independent variables. But whether this 

translates into a Var( ̂  � 
j
) that is too large to be useful depends on the sizes of �2 and SST

j
. 

As we will see in Chapter 4, for statistical inference, what ultimately matters is how 
big  ̂  � 

j
 is in relation to its standard deviation.

 Just as a large value of R 2   j   can cause a large Var( ̂  � 
j
), so can a small value of SST

j
. 

Therefore, a small sample size can lead to large sampling variances, too. Worrying about 
high degrees of correlation among the independent variables in the sample is really no dif-
ferent from worrying about a small sample size: both work to increase Var( ̂  � 

j
). The famous 

University of Wisconsin econometrician Arthur Goldberger, reacting to econometricians’ 
obsession with multicollinearity, has (tongue in cheek) coined the term  micronumerosity, 

Var(b1)ˆ

0
1R1

2

F I GURE  3 . 1

Var( ̂  � 
1
) as a function of R 2   1 .
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which he defines as the “problem of small sample size.” [For an engaging discussion of 
multicollinearity and micronumerosity, see Goldberger (1991).]
 Although the problem of multicollinearity cannot be clearly defined, one thing is clear: 
everything else being equal, for estimating �

j
, it is better to have less correlation between x

j
 

and the other independent variables. This observation often leads to a discussion of how to 
“solve” the multicollinearity problem. In the social sciences, where we are usually passive 
collectors of data, there is no good way to reduce variances of unbiased estimators other 
than to collect more data. For a given data set, we can try dropping other independent vari-
ables from the model in an effort to reduce multicollinearity. Unfortunately, dropping a 
variable that belongs in the population model can lead to bias, as we saw in Section 3.3.
 Perhaps an example at this point will help clarify some of the issues raised concern-
ing multicollinearity. Suppose we are interested in estimating the effect of various school 
expenditure categories on student performance. It is likely that expenditures on teacher 
salaries, instructional materials, athletics, and so on are highly correlated: Wealthier 
schools tend to spend more on everything, and poorer schools spend less on everything. 
Not surprisingly, it can be difficult to estimate the effect of any particular expenditure 
category on student performance when there is little variation in one category that cannot 
largely be explained by variations in the other expenditure categories (this leads to high 
R 2   j   for each of the expenditure variables). Such multicollinearity problems can be mitigated 
by collecting more data, but in a sense we have imposed the problem on ourselves: we are 
asking questions that may be too subtle for the available data to answer with any precision. 
We can probably do much better by changing the scope of the analysis and lumping all 
expenditure categories together, since we would no longer be trying to estimate the partial 
effect of each separate category.
 Another important point is that a high degree of correlation between certain independent
variables can be irrelevant as to how well we can estimate other parameters in the model. 
For example, consider a model with three independent variables:

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � u,

where x
2 

and x
3 

are highly correlated. Then Var( ̂  � 
2
) and Var( ̂  � 

3
) may be large. But the 

amount of correlation between x
2 

and x
3 

has no direct effect on Var( ̂  � 
1
). In fact, if x

1 
is 

uncorrelated with x
2 
and x

3
, then R 2   1  � 0 and Var( ̂  � 

1
) � �2/SST

1
, regardless of how much 

correlation there is between x
2 
and x

3
. If 

�
1 
is the parameter of interest, we do not 

really care about the amount of correla-
tion between x

2 
and x

3
.

 The previous observation is impor-
tant because economists often include 
many control variables in order to iso-
late the causal effect of a particular 
variable. For example, in looking at the 
relationship between loan approval rates 
and percentage of minorities in a neigh-
borhood, we might include variables like 

average income, average housing value, measures of creditworthiness, and so on, because 
these factors need to be accounted for in order to draw causal conclusions about discrimi-
nation. Income, housing prices, and creditworthiness are generally highly correlated with 

Q u e s t i o n  3 . 4
Suppose you postulate a model explaining final exam score in 
terms of class attendance. Thus, the dependent variable is final 
exam score, and the key explanatory variable is number of classes 
attended. To control for student abilities and efforts outside the 
classroom, you include among the explanatory variables cumula-
tive GPA, SAT score, and measures of high school performance. 
Someone says, “You cannot hope to learn anything from this 
exercise because cumulative GPA, SAT score, and high school 
performance are likely to be highly collinear.” What should be 
your response?
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each other. But high correlations among these controls do not make it more difficult to 
determine the effects of discrimination.
 Some researchers find it useful to compute statistics intended to determine the severity 
of multicollinearity in a given application. Unfortunately, it is easy to misuse such statistics 
because, as we have discussed, we cannot specify how much correlation among explana-
tory variables is “too much.” Some multicollinearity “diagnostics” are omnibus statistics 
in the sense that they detect a strong linear relationship among any subset of explanatory 
variables. For reasons that we just saw, such statistics are of questionable value because 
they might reveal a “problem” simply because two control variables, whose coefficients 
we do not care about, are highly correlated. [Probably the most common omnibus mul-
ticollinearity statistic is the so-called condition number, which is defined in terms of the 
full data matrix and is beyond the scope of this text. See, for example, Belsley, Kuh, and 
Welsh (1980).] 
 Somewhat more useful, but still prone to misuse, are statistics for individual coef-
ficients. The most common of these is the variance inflation factor (VIF), which 
is obtained directly from equation (3.51). The VIF for slope coefficient j is simply 
VIF

j
 � 1/(1 � R 2   j  ), precisely the term in Var( ̂  � 

j
) that is determined by correlation between 

x
j
 and the other explanatory variables. VIF

j
 is the factor by which Var( ̂  � 

j
) is higher because 

x
j
 is not uncorrelated with all other explanatory variables. Because VIF

j
 is a  function of 

R 2   j  —indeed, Figure 3.1 is essentially a graph of VIF
1
—our previous discussion can be 

cast entirely in terms of the VIF. For example, if we had the choice, we would like VIF
j
 

to be smaller (other things equal). But we rarely have the choice. If we think certain 
explanatory variables need to be included in a regression to infer causality of x

j
, then we 

are hesitant to drop them, and whether we think VIF
j
 is “too high” cannot really affect 

that decision. If, say, our main interest is in the causal effect of x
1
 on y, then we should 

ignore entirely the VIFs of other coefficients. Finally, setting a cutoff value for VIF above 
which we conclude multicollinearity is a “problem” is arbitrary and not especially help-
ful. Sometimes the value 10 is chosen: If VIF

j
 is above 10 (equivalently, R 2   j   is above .9), 

then we conclude that multicollinearity is a “problem” for estimating �
j
. But a VIF

j
 above 

10 does not mean that the standard deviation of  ̂  � 
j
 is too large to be useful because the 

standard deviation also depends on � and SST
j
, and the latter can be increased by increas-

ing the sample size. Therefore, just as with looking at the size of R 2   j   directly, looking at 
the size of VIF

j
 is of limited use, although one might want to do so out of curiosity. 

Variances in Misspecifi ed Models

The choice of whether to include a particular variable in a regression model can be made 
by analyzing the tradeoff between bias and variance. In Section 3.3, we derived the bias 
induced by leaving out a relevant variable when the true model contains two explanatory 
variables. We continue the analysis of this model by comparing the variances of the OLS 
estimators.
 Write the true population model, which satisfies the Gauss-Markov assumptions, as

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � u.

We consider two estimators of �
1
. The estimator  ̂  � 

1
 comes from the multiple regression

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
. 3.52
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In other words, we include x
2
, along with x

1
, in the regression model. The estimator  ̃  � 

1
 is 

obtained by omitting x
2 
from the model and running a simple regression of y on x

1
:

  ̃  y  �  ̃  � 
0
 �  ̃  � 

1
x

1
. 3.53

When �
2 

	 0, equation (3.53) excludes a relevant variable from the model and, as we 
saw in Section 3.3, this induces a bias in  ̃  � 

1
 unless x

1 
and x

2 
are uncorrelated. On the other 

hand,  ̂  � 
1
 is unbiased for �

1 
for any value of �

2
, including �

2 
� 0. It follows that, if bias 

is used as the only criterion,  ̂  � 
1
 is preferred to  ̃  � 

1
.

 The conclusion that  ̂  � 
1
 is always preferred to  ̃  � 

1
 does not carry over when we bring 

variance into the picture. Conditioning on the values of x
1 
and x

2 
in the sample, we have, 

from (3.51),

 Var( ̂  � 
1
) � �2/[SST

1
(1 � R 2   1 )], 3.54

where SST
1
 is the total variation in x

1
, and R 2   1  is the R-squared from the regression of x

1 

on x
2
. Further, a simple modification of the proof in Chapter 2 for two-variable regression 

shows that

 Var( ̃  � 
1
) � �2/SST

1
. 3.55

Comparing (3.55) to (3.54) shows that Var( ̃  � 
1
) is always smaller than Var( ̂  � 

1
), unless 

x
1 
and x

2 
are uncorrelated in the sample, in which case the two estimators  ̃  � 

1
 and  ̂  � 

1
 are 

the same. Assuming that x
1 

and x
2 

are not uncorrelated, we can draw the following 
conclusions:

 1. When �
2 
	 0,  ̃  � 

1
 is biased,  ̂  � 

1
 is unbiased, and Var( ̃  � 

1
) � Var( ̂  � 

1
).

 2. When �
2 
� 0,  ̃  � 

1
 and  ̂  � 

1
 are both unbiased, and Var( ̃  � 

1
) � Var( ̂  � 

1
).

From the second conclusion, it is clear that  ̃  � 
1
 is preferred if �

2 
� 0. Intuitively, if x

2 
does 

not have a partial effect on y, then including it in the model can only exacerbate the multi-
collinearity problem, which leads to a less efficient estimator of �

1
. A higher variance for 

the estimator of �
1 
is the cost of including an irrelevant variable in a model.

 The case where �
2 
	 0 is more difficult. Leaving x

2 
out of the model results in a biased 

estimator of �
1
. Traditionally, econometricians have suggested comparing the likely size 

of the bias due to omitting x
2 
with the reduction in the variance—summarized in the size 

of R 2   1 —to decide whether x
2 

should be included. However, when �
2 

	 0, there are two 
favorable reasons for including x

2 
in the model. The most important of these is that any 

bias in  ̃  � 
1
 does not shrink as the sample size grows; in fact, the bias does not necessarily 

follow any pattern. Therefore, we can usefully think of the bias as being roughly the same 
for any sample size. On the other hand, Var( ̃  � 

1
) and Var( ̂  � 

1
) both shrink to zero as n gets 

large, which means that the multicollinearity induced by adding x
2 
becomes less important 

as the sample size grows. In large samples, we would prefer  ̂  � 
1
.

 The other reason for favoring  ̂  � 
1
 is more subtle. The variance formula in (3.55) is 

conditional on the values of x
i1
 and x

i2
 in the sample, which provides the best scenario for  

˜ � 
1
. When �

2 
	 0, the variance of  ̃  � 

1
 conditional only on x

1 
is larger than that presented 

in (3.55). Intuitively, when �
2 
	 0 and x

2 
is excluded from the model, the error variance 
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increases because the error effectively contains part of x
2
. But (3.55) ignores the error vari-

ance increase because it treats both regressors as nonrandom. A full discussion of which 
independent variables to condition on would lead us too far astray. It is sufficient to say 
that (3.55) is too generous when it comes to measuring the precision in  ̃  � 

1
.

Estimating �2: Standard Errors 

of the OLS Estimators

We now show how to choose an unbiased estimator of �2, which then allows us to obtain 
unbiased estimators of Var( ̂  � 

j
).

 Because �2 � E(u2), an unbiased “estimator” of �2 is the sample average of the squared 

errors: n�1 ∑ 
i�1

  
n
    u 2   i  . Unfortunately, this is not a true estimator because we do not observe the 

u
i
. Nevertheless, recall that the errors can be written as u

i
 � y

i
 � �

0 
� �

1
x

i1
 � �

2
x

i2
 � … � 

�
k 
x

ik
, and so the reason we do not observe the u

i
 is that we do not know the �

j
. When we 

replace each �
j
 with its OLS estimator, we get the OLS residuals:

  ̂  u 
i
 � y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 �  ̂  � 

2
x

i2
 � … �  ̂  � 

k 
x

ik
.

It seems natural to estimate �2 by replacing u
i
 with the  ̂  u 

i
. In the simple regression case, 

we saw that this leads to a biased estimator. The unbiased estimator of �2 in the general 
multiple regression case is

  ̂  � 2 �  �  ∑ 
i�1

   
n

     ̂  u  2   i   �  � (n � k � 1) � SSR � (n � k � 1). 3.56

We already encountered this estimator in the k � 1 case in simple regression.
 The term n � k � 1 in (3.56) is the degrees of freedom (df ) for the general OLS 
problem with n observations and k independent variables. Since there are k � 1 parameters 
in a regression model with k independent variables and an intercept, we can write

 df � n � (k � 1)
 3.57

 � (number of observations) � (number of estimated parameters).

This is the easiest way to compute the degrees of freedom in a particular application: 
count the number of parameters, including the intercept, and subtract this amount from the 
number of observations. (In the rare case that an intercept is not estimated, the number of 
parameters decreases by one.)
 Technically, the division by n � k � 1 in (3.56) comes from the fact that the expected 
value of the sum of squared residuals is E(SSR) � (n � k � 1)�2. Intuitively, we can  figure 
out why the degrees of freedom adjustment is necessary by returning to the first order 

conditions for the OLS estimators. These can be written  ∑ 
i�1

  
n
     ̂  u 

i
 � 0 and  ∑ 

i�1
  

n
    x

ij 
 ̂  u 

i 
� 0,

where j � 1, 2, …, k. Thus, in obtaining the OLS estimates, k � 1 restrictions are imposed 
on the OLS residuals. This means that, given n � (k � 1) of the residuals, the remaining 
k � 1 residuals are known: there are only n � (k � 1) degrees of freedom in the residu-
als. (This can be contrasted with the errors u

i
, which have n degrees of freedom in the 

sample.)
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 For reference, we summarize this discussion with Theorem 3.3. We proved this theo-
rem for the case of simple regression analysis in Chapter 2 (see Theorem 2.3). (A general 
proof that requires matrix algebra is provided in Appendix E.)

Theorem 3.3  (Unbiased Estimation of �2)

Under the Gauss-Markov assumptions MLR.1 through MLR.5, E( ̂  � 2) � � 2.

The positive square root of  ̂  � 2, denoted  ̂  � , is called the standard error of the regression 
(SER). The SER is an estimator of the standard deviation of the error term. This estimate 
is usually reported by regression packages, although it is called different things by differ-
ent packages. (In addition to SER,  ̂  �  is also called the standard error of the estimate and 
the root mean squared error.)
 Note that  ̂  �  can either decrease or increase when another independent variable is added 
to a regression (for a given sample). This is because, although SSR must fall when another 
explanatory variable is added, the degrees of freedom also falls by one. Because SSR is 
in the numerator and df is in the denominator, we cannot tell beforehand which effect will 
dominate.
 For constructing confidence intervals and conducting tests in Chapter 4, we will need 
to estimate the standard deviation of  ̂  � 

j
, which is just the square root of the variance:

 sd( ̂  � 
j
) � �/[SST

j
(1 � R 2   j  )]1/2.

Since � is unknown, we replace it with its estimator,  ̂  � . This gives us the standard 
error of  ̂  � 

j
:

 se( ̂  � 
j
) �  ̂  � /[SST

j
(1 � R 2   j  )]1/2. 3.58

Just as the OLS estimates can be obtained for any given sample, so can the standard errors. 
Since se(  ̂  � 

j
) depends on  ̂  � , the standard error has a sampling distribution, which will play 

a role in Chapter 4.
 We should emphasize one thing about standard errors. Because (3.58) is obtained 
directly from the variance formula in (3.51), and because (3.51) relies on the homoskedas-
ticity Assumption MLR.5, it follows that the standard error formula in (3.58) is not a valid 
estimator of sd(  ̂  � 

j
) if the errors exhibit heteroskedasticity. Thus, while the presence of 

heteroskedasticity does not cause bias in the  ̂  � 
j
, it does lead to bias in the usual formula for 

Var(  ̂  � 
j
), which then invalidates the standard errors. This is important because any regres-

sion package computes (3.58) as the default standard error for each coefficient (with a 
somewhat different representation for the intercept). If we suspect heteroskedasticity, then 
the “usual” OLS standard errors are invalid, and some corrective action should be taken. 
We will see in Chapter 8 what methods are available for dealing with heteroskedasticity.

3.5 Effi ciency of OLS: 
The Gauss-Markov Theorem
In this section, we state and discuss the important Gauss-Markov Theorem, which justi-
fies the use of the OLS method rather than using a variety of competing estimators. We 
know one justification for OLS already: under Assumptions MLR.1 through MLR.4, OLS 
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is unbiased. However, there are many unbiased estimators of the �
j
 under these assump-

tions (for example, see Problem 3.13). Might there be other unbiased estimators with vari-
ances smaller than the OLS estimators?
 If we limit the class of competing estimators appropriately, then we can show that 
OLS is best within this class. Specifically, we will argue that, under Assumptions MLR.1 
through MLR.5, the OLS estimator  ̂  � 

j
 for �

j
 is the best linear unbiased estimator 

(BLUE). To state the theorem, we need to understand each component of the acronym 
“BLUE.” First, we know what an estimator is: it is a rule that can be applied to any sample 
of data to produce an estimate. We also know what an unbiased estimator is: in the current 
context, an estimator, say,  ̃  � 

j
, of �

j
 is an unbiased estimator of �

j
 if E( ̃  � 

j
) � �

j
 for any �

0
, 

�
1
, …, �

k
.

 What about the meaning of the term “linear”? In the current context, an estimator 
 ̃  � 

j
 of �

j
 is linear if, and only if, it can be expressed as a linear function of the data on the 

dependent variable:

  ̃  � 
j
 �  ∑ 

i�1

   
n

    w
ij
y

i
, 3.59

where each w
ij
 can be a function of the sample values of all the independent variables. The 

OLS estimators are linear, as can be seen from equation (3.22).
 Finally, how do we define “best”? For the current theorem, best is defined as smallest 
variance. Given two unbiased estimators, it is logical to prefer the one with the smallest vari-
ance (see Appendix C).
 Now, let  ̂  � 

0
,  ̂  � 

1
, …,  ̂  � 

k
 denote the OLS estimators in model (3.31) under Assumptions 

MLR.1 through MLR.5. The Gauss-Markov Theorem says that, for any estimator  ̃  � 
j 
that 

is linear and unbiased, Var( ̂  � 
j
) 
 Var( ̃  � 

j
), and the inequality is usually strict. In other 

words, in the class of linear unbiased estimators, OLS has the smallest variance (under the 
five Gauss-Markov assumptions). Actually, the theorem says more than this. If we want 
to estimate any linear function of the �

j
, then the corresponding linear combination of the 

OLS estimators achieves the smallest variance among all linear unbiased estimators. We 
conclude with a theorem, which is proven in Appendix 3A.

Theorem 3.4  (Gauss-Markov Theorem)

Under Assumptions MLR.1 through MLR.5,  ̂  � 0,  ̂  � 1, …,  ̂  � k are the best linear unbiased estima-
tors (BLUEs) of �0, �1, …, �k, respectively.

It is because of this theorem that Assumptions MLR.1 through MLR.5 are known as the 
Gauss-Markov assumptions (for cross-sectional analysis).
 The importance of the Gauss-Markov Theorem is that, when the standard set of 
assumptions holds, we need not look for alternative unbiased estimators of the form 
in (3.59): none will be better than OLS. Equivalently, if we are presented with an estimator 
that is both linear and unbiased, then we know that the variance of this estimator is at least 
as large as the OLS variance; no additional calculation is needed to show this.
 For our purposes, Theorem 3.4 justifies the use of OLS to estimate multiple regres-
sion models. If any of the Gauss-Markov assumptions fail, then this theorem no longer 
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holds. We already know that failure of the zero conditional mean assumption (Assumption 
MLR.4) causes OLS to be biased, so Theorem 3.4 also fails. We also know that heteroske-
dasticity (failure of Assumption MLR.5) does not cause OLS to be biased. However, OLS 
no longer has the smallest variance among linear unbiased estimators in the presence of 
heteroskedasticity. In Chapter 8, we analyze an estimator that improves upon OLS when 
we know the brand of heteroskedasticity.

S U M M A R Y

1.  The multiple regression model allows us to effectively hold other factors fixed while 
examining the effects of a particular independent variable on the dependent variable. It 
explicitly allows the independent variables to be correlated.

2.  Although the model is linear in its parameters, it can be used to model nonlinear relation-
ships by appropriately choosing the dependent and independent variables.

3.  The method of ordinary least squares is easily applied to estimate the multiple regression 
model. Each slope estimate measures the partial effect of the corresponding independent 
variable on the dependent variable, holding all other independent variables fixed.

4.  R2 is the proportion of the sample variation in the dependent variable explained by the 
independent variables, and it serves as a goodness-of-fit measure. It is important not to 
put too much weight on the value of R2 when evaluating econometric models.

5.  Under the first four Gauss-Markov assumptions (MLR.1 through MLR.4), the OLS esti-
mators are unbiased. This implies that including an irrelevant variable in a model has no 
effect on the unbiasedness of the intercept and other slope estimators. On the other hand, 
omitting a relevant variable causes OLS to be biased. In many circumstances, the direc-
tion of the bias can be determined.

6.  Under the five Gauss-Markov assumptions, the variance of an OLS slope estimator 
is given by Var(  ̂  � 

j
) � �2/[SST

j
(1 � R 2   j  )]. As the error variance �2 increases, so does 

Var(  ̂  � 
j
), while Var(  ̂  � 

j
) decreases as the sample variation in x

j
, SST

j
, increases. The term 

R 2   j   measures the amount of collinearity between x
j
 and the other explanatory variables. As 

R 2   j   approaches one, Var(  ̂  � 
j
) is unbounded.

7.  Adding an irrelevant variable to an equation generally increases the variances of the 
remaining OLS estimators because of multicollinearity.

8.  Under the Gauss-Markov assumptions (MLR.1 through MLR.5), the OLS estimators are 
the best linear unbiased estimators (BLUEs).

The Gauss-Markov Assumptions

The following is a summary of the five Gauss-Markov assumptions that we used in this chap-
ter. Remember, the first four were used to establish unbiasedness of OLS, whereas the fifth was 
added to derive the usual variance formulas and to conclude that OLS is best linear unbiased.

Assumption MLR.1 (Linear in Parameters)

The model in the population can be written as

y � �
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
 � u,

where �
0
, �

1
, …, �

k
 are the unknown parameters (constants) of interest and u is an unob-

servable random error or disturbance term.
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Assumption MLR.2 (Random Sampling)

We have a random sample of n observations, {(x
i1
, x

i2
, …, x

ik
, y

i
): i � 1, 2, …, n}, following the 

population model in Assumption MLR.1.

Assumption MLR.3 (No Perfect Collinearity)

In the sample (and therefore in the population), none of the independent variables is constant, 
and there are no exact linear relationships among the independent variables.

Assumption MLR.4 (Zero Conditional Mean)

The error u has an expected value of zero given any values of the independent variables. In 
other words,

E(u�x
1
, x

2
, …, x

k
) � 0.

Assumption MLR.5 (Homoskedasticity)

The error u has the same variance given any value of the explanatory variables. In other 
words,

Var(u�x
1
, …, x

k
) � �2.

K E Y  T E R M S

Best Linear Unbiased 
Estimator (BLUE)

Biased Toward Zero
Ceteris Paribus
Degrees of Freedom (df )
Disturbance
Downward Bias
Endogenous Explanatory 

Variable
Error Term
Excluding a Relevant Variable
Exogenous Explanatory 

Variable
Explained Sum of 

Squares (SSE)
First Order Conditions
Gauss-Markov Assumptions
Gauss-Markov Theorem

Inclusion of an Irrelevant 
Variable

Intercept
Micronumerosity
Misspecification Analysis
Multicollinearity
Multiple Linear Regression 

Model
Multiple Regression 

Analysis
OLS Intercept Estimate
OLS Regression Line
OLS Slope Estimate
Omitted Variable Bias
Ordinary Least Squares
Overspecifying the Model
Partial Effect
Perfect Collinearity

Population Model
Residual
Residual Sum of Squares
Sample Regression 

Function (SRF)
Slope Parameter
Standard Deviation of  ̂  � 

j

Standard Error of  ̂  � 
j

Standard Error of the 
Regression (SER)

Sum of Squared Residuals 
(SSR)

Total Sum of Squares (SST)
True Model
Underspecifying the Model
Upward Bias
Variance Inflation 

Factor (VIF)

P R O B L E M S

3.1  Using the data in GPA2.RAW on 4,137 college students, the following equation was 
estimated by OLS:
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  2colgpa � 1.392 � .0135 hsperc � .00148 sat
 n � 4,137, R2 � .273,

  where colgpa is measured on a four-point scale, hsperc is the percentile in the high school 
graduating class (defined so that, for example, hsperc � 5 means the top 5% of the class), 
and sat is the combined math and verbal scores on the student achievement test.

 (i) Why does it make sense for the coefficient on hsperc to be negative?
 (ii) What is the predicted college GPA when hsperc � 20 and sat � 1,050?
 (iii)  Suppose that two high school graduates, A and B, graduated in the same percentile 

from high school, but Student A’s SAT score was 140 points higher (about one 
standard deviation in the sample). What is the predicted difference in college GPA 
for these two students? Is the difference large?

 (iv)  Holding hsperc fixed, what difference in SAT scores leads to a predicted colgpa 
difference of .50, or one-half of a grade point? Comment on your answer.

3.2  The data in WAGE2.RAW on working men was used to estimate the following 
 equation:

 1educ � 10.36 � .094 sibs � .131 meduc � .210 feduc
 n � 722, R2 � .214,

  where educ is years of schooling, sibs is number of siblings, meduc is mother’s years of 
schooling, and feduc is father’s years of schooling.

 (i)  Does sibs have the expected effect? Explain. Holding meduc and feduc fixed, by 
how much does sibs have to increase to reduce predicted years of education by one 
year? (A noninteger answer is acceptable here.)

 (ii)  Discuss the interpretation of the coefficient on meduc.
 (iii)  Suppose that Man A has no siblings, and his mother and father each have 12 years 

of education. Man B has no siblings, and his mother and father each have 16 years 
of education. What is the predicted difference in years of education between B 
and A?

3.3  The following model is a simplified version of the multiple regression model used by 
Biddle and Hamermesh (1990) to study the tradeoff between time spent sleeping and 
working and to look at other factors affecting sleep:

 sleep � �
0
 � �

1
totwrk � �

2
educ � �

3
age � u,

  where sleep and totwrk (total work) are measured in minutes per week and educ and age 
are measured in years. (See also Computer Exercise C2.3.)

 (i) If adults trade off sleep for work, what is the sign of �
1
?

 (ii) What signs do you think �
2
 and �

3
 will have?

 (iii) Using the data in SLEEP75.RAW, the estimated equation is

 1sleep � 3,638.25 � .148 totwrk � 11.13 educ � 2.20 age
 n � 706, R2 � .113.

   If someone works five more hours per week, by how many minutes is sleep pre-
dicted to fall? Is this a large tradeoff?
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 (iv) Discuss the sign and magnitude of the estimated coefficient on educ.
 (v)  Would you say totwrk, educ, and age explain much of the variation in sleep? What 

other factors might affect the time spent sleeping? Are these likely to be correlated 
with totwrk?

3.4 The median starting salary for new law school graduates is determined by

 log(salary) � �
0
 � �

1
LSAT � �

2
GPA � �

3
log(libvol) � �

4
log(cost)

 � �
5
rank � u,

  where LSAT is the median LSAT score for the graduating class, GPA is the median col-
lege GPA for the class, libvol is the number of volumes in the law school library, cost is 
the annual cost of attending law school, and rank is a law school ranking (with rank � 1 
being the best).

 (i) Explain why we expect �
5
 
 0.

 (ii) What signs do you expect for the other slope parameters? Justify your answers.
 (iii) Using the data in LAWSCH85.RAW, the estimated equation is

 2 log(salary) �  8.34 � .0047 LSAT � .248 GPA � .095 log(libvol)

 � .038 log(cost) � .0033 rank

 n � 136, R2 � .842.

   What is the predicted ceteris paribus difference in salary for schools with a median 
GPA different by one point? (Report your answer as a percentage.)

 (iv)  Interpret the coefficient on the variable log(libvol).
 (v)  Would you say it is better to attend a higher ranked law school? How much is a dif-

ference in ranking of 20 worth in terms of predicted starting salary?

3.5  In a study relating college grade point average to time spent in various activities, you 
distribute a survey to several students. The students are asked how many hours they spend 
each week in four activities: studying, sleeping, working, and leisure. Any activity is put 
into one of the four categories, so that for each student, the sum of hours in the four activi-
ties must be 168.

 (i) In the model

 GPA � �
0
 � �

1
study � �

2
sleep � �

3
work � �

4
leisure � u,

   does it make sense to hold sleep, work, and leisure fixed, while changing 
study?

 (ii)  Explain why this model violates Assumption MLR.3.
 (iii)  How could you reformulate the model so that its parameters have a useful interpreta-

tion and it satisfies Assumption MLR.3?

3.6  Consider the multiple regression model containing three independent variables, under 
Assumptions MLR.1 through MLR.4:

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � u.

  You are interested in estimating the sum of the parameters on x
1 

and x
2
; call 

this �
1
 � �

1 
� �

2
.
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 (i) Show that  ̂  � 
1
 �  ̂  � 

1
 �  ̂  � 

2
 is an unbiased estimator of �

1
.

 (ii) Find Var( ̂  � 
1
) in terms of Var(  ̂  � 

1
), Var(  ̂  � 

2
), and Corr(  ̂  � 

1
,  ̂  � 

2
).

3.7 Which of the following can cause OLS estimators to be biased?
 (i) Heteroskedasticity.
 (ii) Omitting an important variable.
 (iii)  A sample correlation coefficient of .95 between two independent variables both 

included in the model.

3.8  Suppose that average worker productivity at manufacturing firms (avgprod ) depends on 
two factors, average hours of training (avgtrain) and average worker ability (avgabil ):

 avgprod � �
0
 � �

1
avgtrain � �

2
avgabil � u.

  Assume that this equation satisfies the Gauss-Markov assumptions. If grants have been 
given to firms whose workers have less than average ability, so that avgtrain and avgabil 
are negatively correlated, what is the likely bias in  ̃  � 

1
 obtained from the simple regression 

of avgprod on avgtrain?

3.9  The following equation describes the median housing price in a community in terms of 
amount of pollution (nox for nitrous oxide) and the average number of rooms in houses 
in the community (rooms):

 log(price) � �
0
 � �

1
log(nox) � �

2
rooms � u.

 (i)  What are the probable signs of �
1
 and �

2
? What is the interpretation of �

1
? 

Explain.
 (ii)  Why might nox [or more precisely, log(nox)] and rooms be negatively correlated? 

If this is the case, does the simple regression of log(price) on log(nox) produce an 
upward or a downward biased estimator of �

1
?

 (iii) Using the data in HPRICE2.RAW, the following equations were estimated:

  2log(price) � 11.71 � 1.043 log(nox), n � 506, R2 � .264.

 2log(price) � 9.23 � .718 log(nox) � .306 rooms, n � 506, R2 � .514.

   Is the relationship between the simple and multiple regression estimates of the elas-
ticity of price with respect to nox what you would have predicted, given your answer 
in part (ii)? Does this mean that �.718 is definitely closer to the true elasticity 
than �1.043?

3.10  Suppose that you are interested in estimating the ceteris paribus relationship between y 
and x

1
. For this purpose, you can collect data on two control variables, x

2
 and x

3
. (For 

concreteness, you might think of y as final exam score, x
1
 as class attendance, x

2
 as 

GPA up through the previous semester, and x
3
 as SAT or ACT score.) Let  ̃  � 

1
 be the 

simple regression estimate from y on x
1
 and let  ̂  � 

1
 be the multiple regression estimate 

from y on x
1
,x

2
,x

3
.

 (i)  If x
1
 is highly correlated with x

2
 and x

3
 in the sample, and x

2
 and x

3
 have large partial 

effects on y, would you expect  ̃  � 
1
 and  ̂  � 

1
 to be similar or very different? Explain.
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 (ii)  If x
1
 is almost uncorrelated with x

2
 and x

3
, but x

2
 and x

3
 are highly correlated, will

 ̃  � 
1
 and  ̂  � 

1
 tend to be similar or very different? Explain.

 (iii)  If x
1
 is highly correlated with x

2
 and x

3
, and x

2
 and x

3
 have small partial effects on 

y, would you expect se(  ̃  � 
1
) or se(  ̂  � 

1
) to be smaller? Explain.

 (iv)  If x
1
 is almost uncorrelated with x

2
 and x

3
, x

2
 and x

3
 have large partial effects on y, 

and x
2
 and x

3
 are highly correlated, would you expect se(  ̃  � 

1
) or se(  ̂  � 

1
) to be smaller? 

Explain.

3.11 Suppose that the population model determining y is

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � u,

  and this model satisifies Assumptions MLR.1 through MLR.4. However, we estimate 
the model that omits x

3
. Let  ̃  � 

0
,  ̃  � 

1
, and  ̃  � 

2
 be the OLS estimators from the regression of 

y on x
1 
and x

2
. Show that the expected value of  ̃  � 

1
 (given the values of the independent 

variables in the sample) is

 E( ̃  � 
1
) � �

1
 � �

3
   
 ∑ 
i�1

   
n

     ̂  r 
i1
x

i3

 _______ 

 
 ∑ 
i�1

   
n

     ̂  r   2   i1 

  ,

  where the  ̂  r 
i1
 are the OLS residuals from the regression of x

1 
on x

2
. [Hint: The formula 

for  ̃  � 
1
 comes from equation (3.22). Plug y

i
 � �

0 
� �

1
x

i1
 � �

2
x

i2
 � �

3
x

i3
 � u

i
 into this 

equation. After some algebra, take the expectation treating x
i3
 and  ̂  r 

i1
 as nonrandom.]

3.12  The following equation represents the effects of tax revenue mix on subsequent employ-
ment growth for the population of counties in the United States:

 growth � �
0
 � �

1
share

P
 � �

2
share

I
 � �

3
share

S
 � other factors,

  where growth is the percentage change in employment from 1980 to 1990, share
P
 is the 

share of property taxes in total tax revenue, share
I
 is the share of income tax revenues, 

and share
S
 is the share of sales tax revenues. All of these variables are measured in 1980. 

The omitted share, share
F
, includes fees and miscellaneous taxes. By definition, the four 

shares add up to one. Other factors would include expenditures on education, infrastruc-
ture, and so on (all measured in 1980).

 (i) Why must we omit one of the tax share variables from the equation?
 (ii) Give a careful interpretation of �

1
.

3.13 (i)  Consider the simple regression model y � �
0
 � �

1
x � u under the first four Gauss-

Markov assumptions. For some function g(x), for example g(x) � x2 or g(x) � 
log(1 � x2), define z

i
 � g(x

i
). Define a slope estimator as

  ̃  � 
1
 �  �  ∑ 

i�1

   
n

    (z
i
 �  

_
 z )y

i
 �  �  �  ∑ 

i�1

   
n

    (z
i
 �  

_
 z )x

i
 �  .

   Show that  ̃  � 
1
 is linear and unbiased. Remember, because E(u�x) � 0, you can treat 

both x
i
 and z

i
 as nonrandom in your derivation.

 (ii) Add the homoskedasticity assumption, MLR.5. Show that

 Var( ̃  � 
1
) � �2  �  ∑ 

i�1

   
n

    (z
i
 �  

_
 z )2 �  �  �  ∑ 

i�1

   
n

    (z
i
 �  

_
 z )x

i
 � 2.
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 (iii)  Show directly that, under the Gauss-Markov assumptions, Var( ̂  � 
1
) 
 Var( ̃  � 

1
), where  

ˆ � 
1
 is the OLS estimator. [Hint: The Cauchy-Schwartz inequality in Appendix B 

implies that

 � n�1  ∑ 
i�1

   
n

   
 
(z

i
 �

 
  
_
 z )(x

i
 �  

_
 x  ) � 

2 



  � n�1  ∑ 
i�1

   
n

    (z
i
 �  

_
 z )2 �   � n�1  ∑ 

i�1

   
n

    (x
i
 �  

_
 x  )2 �  ;

  notice that we can drop  
_
 x  from the sample covariance.]

C O M P U T E R  E X E R C I S E S

C3.1  A problem of interest to health officials (and others) is to determine the effects of smok-
ing during pregnancy on infant health. One measure of infant health is birth weight; a 
birth weight that is too low can put an infant at risk for contracting various illnesses. 
Since factors other than cigarette smoking that affect birth weight are likely to be cor-
related with smoking, we should take those factors into account. For example, higher 
income generally results in access to better prenatal care, as well as better nutrition for 
the mother. An equation that recognizes this is

 bwght � �
0
 � �

1
cigs � �

2   
faminc � u.

 (i) What is the most likely sign for �
2
?

 (ii)  Do you think cigs and faminc are likely to be correlated? Explain why the correla-
tion might be positive or negative.

 (iii)  Now, estimate the equation with and without faminc, using the data in BWGHT
.RAW. Report the results in equation form, including the sample size and R-
squared. Discuss your results, focusing on whether adding faminc substantially 
changes the estimated effect of cigs on bwght.

C3.2 Use the data in HPRICE1.RAW to estimate the model

 price � �
0
 � �

1
sqrft � �

2
bdrms � u,

 where price is the house price measured in thousands of dollars.
 (i)  Write out the results in equation form.
 (ii)  What is the estimated increase in price for a house with one more bedroom, holding 

square footage constant?
 (iii)  What is the estimated increase in price for a house with an additional bedroom that 

is 140 square feet in size? Compare this to your answer in part (ii).
 (iv)  What percentage of the variation in price is explained by square footage and 

number of bedrooms?
 (v)  The first house in the sample has sqrft � 2,438 and bdrms � 4. Find the predicted 

selling price for this house from the OLS regression line.
 (vi)  The actual selling price of the first house in the sample was $300,000 (so 

price � 300). Find the residual for this house. Does it suggest that the buyer under-
paid or overpaid for the house?
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C3.3  The file CEOSAL2.RAW contains data on 177 chief executive officers and can be used 
to examine the effects of firm performance on CEO salary.

 (i)  Estimate a model relating annual salary to firm sales and market value. Make the 
model of the constant elasticity variety for both independent variables. Write the 
results out in equation form.

 (ii)  Add profits to the model from part (i). Why can this variable not be included in 
logarithmic form? Would you say that these firm performance variables explain 
most of the variation in CEO salaries?

 (iii)  Add the variable ceoten to the model in part (ii). What is the estimated percentage 
return for another year of CEO tenure, holding other factors fixed?

 (iv)  Find the sample correlation coefficient between the variables log(mktval) and 
profits. Are these variables highly correlated? What does this say about the OLS 
estimators?

C3.4 Use the data in ATTEND.RAW for this exercise.
 (i)  Obtain the minimum, maximum, and average values for the variables atndrte, 

priGPA, and ACT.
 (ii) Estimate the model

atndrte � �
0
 � �

1
priGPA � �

2
 ACT � u,     

   and write the results in equation form. Interpret the intercept. Does it have a useful 
meaning?

 (iii)  Discuss the estimated slope coefficients. Are there any surprises?
 (iv)  What is the predicted atndrte if priGPA � 3.65 and ACT � 20? What do you make 

of this result? Are there any students in the sample with these values of the explana-
tory variables?

 (v)  If Student A has priGPA � 3.1 and ACT � 21 and Student B has priGPA � 2.1 
and ACT � 26, what is the predicted difference in their attendance rates?

C3.5  Confirm the partialling out interpretation of the OLS estimates by explicitly doing the 
partialling out for Example 3.2. This first requires regressing educ on exper and tenure 
and saving the residuals,  ̂  r 

1
. Then, regress log(wage) on  ̂  r 

1
. Compare the coefficient on

 ̂  r 
1
 with the coefficient on educ in the regression of log(wage) on educ, exper, and 

tenure.

C3.6  Use the data set in WAGE2.RAW for this problem. As usual, be sure all of the following 
regressions contain an intercept.

 (i)  Run a simple regression of IQ on educ to obtain the slope coefficient, say,  ̃  δ 
1
.

 (ii)  Run the simple regression of log(wage) on educ, and obtain the slope 
coefficient,  ̃  � 

1
.

 (iii)  Run the multiple regression of log(wage) on educ and IQ, and obtain the slope 
coefficients,  ̂  � 

1
 and  ̂  � 

2
, respectively.

 (iv)  Verify that   ̃  � 
1
 �  ̂  � 

1
 �  ̂  � 

2
 ̃  δ 

1
.

C3.7 Use the data in MEAP93.RAW to answer this question.
 (i) Estimate the model

math10 � �
0
 � �

1
 log(expend) � �

2
lnchprg � u,

  and report the results in the usual form, including the sample size and R-squared. Are the 
signs of the slope coefficients what you expected? Explain.
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 (ii)  What do you make of the intercept you estimated in part (i)? In particular, does 
it make sense to set the two explanatory variables to zero? [Hint: Recall that 
log(1)�0.]

 (iii)  Now run the simple regression of math10 on log(expend), and compare the slope 
coefficient with the estimate obtained in part (i). Is the estimated spending effect 
now larger or smaller than in part (i)?

 (iv)  Find the correlation between lexpend � log(expend) and lnchprg. Does its sign 
make sense to you?

 (v) Use part (iv) to explain your findings in part (iii).

C3.8  Use the data in DISCRIM.RAW to answer this question. These are ZIP code–level data 
on prices for various items at fast-food restaurants, along with characteristics of the zip 
code population, in New Jersey and Pennsylvania. The idea is to see whether fast-food 
restaurants charge higher prices in areas with a larger concentration of blacks.

 (i)  Find the average values of prpblck and income in the sample, along with their 
standard deviations. What are the units of measurement of prpblck and income?

 (ii)  Consider a model to explain the price of soda, psoda, in terms of the proportion of 
the population that is black and median income:

psoda � �
0
 � �

1
prpblck � �

2
income � u.

   Estimate this model by OLS and report the results in equation form, including the 
sample size and R-squared. (Do not use scientific notation when reporting the esti-
mates.) Interpret the coefficient on prpblck. Do you think it is economically large?

 (iii)  Compare the estimate from part (ii) with the simple regression estimate from psoda 
on prpblck. Is the discrimination effect larger or smaller when you control for 
income?

 (iv)  A model with a constant price elasticity with respect to income may be more appro-
priate. Report estimates of the model

log(psoda) � �
0
 � �

1
prpblck � �

2
log(income) � u.

   If prpblck increases by .20 (20 percentage points), what is the estimated percentage 
change in psoda? (Hint: The answer is 2.xx, where you fill in the “xx.”)

 (v)  Now add the variable prppov to the regression in part (iv). What happens
to  ̂  � 

prpblck
?

 (vi)  Find the correlation between log(income) and prppov. Is it roughly what you 
expected?

 (vii)  Evaluate the following statement: “Because log(income) and prppov are so highly 
correlated, they have no business being in the same regression.”

C3.9 Use the data in CHARITY.RAW to answer the following questions:
 (i) Estimate the equation

 gift � �
0
 � �

1
mailsyear � �

2 
giftlast � �

3 
propresp � u

   by OLS and report the results in the usual way, including the sample size and R-
squared. How does the R-squared compare with that from the simple regression 
that omits giftlast and propresp?

 (ii)  Interpret the coefficient on mailsyear. Is it bigger or smaller than the corresponding 
simple regression coefficient?

 (iii)  Interpret the coefficient on propresp. Be careful to notice the units of measurement 
of propresp.
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 (iv)  Now add the variable avggift to the equation. What happens to the estimated effect 
of mailsyear?

 (v)  In the equation from part (iv), what has happened to the coefficient on giftlast? What 
do you think is happening?

Appendix 3A

3A.1 Derivation of the First Order Conditions in Equation (3.13)

The analysis is very similar to the simple regression case. We must characterize the solu-
tions to the problem

   min     
b

0
, b

1 
…, b

k

   ∑ 
i�1

   
n

    (y
i
 � b

0
 � b

1
x

i1
 � … � b

k
x

ik
)2.

Taking the partial derivatives with respect to each of the b
j
 (see Appendix A), evaluating 

them at the solutions, and setting them equal to zero gives

 �2  ∑ 
i�1

   
n

    (y
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
� … �  ̂  � 

k
x

ik
) � 0

 �2  ∑ 
i�1

   
n

    x
ij
(y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0, for all j � 1, …, k.

Canceling the �2 gives the first order conditions in (3.13).

3A.2 Derivation of Equation (3.22)

To derive (3.22), write x
i1
 in terms of its fitted value and its residual from the regres-

sion of x
1
 on x

2
, …, x

k
: x

i1
 �  ̂  x 

i1
 �  ̂  r 

i1
, for all i � 1, …, n. Now, plug this into the second 

equation in (3.13):

  ∑ 
i�1

   
n

    ( ̂  x 
i1
 �  ̂  r 

i1
)(y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0. 3.60

By the definition of the OLS residual  ̂  u 
i
, since  ̂  x 

i1
 is just a linear function of the explana-

tory variables x
i2
, …, x

ik
, it follows that  ∑ 

i�1
  

n
     ̂  x 

i1
 ̂  u 

i
 � 0. Therefore, equation (3.60) can 

be expressed as

  ∑ 
i�1

   
n

     ̂  r 
i1
(y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
) � 0. 3.61

Since the  ̂  r 
i1
 are the residuals from regressing x

1
 on x

2
, …, x

k
,  ∑ 

i�1
  

n
    x

ij
  ̂  r 

i1
 � 0, for all 

j � 2, …, k. Therefore, (3.61) is equivalent to  ∑ 
i�1

  
n
     ̂  r 

i1
(y

i
 �  ̂  � 

1
x

i1
) � 0. Finally, we use 

the fact that   ∑ 
i�1

  
n
     ̂  x 

i1
 ̂  r 

i1
 � 0, which means that  ̂  � 

1
 solves

  ∑ 
i�1

   
n

     ̂  r 
i1
(y

i
 �  ̂  � 

1
 ̂  r 

i1
) � 0.
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Now, straightforward algebra gives (3.22), provided, of course, that  ∑ 
i�1

  
n
     ̂  r   2   i1   � 0; this is 

ensured by Assumption MLR.3.

3A.3 Proof of Theorem 3.1

We prove Theorem 3.1 for  ̂  � 
1
; the proof for the other slope parameters is virtually iden-

tical. (See Appendix E for a more succinct proof using matrices.) Under Assumption 
MLR.3, the OLS estimators exist, and we can write  ̂  � 

1
 as in (3.22). Under Assumption 

MLR.1, we can write y
i
 as in (3.32); substitute this for y

i
 in (3.22). Then, using 

 ∑ 
i�1

  
n
     ̂  r 

i1
 � 0,  ∑ 

i�1
  

n
    x

ij 
 ̂  r 

i1
 � 0, for all j � 2, …, k, and  ∑ 

i�1
  

n
    x

i1
 ̂  r 

i1
 �  ∑ 

i�1
  

n
     ̂  r   2   i1 , we have

  ̂  � 
1
 � �

1
 �  �  ∑ 

i�1

   
n

     ̂  r 
i1
u

i
 �  �  �  ∑ 

i�1

   
n

     ̂  r   2   i1  �  . 3.62

Now, under Assumptions MLR.2 and MLR.4, the expected value of each u
i
, given all 

independent variables in the sample, is zero. Since the  ̂  r 
i1
 are just functions of the sample 

independent variables, it follows that

 E( ̂  � 
1
�X) � �

1
 �  �  ∑ 

i�1

   
n

     ̂  r 
i1
E(u

i
�X) �  �  �  ∑ 

i�1

   
n

     ̂  r   2   i1  � 

 � �
1
 �  �  ∑ 

i�1

   
n

     ̂  r 
i1
 · 0 �  �  �  ∑ 

i�1

   
n

     ̂  r   2   i1  �  � �
1
,

where X denotes the data on all independent variables and E( ̂  � 
1
�X) is the expected value 

of  ̂  � 
1
, given x

i1
, …, x

ik
, for all i � 1, …, n. This completes the proof.

3A.4 General Omitted Variable Bias

We can derive the omitted variable bias in the general model in equation (3.31) under 
the first four Gauss-Markov assumptions. In particular, let the  ̂  � 

j
, j � 0, 1, …, k be the 

OLS estimators from the regression using the full set of explanatory variables. Let the  ̃  � 
j 
,

j � 0, 1, …, k � 1 be the OLS estimators from the regression that leaves out x
k
. Let 

 ̃  � 
j
, j � 1, …, k � 1 be the slope coefficient on x

j
 in the auxiliary regression of x

ik
 on x

i1
, 

x
i2
, … x

i, k�1
, i � 1, …, n. A useful fact is that

  ̃  � 
j
 �  ̂  � 

j
 �  ̂  � 

k
  ̃  � 

j
. 3.63

This shows explicitly that, when we do not control for x
k
 in the regression, the estimated 

partial effect of x
j
 equals the partial effect when we include x

k
 plus the partial effect of x

k
 on  

ˆ y  times the partial relationship between the omitted variable, x
k
, and x

j
, j � k. Conditional 

on the entire set of explanatory variables, X, we know that the  ̂  � 
j
 are all unbiased for the 

corresponding �
j
, j � 1, …, k. Further, since  ̃  � 

j
 is just a function of X, we have 

 E( ̃  � 
j
|X) � E(  ̂  � 

j
|X ) � E(  ̂  � 

k
|X )  ̃  � 

j
 
 3.64

 � �
j
 � �

k 
 ̃  � 

j
.
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Equation (3.64) shows that  ̃  � 
j
 is biased for �

j
 unless �

k
 � 0—in which case x

k
 has no 

partial effect in the population—or  ̃  � 
j
 equals zero, which means that x

ik
 and x

ij
 are par-

tially uncorrelated in the sample. The key to obtaining equation (3.64) is equation (3.63). 
To show equation (3.63), we can use equation (3.22) a couple of times. For simplicity, 
we look at j � 1. Now,  ̃  � 

1
 is the slope coefficient in the simple regression of y

i
 on  ̃  r 

i1
, i � 

1, …, n, where the  ̃  r 
i1
 are the OLS residuals from the regression of x

i1
 on x

i2
, x

i3
, …, x

i,k�1
. 

Consider the numerator of the expression for  ̃  � 
1
:  ∑ 

i�1
  

n
     ̃  r 

i1
y

i
. But for each i, we can 

write y
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �   ̂  � 

k
x

ik
 �  ̂  u 

i
 and plug in for y

i
. Now, by properties of the OLS 

residuals, the  ̃  r 
i1
 have zero sample average and are uncorrelated with x

i2
, x

i3
, …, x

i,k�1
 in 

the sample. Similarly, the  ̂  u 
i
 have zero sample average and zero sample correlation with 

x
i1
, x

i2
, …, x

ik
. It follows that the  ̃  r 

i1
 and  ̂  u 

i
 are uncorrelated in the sample (since the  ̃  r 

i1
 are 

just linear combinations of x
i1
, x

i2
, …, x

i,k�1
). So

   ∑ 
i�1

   
n

     ̃  r 
i1
y

i
 �  ̂  � 

1 
 �  ∑ 

i�1

   
n

     ̃  r 
i1
x

i1
 �  �  ̂  � 

k
  �  ∑ 

i�1

   
n

     ̃  r 
i1
x

ik
 �  . 3.65

Now,  ∑ 
i�1

  
n
     ̃  r 

i1
x

i1
 �  ∑ 

i�1
  

n
     ̃  r   2   i1 , which is also the denominator of  ̃  � 

1
. Therefore, we have 

shown that

  ̃  � 
1
 �  ̂  � 

1
 �  ̂  � 

k
  �  ∑ 

i�1

   
n

     ̃  r 
i1
x

ik
 �  �  �  ∑ 

i�1

   
n

     ̃  r   2   i1 , � 
 �  ̂  � 

1
 �  ̂  � 

k
  ̃  � 

1
.

This is the relationship we wanted to show.

3A.5 Proof of Theorem 3.2

Again, we prove this for j � 1. Write  ̂  � 
1
 as in equation (3.62). Now, under MLR.5, 

Var(u
i
�X) � �2, for all i � 1, …, n. Under random sampling, the u

i
 are independent, even 

conditional on X, and the  ̂  r 
i1
 are nonrandom conditional on X. Therefore,

 Var( ̂  � 
1
�X) �  �  ∑ 

i�1

   
n

     ̂  r   2   i1  Var(u
i
�X) � 

 � 

 �  ∑ 
i�1

   
n

     ̂  r   2   i1  � 
2

 �  �  ∑ 
i�1

   
n

     ̂  r   2   i1 �2 � 
 � 

 �  ∑ 
i�1

   
n

     ̂  r   2   i1  � 
2

 � �2� 

 �  ∑ 
i�1

   
n

     ̂  r   2   i1  � .
Now, since  ∑ 

i�1
  

n
     ̂  r   2   i1  is the sum of squared residuals from regressing x

1 
on x

2
, …, x

k
,

 ∑ 
i�1

  
n
     ̂  r   2   i1   � SST

1
(1 � R 2   1 ). This completes the proof.

3A.6 Proof of Theorem 3.4

We show that, for any other linear unbiased estimator  ̃  � 
1
 of �

1
, Var( ̃  � 

1
) � Var( ̂  � 

1
), 

where  ̂  � 
1
 is the OLS estimator. The focus on j � 1 is without loss of generality.

For  ̃  � 
1
 as in equation (3.59), we can plug in for y

i
 to obtain

  ̃  � 
1
 � �

0
  ∑ 

i�1

   
n

    w
i1
 � �

1
  ∑ 

i�1

   
n

    w
i1
x

i1
 � �

2
  ∑ 

i�1

   
n

    w
i1
x

i2
 � … � �

k
  ∑ 

i�1

   
n

    w
i1
x

ik
 �  ∑ 

i�1

   
n

    w
i1
u

i
.
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Now, since the w
i1
 are functions of the x

ij
,

E( ̃  � 
1
�X) � �

0
 ∑ 
i�1

   
n

    w
i1
 � �

1
 ∑ 
i�1

   
n

    w
i1
x

i1
 � �

2
 ∑ 
i�1

   
n

    w
i1
x

i2
 � … � �

k
 ∑ 
i�1

   
n

    w
i1
x

ik
 �  ∑ 

i�1

   
n

    w
i1
E(u

i
�X)

 � �
0
 ∑ 
i�1

   
n

    w
i1
 � �

1
 ∑ 
i�1

   
n

    w
i1
x

i1
 � �

2
 ∑ 
i�1

   
n

    w
i1
x

i2
 � … � �

k
 ∑ 
i�1

   
n

    w
i1
x

ik

because E(u
i
�X) � 0, for all i � 1, …, n under MLR.2 and MLR.4. Therefore, for 

E( ̃  � 
1
�X) to equal �

1 
for any values of the parameters, we must have

   ∑ 
i�1

   
n

    w
i1
 � 0,  ∑ 

i�1

   
n

    w
i1
x

i1
 � 1,  ∑ 

i�1

   
n

    w
i1
x

ij
 � 0, j � 2, …, k. 3.66

Now, let  ̂  r 
i1
 be the residuals from the regression of x

i1
 on x

i2
, …, x

ik
. Then, from (3.66), 

it follows that

   ∑ 
i�1

   
n

    w
i1
 ̂  r 

i1
 � 1 3.67

because x
i1
 �  ̂  x 

i1
 �  ̂  r 

i1
 and  ∑ 

i�1
  

n
    w

i1
 ̂  x 

i1
 � 0. Now, consider the difference between 

Var( ̃  � 
1
�X) and Var( ̂  � 

1
�X) under MLR.1 through MLR.5:

 �2  ∑ 
i�1

   
n

    w  2   i1  � �2 �  �  ∑ 
i�1

   
n

     ̂  r   2   i1  � . 3.68

Because of (3.67), we can write the difference in (3.68), without �2, as

   ∑ 
i�1

   
n

    w  2   i1  �  �  ∑ 
i�1

   
n

    w
i1
 ̂  r 

i l
 �  

2

�  �  ∑ 
i�1

   
n

     ̂  r   2   i1  � . 3.69

But (3.69) is simply

  ∑ 
i�1

   
n

    (w
i1
 �  ̂  � 

1
 ̂  r 

i1
)2, 3.70

where  ̂  � 
1
 �  �  ∑ 

i�1
  

n
  

 
 w

i1
 ̂  r 

il
 �  �  �  ∑ 

i�1
  

n
     ̂  r   2   i1  � , 

as can be seen by squaring each term in (3.70), 

summing, and then canceling terms. Because (3.70) is just the sum of squared residu-
als from the simple regression of w

i1
 on  ̂  r 

i1
—remember that the sample average of  ̂  r 

i1
 is 

zero—(3.70) must be nonnegative. This completes the proof.
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4
Multiple Regression Analysis: 
Inference

This chapter continues our treatment of multiple regression analysis. We now turn 
to the problem of testing hypotheses about the parameters in the population regres-
sion model. We begin by finding the distributions of the OLS estimators under the 

added assumption that the population error is normally distributed. Sections 4.2 and 4.3 
cover hypothesis testing about individual parameters, while Sec tion 4.4 discusses how to 
test a single hypothesis involving more than one parameter. We focus on testing multiple 
restrictions in Section 4.5 and pay particular attention to determining whether a group of 
independent variables can be omitted from a model.

4.1 Sampling Distributions of 
the OLS Estimators
Up to this point, we have formed a set of assumptions under which OLS is unbiased; we 
have also derived and discussed the bias caused by omitted variables. In Section 3.4, we 
obtained the variances of the OLS estimators under the Gauss-Markov assumptions. In 
Section 3.5, we showed that this variance is smallest among linear unbiased estimators.
 Knowing the expected value and variance of the OLS estimators is useful for describ-
ing the precision of the OLS estimators. However, in order to perform statistical inference, 
we need to know more than just the first two moments of �̂j; we need to know the full 
sampling distribution of the �̂j. Even under the Gauss-Markov assumptions, the distribu-
tion of �̂j can have virtually any shape.
 When we condition on the values of the independent variables in our sample, it is clear 
that the sampling distributions of the OLS estimators depend on the underlying distribu-
tion of the errors. To make the sampling distributions of the �̂j tractable, we now assume 
that the unobserved error is normally distributed in the population. We call this the nor-
mality assumption.
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 Assumption MLR.6 is much stronger than any of our previous assumptions. In fact, since 
u is independent of the x

j under MLR.6, E(u�x1, …, x
k
) � E(u) � 0 and Var(u�x1, …, xk) � 

Var(u) � �2. Thus, if we make Assumption MLR.6, then we are necessarily assuming 
MLR.4 and MLR.5. To emphasize that we are assuming more than before, we will refer 
to the full set of Assumptions MLR.1 through MLR.6.
 For cross-sectional regression applications, Assumptions MLR.1 through MLR.6 are 
called the classical linear model (CLM) assumptions. Thus, we will refer to the model 
under these six assumptions as the classical linear model. It is best to think of the CLM 
assumptions as containing all of the Gauss-Markov assumptions plus the assumption of a 
normally distributed error term.
 Under the CLM assumptions, the OLS estimators �̂0, �̂1, …, �̂k have a stronger effi-
ciency property than they would under the Gauss-Markov assumptions. It can be shown 
that the OLS estimators are the minimum variance unbiased estimators, which means 
that OLS has the smallest variance among unbiased estimators; we no longer have to 
restrict our comparison to estimators that are linear in the yi. This property of OLS under 
the CLM assumptions is discussed further in Appendix E.
 A succinct way to summarize the population assumptions of the CLM is

y�x ~ Normal(�0 � �1x1 � �2x2 � … � �kxk,�
2),

where x is again shorthand for (x1, …, xk). Thus, conditional on x, y has a normal distribu-
tion with mean linear in x1, …, x

k
 and a constant variance. For a single independent vari-

able x, this situation is shown in Figure 4.1.
 The argument justifying the normal distribution for the errors usually runs something 
like this: Because u is the sum of many different unobserved factors affecting y, we can 
invoke the central limit theorem (see Appendix C) to conclude that u has an approximate 
normal distribution. This argument has some merit, but it is not without weaknesses. First, 
the factors in u can have very different distributions in the population (for example, ability 
and quality of schooling in the error in a wage equation). Although the central limit theo-
rem (CLT) can still hold in such cases, the normal approximation can be poor depending 
on how many factors appear in u and how different are their distributions.
 A more serious problem with the CLT argument is that it assumes that all unobserved 
factors affect y in a separate, additive fashion. Nothing guarantees that this is so. If u is a 
complicated function of the unobserved factors, then the CLT argument does not really 
apply.
 In any application, whether normality of u can be assumed is really an empirical 
matter. For example, there is no theorem that says wage conditional on educ, exper, 
and tenure is normally distributed. If anything, simple reasoning suggests that the oppo-
site is true: Since wage can never be less than zero, it cannot, strictly speaking, have a 

Assumption MLR.6   (Normality)

The population error u is independent of the explanatory variables x1, x2, …, xk and is normally 
distributed with zero mean and variance � 2: u ~ Normal(0,�2).
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 normal distribution. Further, because there are minimum wage laws, some fraction of the 
 population earns exactly the minimum wage, which also violates the normality assump-
tion. Nevertheless, as a practical matter, we can ask whether the conditional wage distri-
bution is “close” to being normal. Past empirical evidence suggests that normality is not 
a good assumption for wages.
 Often, using a transformation, especially taking the log, yields a distribution that 
is closer to normal. For example, something like log( price) tends to have a distribu-
tion that looks more normal than the distribution of price. Again, this is an empirical 
issue. We will discuss the consequences of nonnormality for statistical inference in 
Chapter 5.
 There are some examples where MLR.6 is clearly false. Whenever y takes on just a 
few values it cannot have anything close to a normal distribution. The dependent variable 
in Example 3.5 provides a good example. The variable narr86, the number of times a 
young man was arrested in 1986, takes on a small range of integer values and is zero for 
most men. Thus, narr86 is far from being normally distributed. What can be done in these 
cases? As we will see in Chapter 5—and this is important—nonnormality of the errors 
is not a serious problem with large sample sizes. For now, we just make the normality 
assumption.

f(y lx)

x1

E(y�x) � b0 � b1x

x2

x3

y

normal distributions

x

F I GURE  4 . 1

The homoskedastic normal distribution with a single explanatory variable.
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The proof of (4.1) is not that difficult, given the properties of normally distributed random 
variables in Appendix B. Each  ̂  � 

j
 can be written as  ̂  � 

j
 � �

j
 �  ∑ 

i�1
  

n
    w

ij
u

i
, where w

ij
 �  ̂  r 

ij 
/

SSRj,  ̂  r 
ij
 is the ith residual from the regression of the x

j
 on all the other independent variables, 

and SSR
j
 is the sum of squared residuals from this regression [see equation (3.62)]. Since the 

wij depend only on the independent vari-
ables, they can be treated as nonrandom. 
Thus,  ̂  � j is just a linear combination of 
the errors in the sample, {ui: i � 1, 2, …, 
n}. Under Assumption MLR.6 (and the 
random sampling Assumption MLR.2), 
the errors are independent, identically 
distributed Normal(0,�2) random vari-

ables. An important fact about independent normal random variables is that a linear com-
bination of such random variables is normally distributed (see Appendix B). This basically 
completes the proof. In Section 3.3, we showed that E(    ̂  � j) � �j , and we derived Var(    ̂  � j) in 
Section 3.4; there is no need to re-derive these facts.
 The second part of this theorem follows immediately from the fact that when we stan-
dardize a normal random variable by subtracting off its mean and dividing by its standard 
deviation, we end up with a standard normal random variable.
 The conclusions of Theorem 4.1 can be strengthened. In addition to (4.1), any linear 
combination of the  ̂  � 0,  ̂  � 1, …,   ̂  � k is also normally distributed, and any subset of the   ̂  � j has 
a joint normal distribution. These facts underlie the testing results in the remainder of 
this chapter. In Chapter 5, we will show that the normality of the OLS estimators is still 
approximately true in large samples even without normality of the errors.

4.2 Testing Hypotheses about a Single 
Population Parameter: The t Test
This section covers the very important topic of testing hypotheses about any single param-
eter in the population regression function. The population model can be written as

 y � �0 � �1x1 � … � �kxk � u, 4.2

Theorem 4.1   (Normal Sampling Distributions)

Under the CLM assumptions MLR.1 through MLR.6, conditional on the sample values of the 
independent variables,

  ̂  � 
j
 ~ Normal[�j ,Var(  ̂  � j)], 4.1

where Var(  ̂  � j) was given in Chapter 3 [equation (3.51)]. Therefore,

(  ̂  � j – �j)/sd(  ̂  � j) ~ Normal(0,1).

Q u e s t i o n  4 . 1
Suppose that u is independent of the explanatory variables, and it 
takes on the values �2, �1, 0, 1, and 2 with equal probability of 
1/5. Does this violate the Gauss-Markov assumptions? Does this 
violate the CLM assumptions?

 Normality of the error term translates into normal sampling distributions of the OLS 
 estimators:
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and we assume that it satisfies the CLM assumptions. We know that OLS produces 
unbiased estimators of the �j . In this section, we study how to test hypotheses about a 
particular �j . For a full understanding of hypothesis testing, one must remember that the 
�j are unknown features of the population, and we will never know them with certainty. 
Nevertheless, we can hypothesize about the value of �j and then use statistical inference 
to test our hypothesis.
 In order to construct hypotheses tests, we need the following result:

Theorem 4.2  (t Distribution for the Standardized Estimators)

Under the CLM assumptions MLR.1 through MLR.6,

 ( ̂  � j � �j)/se( ̂  � j) ~ tn–k–1, 4.3

where k � 1 is the number of unknown parameters in the population model y � �0 � 
�1x1 � … � �kxk � u (k slope parameters and the intercept �0).

This result differs from Theorem 4.1 in some notable respects. Theorem 4.1 showed that, 
under the CLM assumptions, (  ̂  � j � �j)/sd(  ̂  � j) � Normal(0,1). The t distribution in (4.3) 
comes from the fact that the constant � in sd(  ̂  � j) has been replaced with the random vari-
able  ̂  � . The proof that this leads to a t distribution with n � k � 1 degrees of freedom is not 
especially insightful. Essentially, the proof shows that (4.3) can be written as the ratio of 
the standard normal random variable ( ̂  � j � �j)/sd( ̂  � j) over the square root of  ̂  �  2/� 2. These 
random variables can be shown to be independent, and (n � k � 1)  ̂  �  2/� 2 	 �2

n�k�1. The 
result then follows from the definition of a t random variable (see Section B.5).
 Theorem 4.2 is important in that it allows us to test hypotheses involving the �j . In 
most applications, our primary interest lies in testing the null hypothesis

 H0: �j � 0, 4.4

where j corresponds to any of the k independent variables. It is important to understand 
what (4.4) means and to be able to describe this hypothesis in simple language for a par-
ticular application. Since �j measures the partial effect of xj on (the expected value of) 
y, after controlling for all other independent variables, (4.4) means that, once x1, x2, …, 
xj�1

, x
j�1

, …, xk have been accounted for, xj has no effect on the expected value of y. We 
cannot state the null hypothesis as “xj does have a partial effect on y” because this is true 
for any value of �j other than zero. Classical testing is suited for testing simple hypotheses 
like (4.4).
 As an example, consider the wage equation

log(wage) � �0 � �1educ � �2exper � �
3
tenure � u.

The null hypothesis H0: �2 � 0 means that, once education and tenure have been accounted 
for, the number of years in the workforce (exper) has no effect on hourly wage. This is an 
economically interesting hypothesis. If it is true, it implies that a person’s work history 
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prior to the current employment does not affect wage. If �2 � 0, then prior work experi-
ence contributes to productivity, and hence to wage.
 You probably remember from your statistics course the rudiments of hypothesis 
testing for the mean from a normal population. (This is reviewed in Appendix C.) The 
mechanics of testing (4.4) in the multiple regression context are very similar. The hard 
part is obtaining the coefficient estimates, the standard errors, and the critical values, but 
most of this work is done automatically by econometrics software. Our job is to learn how 
regression output can be used to test hypotheses of interest.
 The statistic we use to test (4.4) (against any alternative) is called “the” t statistic or 
“the” t ratio of  ̂  � j and is defined as

  t   ̂  �  j   �  ̂  � j /se(  ̂  � j). 4.5

We have put “the” in quotation marks because, as we will see shortly, a more general form 
of the t statistic is needed for testing other hypotheses about �j. For now, it is important to 
know that (4.5) is suitable only for testing (4.4). For particular applications, it is helpful to 
index t statistics using the name of the independent variable; for example, teduc would be the 
t statistic for  ̂  � educ.
 The t statistic for  ̂  � j is simple to compute given  ̂  � j and its standard error. In fact, most 
regression packages do the division for you and report the t statistic along with each coef-
ficient and its standard error.
 Before discussing how to use (4.5) formally to test H0: �j � 0, it is useful to see 
why  t   ̂  �  j   has features that make it reasonable as a test statistic to detect �j 	 0. First, since 
se( ̂  � j) is always positive,  t   ̂  �  j   has the same sign as  ̂  � j: if  ̂  � j is positive, then so is  t   ̂  �  j  , and if  ̂  � j 
is negative, so is  t   ̂  �  j  . Second, for a given value of se( ̂  � j), a larger value of  ̂  � j leads to larger 
values of  t   ̂  �  j  . If  ̂  � j becomes more negative, so does  t   ̂  �  j  .

 Since we are testing H0: �j � 0, it is only natural to look at our unbiased estimator of 
�j ,  ̂  � j , for guidance. In any interesting application, the point estimate  ̂  � j will never exactly 
be zero, whether or not H0 is true. The question is: How far is  ̂  � j from zero? A sample value 
of  ̂  � j very far from zero provides evidence against H0: �j � 0. However, we must recognize 
that there is a sampling error in our estimate  ̂  � j , so the size of  ̂  � j must be weighed against its 
sampling error. Since the standard error of  ̂  � j is an estimate of the standard deviation of  ̂  � j, 
 t   ̂  �  j   measures how many estimated standard deviations  ̂  � j is away from zero. This is pre-
cisely what we do in testing whether the mean of a population is zero, using the standard 
t statistic from introductory statistics. Values of  t   ̂  �  j   sufficiently far from zero will result in 
a rejection of H0. The precise rejection rule depends on the alternative hypothesis and the 
chosen significance level of the test.
 Determining a rule for rejecting (4.4) at a given significance level—that is, the prob-
ability of rejecting H0 when it is true—requires knowing the sampling distribution of  t   ̂  �  j   
when H0 is true. From Theorem 4.2, we know this to be t

n�k�1
. This is the key theoretical 

result needed for testing (4.4).
 Before proceeding, it is important to remember that we are testing hypotheses about 
the population parameters. We are not testing hypotheses about the estimates from a par-
ticular sample. Thus, it never makes sense to state a null hypothesis as “H0:  ̂  � 1 � 0” or, 
even worse, as “H0: .237 � 0” when the estimate of a parameter is .237 in the sample. We 
are testing whether the unknown population value, �1, is zero.
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 Some treatments of regression analysis define the t statistic as the absolute value of 
(4.5), so that the t statistic is always positive. This practice has the drawback of making 
testing against one-sided alternatives clumsy. Throughout this text, the t statistic always 
has the same sign as the corresponding OLS coefficient estimate.

Testing against One-Sided Alternatives
To determine a rule for rejecting H0, we need to decide on the relevant alternative 
hypothesis. First, consider a one-sided alternative of the form

 H1: �j � 0. 4.6

This means that we do not care about alternatives to H0 of the form H1: �j � 0; 
for some reason, perhaps on the basis of introspection or economic theory, we are  ruling 
out population values of �j less than zero. (Another way to think about this is that the 
null hypothesis is actually H0: �j 
 0; in either case, the statistic  t   ̂  �  j   is used as the test 
statistic.)
 How should we choose a rejection rule? We must first decide on a significance level 
or the probability of rejecting H0 when it is in fact true. For concreteness, suppose we have 
decided on a 5% significance level, as this is the most popular choice. Thus, we are willing 
to mistakenly reject H0 when it is true 5% of the time. Now, while  t   ̂  �  j   has a t distribution 
under H0—so that it has zero mean—under the alternative �j � 0, the expected value of 
 t   ̂  �  j   is positive. Thus, we are looking for a “sufficiently large” positive value of  t   ̂  �  j   in order 
to reject H0: �j � 0 in favor of H1: �j � 0. Negative values of  t   ̂  �  j   provide no evidence in 
favor of H1.
 The definition of “sufficiently large,” with a 5% significance level, is the 95th percen-
tile in a t distribution with n � k � 1 degrees of freedom; denote this by c. In other words, 
the rejection rule is that H0 is rejected in favor of H1 at the 5% significance level if

  t   ̂  �  j   � c. 4.7

By our choice of the critical value c, rejection of H0 will occur for 5% of all random 
samples when H0 is true.
 The rejection rule in (4.7) is an example of a one-tailed test. To obtain c, we only need 
the significance level and the degrees of freedom. For example, for a 5% level test and 
with n � k � 1 � 28 degrees of freedom, the critical value is c � 1.701. If  t   ̂  �  j   � 1.701, 
then we fail to reject H0 in favor of (4.6) at the 5% level. Note that a negative value for 
 t   ̂  �  j  , no matter how large in absolute value, leads to a failure in rejecting H0 in favor of (4.6). 
(See Figure 4.2.)
 The same procedure can be used with other significance levels. For a 10% level test 
and if df � 21, the critical value is c � 1.323. For a 1% significance level and if df � 21, 
c � 2.518. All of these critical values are obtained directly from Table G.2. You should note 
a pattern in the critical values: As the significance level falls, the critical value increases, 
so that we require a larger and larger value of  t   ̂  �  j   in order to reject H0. Thus, if H0 is rejected 
at, say, the 5% level, then it is automatically rejected at the 10% level as well. It makes no 
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sense to reject the null hypothesis at, say, the 5% level and then to redo the test to deter-
mine the outcome at the 10% level.
 As the degrees of freedom in the t distribution gets large, the t distribution approaches 
the standard normal distribution. For example, when n � k � 1 � 120, the 5% critical 
value for the one-sided alternative (4.7) is 1.658, compared with the standard normal value 
of 1.645. These are close enough for practical purposes; for degrees of freedom greater 
than 120, one can use the standard normal critical values.

E x a m p l e  4 . 1

[Hourly Wage Equation]

Using the data in WAGE1.RAW gives the estimated equation

2log(wage)  � .284 � .092 educ � .0041 exper � .022 tenure 

(.104) (.007) (.0017) (.003)

 n � 526, R2 � .316,

F I GURE  4 . 2

5% rejection rule for the alternative H1: �j � 0 with 28 df.

0

1.701 rejection
region

area = .05
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where standard errors appear in parentheses below the estimated coefficients. We will follow this 
convention throughout the text. This equation can be used to test whether the return to exper, con-
trolling for educ and tenure, is zero in the population, against the alternative that it is positive. Write 
this as H0: �exper � 0 versus H1: �exper � 0. (In applications, indexing a parameter by its associated 
variable name is a nice way to label parameters, since the numerical indices that we use in the 
general model are arbitrary and can cause confusion.) Remember that �exper denotes the unknown 
population parameter. It is nonsense to write “H0: .0041 � 0” or “H0:  ̂  � exper � 0.”
 Since we have 522 degrees of freedom, we can use the standard normal critical values. The 5% 
critical value is 1.645, and the 1% critical value is 2.326. The t statistic for  ̂  � exper is

texper � .0041/.0017 
 2.41,

and so  ̂  � exper, or exper, is statistically significant even at the 1% level. We also say that “ ̂  � exper is 
statistically greater than zero at the 1% significance level.”
 The estimated return for another year of experience, holding tenure and education fixed, is not 
especially large. For example, adding three more years increases log(wage) by 3(.0041) � .0123, so 
wage is only about 1.2% higher. Nevertheless, we have persuasively shown that the partial effect of 
experience is positive in the population.

 
 The one-sided alternative that the parameter is less than zero,

 H1: �j � 0, 4.8

also arises in applications. The rejection rule for alternative (4.8) is just the mirror image 
of the previous case. Now, the critical value comes from the left tail of the t distribution. 
In practice, it is easiest to think of the rejection rule as

  t   ̂  �  j   � �c, 4.9

where c is the critical value for the alternative H1: �j � 0. For simplicity, we 
always assume c is positive, since this is how critical values are reported in t tables, 
and so the critical value �c is a nega-
tive number.
 For example, if the significance 
level is 5% and the degrees of free-
dom is 18, then c � 1.734, and so 
H0: �j � 0 is rejected in favor of H1: 
�j � 0 at the 5% level if  t   ̂  �  j   � �1.734. 
It is important to remember that, to 
reject H0 against the negative alter-
native (4.8), we must get a negative t 
statistic. A positive t ratio, no matter 
how large, provides no evidence in 
favor of (4.8). The rejection rule is 
illustrated in Figure 4.3.

Q u e s t i o n  4 . 2
Let community loan approval rates be determined by

apprate �  �0 � �1percmin � �2avginc � 
�3avgwlth � �4avgdebt � u,

where percmin is the percentage minority in the community, avginc 
is average income, avgwlth is average wealth, and avgdebt is some 
measure of average debt obligations. How do you state the null 
hypothesis that there is no difference in loan rates across neigh-
borhoods due to racial and ethnic composition, when average 
income, average wealth, and average debt have been con trolled 
for? How do you state the alternative that there is discrimination 
against minorities in loan approval rates?
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E x a m p l e  4 . 2

[Student Performance and School Size]

There is much interest in the effect of school size on student performance. (See, for example, The 
New York Times Magazine, 5/28/95.) One claim is that, everything else being equal, students at 
smaller schools fare better than those at larger schools. This hypothesis is assumed to be true even 
after accounting for differences in class sizes across schools.
 The file MEAP93.RAW contains data on 408 high schools in Michigan for the year 1993. We 
can use these data to test the null hypothesis that school size has no effect on standardized test scores 
against the alternative that size has a negative effect. Performance is measured by the percentage 
of students receiving a passing score on the Michigan Educational Assessment Program (MEAP) 
standardized tenth-grade math test (math10). School size is measured by student enrollment (enroll). 
The null hypothesis is H

0
: �enroll � 0, and the alternative is H1: �enroll � 0. For now, we will control 

for two other factors, average annual teacher compensation (totcomp) and the number of staff per 
one thousand students (staff). Teacher compensation is a measure of teacher quality, and staff size 
is a rough measure of how much attention students receive.

F I GURE  4 . 3

5% rejection rule for the alternative H1: �j � 0 with 18 df.

0

–1.734rejection
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area = .05
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 The estimated equation, with standard errors in parentheses, is

2math10 � 2.274 � .00046 totcomp � .048 staff � .00020 enroll

 (6.113) (.00010) (.040) (.00022)

 n � 408, R2 � .0541.

The coefficient on enroll, �.00020, is in accordance with the conjecture that larger schools hamper 
performance: higher enrollment leads to a lower percentage of students with a passing tenth-grade 
math score. (The coefficients on totcomp and staff also have the signs we expect.) The fact that enroll 
has an estimated coefficient different from zero could just be due to sampling error; to be convinced 
of an effect, we need to conduct a t test.
 Since n � k � 1 � 408 � 4 � 404, we use the standard normal critical value. At the 5% level, 
the critical value is �1.65; the t statistic on enroll must be less than �1.65 to reject H0 at the 5% 
level.
 The t statistic on enroll is �.00020/.00022 
 �.91, which is larger than �1.65: we fail to reject 
H0 in favor of H1 at the 5% level. In fact, the 15% critical value is �1.04, and since �.91 � �1.04, 
we fail to reject H0 even at the 15% level. We conclude that enroll is not statistically significant at 
the 15% level.
 The variable totcomp is statistically significant even at the 1% significance level because its t 
statistic is 4.6. On the other hand, the t statistic for staff is 1.2, and so we cannot reject H0: �staff � 0 
against H1: �staff � 0 even at the 10% significance level. (The critical value is c � 1.28 from the 
standard normal distribution.)
 To illustrate how changing functional form can affect our conclusions, we also estimate the 
model with all independent variables in logarithmic form. This allows, for example, the school size 
effect to diminish as school size increases. The estimated equation is

2math10  � �207.66 � 21.16 log(totcomp) � 3.98 log(staff ) � 1.29 log(enroll)

  (48.70) (4.06) (4.19) (0.69)

 n � 408, R2 � .0654.

The t statistic on log(enroll ) is about �1.87; since this is below the 5% critical value �1.65, we 
reject H0: �log(enroll) � 0 in favor of H1: �log(enroll) � 0 at the 5% level.
 In Chapter 2, we encountered a model where the dependent variable appeared in its original form 
(called level form), while the independent variable appeared in log form (called level-log model). 
The interpretation of the parameters is the same in the multiple regression context, except, of course, 
that we can give the parameters a ceteris paribus interpretation. Holding totcomp and staff fixed, we 
have �2math10  � �1.29[�log(enroll)], so that

�2math10  
 �(1.29/100)(%�enroll ) � �.013(%�enroll ).

Once again, we have used the fact that the change in log(enroll ), when multiplied by 100, is approxi-
mately the percentage change in enroll. Thus, if enrollment is 10% higher at a school, 2math10  is 
predicted to be .013(10) � 0.13 percentage points lower (math10 is measured as a percentage).
 Which model do we prefer: the one using the level of enroll or the one using log(enroll )? In 
the level-level model, enrollment does not have a statistically significant effect, but in the level-log 
model it does. This translates into a higher R-squared for the level-log model, which means we 
explain more of the variation in math10 by using enroll in logarithmic form (6.5% to 5.4%). The 
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level-log model is preferred because it more closely captures the relationship between math10 and 
enroll. We will say more about using R-squared to choose functional form in Chapter 6.

 

Two-Sided Alternatives
In applications, it is common to test the null hypothesis H0: �j � 0 against a two-sided 
alternative; that is,

 H1: �j 	 0. 4.10

Under this alternative, xj has a ceteris paribus effect on y without specifying whether the 
effect is positive or negative. This is the relevant alternative when the sign of �j is not well 
determined by theory (or common sense). Even when we know whether �j is positive or 
negative under the alternative, a two-sided test is often prudent. At a minimum, using a 
two-sided alternative prevents us from looking at the estimated equation and then basing 
the alternative on whether  ̂  � j is positive or negative. Using the regression estimates to help 
us formulate the null or alternative hypotheses is not allowed because classical statisti-
cal inference presumes that we state the null and alternative about the population before 
looking at the data. For example, we should not first estimate the equation relating math 
performance to enrollment, note that the estimated effect is negative, and then decide the 
relevant alternative is H1: �enroll � 0.
 When the alternative is two-sided, we are interested in the absolute value of the t sta-
tistic. The rejection rule for H0: �j � 0 against (4.10) is

 � t   ̂  �  j  � � c, 4.11

where ��� denotes absolute value and c is an appropriately chosen critical value. To find c, 
we again specify a significance level, say 5%. For a two-tailed test, c is chosen to make 
the area in each tail of the t distribution equal 2.5%. In other words, c is the 97.5th percen-
tile in the t distribution with n � k � 1 degrees of freedom. When n � k � 1 � 25, the 
5% critical value for a two-sided test is c � 2.060. Figure 4.4 provides an illustration of 
this distribution.
 When a specific alternative is not stated, it is usually considered to be two-sided. In 
the remainder of this text, the default will be a two-sided alternative, and 5% will be the 
default significance level. When carrying out empirical econometric analysis, it is always 
a good idea to be explicit about the alternative and the significance level. If H0 is rejected 
in favor of (4.10) at the 5% level, we usually say that “xj is statistically significant, or 
statistically different from zero, at the 5% level.” If H0 is not rejected, we say that “xj is 
statistically insignificant at the 5% level.”

E x a m p l e  4 . 3

[Determinants of College GPA]

We use GPA1.RAW to estimate a model explaining college GPA (colGPA), with the average number 
of lectures missed per week (skipped) as an additional explanatory variable. The estimated model is
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2colGPA  � 1.39 � .412 hsGPA � .015 ACT � .083 skipped

  (.33) (.094) (.011) (.026)

 n � 141, R2 � .234.

We can easily compute t statistics to see which variables are statistically significant, using a two-
sided alternative in each case. The 5% critical value is about 1.96, since the degrees of freedom 
(141 � 4 � 137) is large enough to use the standard normal approximation. The 1% critical value 
is about 2.58.
 The t statistic on hsGPA is 4.38, which is significant at very small significance levels. Thus, 
we say that “hsGPA is statistically significant at any conventional significance level.” The t statistic 
on ACT is 1.36, which is not statistically significant at the 10% level against a two-sided alterna-
tive. The coefficient on ACT is also practically small: a 10-point increase in ACT, which is large, is 
predicted to increase colGPA by only .15 points. Thus, the variable ACT is practically, as well as 
statistically, insignificant.
 The coefficient on skipped has a t statistic of �.083/.026 � �3.19, so skipped is statistically 
significant at the 1% significance level (3.19 � 2.58). This coefficient means that another lecture 
missed per week lowers predicted colGPA by about .083. Thus, holding hsGPA and ACT fixed, the 
predicted difference in colGPA between a student who misses no lectures per week and a student 

F I GURE  4 . 4

5% rejection rule for the alternative H1: �j � 0 with 25 df.
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who misses five lectures per week is about .42. Remember that this says nothing about specific 
students; rather, .42 is the estimated average across a subpopulation of students.
 In this example, for each variable in the model, we could argue that a one-sided alternative 
is appropriate. The variables hsGPA and skipped are very significant using a two-tailed test 
and have the signs that we expect, so there is no reason to do a one-tailed test. On the other 
hand, against a one-sided alternative (�3 � 0), ACT is significant at the 10% level but not at 
the 5% level. This does not change the fact that the coefficient on ACT is pretty small.

 

Testing Other Hypotheses about �j

Although H0: �j � 0 is the most common hypothesis, we sometimes want to test whether 
�j is equal to some other given constant. Two common examples are �j � 1 and �j � �1. 
Generally, if the null is stated as

 H0: �j � aj, 4.12

where aj is our hypothesized value of �j, then the appropriate t statistic is

t �  (  ̂  � j � aj
)�se(  ̂  � j).

As before, t measures how many estimated standard deviations  ̂  � j is away from the hypoth-
esized value of �j. The general t statistic is usefully written as

 t �   
(estimate � hypothesized value)

   ___________________________  
standard error

  . 4.13

Under (4.12), this t statistic is distributed as tn�k�1 from Theorem 4.2. The usual t statistic 
is obtained when aj � 0.
 We can use the general t statistic to test against one-sided or two-sided alternatives. 
For example, if the null and alternative hypotheses are H0: �j � 1 and H1: �j � 1, then we 
find the critical value for a one-sided alternative exactly as before: the difference is in how 
we compute the t statistic, not in how we obtain the appropriate c. We reject H0 in favor 
of H1 if t � c. In this case, we would say that “ ̂  � j is statistically greater than one” at the 
appropriate significance level.

E x a m p l e  4 . 4

[Campus Crime and Enrollment]

Consider a simple model relating the annual number of crimes on college campuses (crime) to stu-
dent enrollment (enroll):

log(crime) � �0 � �1log(enroll) � u.

This is a constant elasticity model, where �1 is the elasticity of crime with respect to enrollment. It 
is not much use to test H0: �1 � 0, as we expect the total number of crimes to increase as the size 
of the campus increases. A more interesting hypothesis to test would be that the elasticity of crime 
with respect to enrollment is one: H0: �1 � 1. This means that a 1% increase in enrollment leads 
to, on average, a 1% increase in crime. A noteworthy alternative is H1: �1 � 1, which implies that 
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a 1% increase in enrollment increases campus crime by more than 1%. If �1 � 1, then, in a relative 
sense—not just an absolute sense—crime is more of a problem on larger campuses. One way to see 
this is to take the exponential of the equation:

crime � exp(�0)enroll    � 
1
  exp(u).

(See Appendix A for properties of the natural logarithm and exponential functions.) For �0 � 0 and 
u � 0, this equation is graphed in Figure 4.5 for �1 � 1, �1 � 1, and �1 � 1.
 We test �1 � 1 against �1 � 1 using data on 97 colleges and universities in the United States for 
the year 1992, contained in the data file CAMPUS.RAW. The data come from the FBI’s Uniform 
Crime Reports, and the average number of campus crimes in the sample is about 394, while the aver-
age enrollment is about 16,076. The estimated equation (with estimates and standard errors rounded 
to two decimal places) is

2log(crime)  � �6.63 � 1.27 log(enroll )

 (1.03) (0.11) 4.14

 n � 97, R2 � .585.

The estimated elasticity of crime with respect to enroll, 1.27, is in the direction of the alternative 
�1 � 1. But is there enough evidence to conclude that �1 � 1? We need to be careful in testing this 
hypothesis, especially because the statistical output of standard regression packages is much more 

F I GURE  4 . 5

Graph of crime � enroll 
�1 for �1� 1, �1 � 1, and �1 � 1.

0

b1 = 1

crime

enroll

b1 > 1

b1 < 1

0



132 Part 1   Regression Analysis with Cross-Sectional Data

complex than the simplified output reported in equation (4.14). Our first instinct might be to con-
struct “the” t statistic by taking the coefficient on log(enroll ) and dividing it by its standard error, 
which is the t statistic reported by a regression package. But this is the wrong statistic for testing 
H0: �1 � 1. The correct t statistic is obtained from (4.13): we subtract the hypothesized value, unity, 
from the estimate and divide the result by the standard error of  ̂  � 1: t � (1.27 � 1)/.11 � .27/.11 � 2.45. 
The one-sided 5% critical value for a t distribution with 97 � 2 � 95 df is about 1.66 (using df � 120), 
so we clearly reject �1 � 1 in favor of �1 � 1 at the 5% level. In fact, the 1% critical value is about 
2.37, and so we reject the null in favor of the alternative at even the 1% level.
 We should keep in mind that this analysis holds no other factors constant, so the elasticity of 
1.27 is not necessarily a good estimate of ceteris paribus effect. It could be that larger enrollments 
are correlated with other factors that cause higher crime: larger schools might be located in higher 
crime areas. We could control for this by collecting data on crime rates in the local city.

 
 For a two-sided alternative, for example H0: �j � �1, H1: �j 	 �1, we still compute 
the t statistic as in (4.13): t � ( ̂  � j � 1)/se( ̂  � j) (notice how subtracting �1 means adding 
1). The rejection rule is the usual one for a two-sided test: reject H0 if �t� � c, where c is 
a two-tailed critical value. If H0 is rejected, we say that “ ̂  � j is statistically different from 
negative one” at the appropriate significance level.

E x a m p l e  4 . 5

[Housing Prices and Air Pollution]

For a sample of 506 communities in the Boston area, we estimate a model relating median housing 
price (price) in the community to various community characteristics: nox is the amount of nitrogen 
oxide in the air, in parts per million; dist is a weighted distance of the community from five employ-
ment centers, in miles; rooms is the average number of rooms in houses in the community; and 
stratio is the average student-teacher ratio of schools in the community. The population model is

log(price) � �0 � �1log(nox) � �2log(dist) � �3rooms � �4stratio � u.

Thus, �1 is the elasticity of price with respect to nox. We wish to test H0: �1 � �1 against the alter-
native H1: �1 	 �1. The t statistic for doing this test is t � ( ̂  � 1 � 1)/se( ̂  � 1).
 Using the data in HPRICE2.RAW, the estimated model is

2log(price)  � 11.08 � .954 log(nox) � .134 log(dist) � .255 rooms � .052 stratio

 (0.32) (.117) (.043) (.019) (.006)

 n � 506, R2 � .581.

The slope estimates all have the anticipated signs. Each coefficient is statistically different from zero 
at very small significance levels, including the coefficient on log(nox). But we do not want to test that 
�1 � 0. The null hypothesis of interest is H0: �1 � �1, with corresponding t statistic (�.954 � 1)/
.117 � .393. There is little need to look in the t table for a critical value when the t statistic is this 
small: the estimated elasticity is not statistically different from �1 even at very large significance 
levels. Controlling for the factors we have included, there is little evidence that the elasticity is dif-
ferent from �1.
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Computing p-Values for t Tests
So far, we have talked about how to test hypotheses using a classical approach: after 
stating the alternative hypothesis, we choose a significance level, which then determines 
a critical value. Once the critical value has been identified, the value of the t statistic is 
compared with the critical value, and the null is either rejected or not rejected at the given 
significance level.
 Even after deciding on the appropriate alternative, there is a component of arbitrariness 
to the classical approach, which results from having to choose a significance level ahead of 
time. Different researchers prefer different significance levels, depending on the particular 
application. There is no “correct” significance level.
 Committing to a significance level ahead of time can hide useful information about the 
outcome of a hypothesis test. For example, suppose that we wish to test the null hypothesis 
that a parameter is zero against a two-sided alternative, and with 40 degrees of freedom 
we obtain a t statistic equal to 1.85. The null hypothesis is not rejected at the 5% level, 
since the t statistic is less than the two-tailed critical value of c � 2.021. A researcher 
whose agenda is not to reject the null could simply report this outcome along with the 
estimate: the null hypothesis is not rejected at the 5% level. Of course, if the t statistic, or 
the coefficient and its standard error, are reported, then we can also determine that the null 
hypothesis would be rejected at the 10% level, since the 10% critical value is c � 1.684.
 Rather than testing at different significance levels, it is more informative to answer 
the following question: Given the observed value of the t statistic, what is the smallest 
significance level at which the null hypothesis would be rejected? This level is known as 
the p-value for the test (see Appendix C). In the previous example, we know the p-value 
is greater than .05, since the null is not rejected at the 5% level, and we know that the 
p-value is less than .10, since the null is rejected at the 10% level. We obtain the actual 
p-value by computing the probability that a t random variable, with 40 df, is larger than 
1.85 in absolute value. That is, the p-value is the significance level of the test when we use 
the value of the test statistic, 1.85 in the above example, as the critical value for the test. 
This p-value is shown in Figure 4.6.
 Because a p-value is a probability, its value is always between zero and one. In order to 
compute p-values, we either need extremely detailed printed tables of the t  distribution—
which is not very practical—or a computer program that computes areas under the prob-
ability density function of the t distribution. Most modern regression packages have this 
capability. Some packages compute p-values routinely with each OLS regression, but only 
for certain hypotheses. If a regression package reports a p-value along with the standard 
OLS output, it is almost certainly the p-value for testing the null hypothesis H0: �j � 0 
against the two-sided alternative. The p-value in this case is

 P(�  T  � � �t�), 4.15

where, for clarity, we let T denote a t distributed random variable with n � k � 1 degrees 
of freedom and let t denote the numerical value of the test statistic.
 The p-value nicely summarizes the strength or weakness of the empirical evidence 
against the null hypothesis. Perhaps its most useful interpretation is the following: the 
p-value is the probability of observing a t statistic as extreme as we did if the null hypoth-
esis is true. This means that small p-values are evidence against the null; large p-values 
provide little evidence against H0. For example, if the p-value � .50 (reported always as a 
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decimal, not a percentage), then we would observe a value of the t statistic as extreme as 
we did in 50% of all random samples when the null hypothesis is true; this is pretty weak 
evidence against H0.
 In the example with df � 40 and t � 1.85, the p-value is computed as

p-value � P(�T � � 1.85) � 2P(T � 1.85) � 2(.0359) � .0718,

where P(T � 1.85) is the area to the right of 1.85 in a t distribution with 40 df. (This value 
was computed using the econometrics package Stata; it is not available in Table G.2.) 
This means that, if the null hypothesis is true, we would observe an absolute value of the t 
statistic as large as 1.85 about 7.2 percent of the time. This provides some evidence against 
the null hypothesis, but we would not reject the null at the 5% significance level.
 The previous example illustrates that once the p-value has been computed, a classical 
test can be carried out at any desired level. If � denotes the significance level of the test 
(in decimal form), then H0 is rejected if p-value � �; otherwise, H0 is not rejected at the 
100��% level.
 Computing p-values for one-sided alternatives is also quite simple. Suppose, for 
example, that we test H0: �j � 0 against H1: �j � 0. If  ̂  � j � 0, then computing a p-value is 
not important: we know that the p-value is greater than .50, which will never cause us to 
reject H0 in favor of H1. If  ̂  � j � 0, then t � 0 and the p-value is just the probability that a 
t random variable with the appropriate df exceeds the value t. Some regression packages 

F I GURE  4 . 6

Obtaining the p-value against a two-sided alternative, when t � 1.85 and df � 40.
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only compute p-values for two-sided alternatives. But it is simple to obtain the one-sided 
p-value: just divide the two-sided p-value by 2.
 If the alternative is H1: �j � 0, it makes sense to compute a p-value if  ̂  � j � 0 (and hence 
t � 0): p-value � P(T � t) � P(T � �t�) because the t distribution is symmetric about zero. 
Again, this can be obtained as one-half 
of the p-value for the two-tailed test.
 Because you will quickly become 
familiar with the magnitudes of t statis-
tics that lead to statistical significance, 
especially for large sample sizes, it is 
not always crucial to report p-values for 
t statistics. But it does not hurt to report 
them. Further, when we discuss F testing in Section 4.5, we will see that it is important to 
compute p-values, because critical values for F tests are not so easily memorized.

A Reminder on the Language of Classical 
Hypothesis Testing
When H0 is not rejected, we prefer to use the language “we fail to reject H0 at the x% level,” 
rather than “H0 is accepted at the x% level.” We can use Example 4.5 to illustrate why the 
former statement is preferred. In this example, the estimated elasticity of price with respect 
to nox is �.954, and the t statistic for testing H0: �nox � �1 is t � .393; therefore, we cannot 
reject H0. But there are many other values for �nox (more than we can count) that cannot be 
rejected. For example, the t statistic for H0: �nox � �.9 is (�.954 � .9)/.117 � �.462, and 
so this null is not rejected either. Clearly �nox � �1 and �nox � �.9 cannot both be true, so 
it makes no sense to say that we “accept” either of these hypotheses. All we can say is that 
the data do not allow us to reject either of these hypotheses at the 5% significance level.

Economic, or Practical, versus Statistical Signifi cance
Because we have emphasized statistical significance throughout this section, now is a 
good time to remember that we should pay attention to the magnitude of the coefficient 
estimates in addition to the size of the t statistics. The statistical significance of a variable 
xj is determined entirely by the size of  t   ̂  �  j  , whereas the economic significance or practical 
significance of a variable is related to the size (and sign) of  ̂  � 

j
.

 Recall that the t statistic for testing H0: �j � 0 is defined by dividing the estimate by 
its standard error:  t   ̂  �  j   �  ̂  � j  /se( ̂  � j). Thus,  t   ̂  �  j   can indicate statistical significance either because  
ˆ � j is “large” or because se( ̂  � j) is “small.” It is important in practice to distinguish between 
these reasons for statistically significant t statistics. Too much focus on statistical signifi-
cance can lead to the false conclusion that a variable is “important” for explaining y even 
though its estimated effect is modest.

E x a m p l e  4 . 6

[Participation Rates in 401(k) Plans]

In Example 3.3, we used the data on 401(k) plans to estimate a model describing participation rates 
in terms of the firm’s match rate and the age of the plan. We now include a measure of firm size, the 
total number of firm employees (totemp). The estimated equation is

Q u e s t i o n  4 . 3
Suppose you estimate a regression model and obtain  ̂  � 1 � .56 and 
p-value � .086 for testing H0: �1 � 0 against H1: �1 	 0. What is 
the p-value for testing H0: �1 � 0 against H1: �1 � 0?
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1prate � 80.29 � 5.44 mrate � .269 age � .00013 totemp

 (0.78) (0.52) (.045) (.00004)

 n � 1,534, R2 � .100.

The smallest t statistic in absolute value is that on the variable totemp: t � �.00013/.00004 � 
�3.25, and this is statistically significant at very small significance levels. (The two-tailed p-value 
for this t statistic is about .001.) Thus, all of the variables are statistically significant at rather small 
significance levels.
 How big, in a practical sense, is the coefficient on totemp? Holding mrate and age fixed, if a 
firm grows by 10,000 employees, the participation rate falls by 10,000(.00013) � 1.3 percentage 
points. This is a huge increase in number of employees with only a modest effect on the participa-
tion rate. Thus, although firm size does affect the participation rate, the effect is not practically 
very large.

 
 The previous example shows that it is especially important to interpret the magnitude 
of the coefficient, in addition to looking at t statistics, when working with large samples. 
With large sample sizes, parameters can be estimated very precisely: Standard errors are 
often quite small relative to the coefficient estimates, which usually results in statistical 
significance.
 Some researchers insist on using smaller significance levels as the sample size increases,
partly as a way to offset the fact that standard errors are getting smaller. For example, 
if we feel comfortable with a 5% level when n is a few hundred, we might use the 1% 
level when n is a few thousand. Using a smaller significance level means that economic 
and statistical significance are more likely to coincide, but there are no guarantees: In the 
previous example, even if we use a significance level as small as .1% (one-tenth of 1%), 
we would still conclude that totemp is statistically significant.
 Most researchers are also willing to entertain larger significance levels in applica-
tions with small sample sizes, reflecting the fact that it is harder to find significance with 
smaller sample sizes (the critical values are larger in magnitude, and the estimators are 
less precise). Unfortunately, whether or not this is the case can depend on the researcher’s 
underlying agenda.

E x a m p l e  4 . 7

[Effect of Job Training on Firm Scrap Rates]

The scrap rate for a manufacturing firm is the number of defective items—products that must be 
discarded—out of every 100 produced. Thus, for a given number of items produced, a decrease in 
the scrap rate reflects higher worker productivity.
 We can use the scrap rate to measure the effect of worker training on productivity. Using the 
data in JTRAIN.RAW, but only for the year 1987 and for nonunionized firms, we obtain the follow-
ing estimated equation:

2log(scrap) � 12.46 � .029 hrsemp � .962 log(sales) � .761 log(employ)

 (5.69) (.023) (.453) (.407)

 n � 29, R2 � .262.
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The variable hrsemp is annual hours of training per employee, sales is annual firm sales (in dollars), 
and employ is the number of firm employees. For 1987, the average scrap rate in the sample is about 
4.6 and the average of hrsemp is about 8.9.
 The main variable of interest is hrsemp. One more hour of training per employee lowers 
log(scrap) by .029, which means the scrap rate is about 2.9% lower. Thus, if hrsemp increases by 
5—each employee is trained 5 more hours per year—the scrap rate is estimated to fall by 5(2.9) � 
14.5%. This seems like a reasonably large effect, but whether the additional training is worthwhile 
to the firm depends on the cost of training and the benefits from a lower scrap rate. We do not have 
the numbers needed to do a cost benefit analysis, but the estimated effect seems nontrivial.
 What about the statistical significance of the training variable? The t statistic on hrsemp is 
�.029/.023 � �1.26, and now you probably recognize this as not being large enough in magnitude 
to conclude that hrsemp is statistically significant at the 5% level. In fact, with 29 � 4 � 25 degrees 
of freedom for the one-sided alternative, H1: �hrsemp � 0, the 5% critical value is about �1.71. Thus, 
using a strict 5% level test, we must conclude that hrsemp is not statistically significant, even using 
a one-sided alternative.
 Because the sample size is pretty small, we might be more liberal with the significance level. 
The 10% critical value is �1.32, and so hrsemp is almost significant against the one-sided alterna-
tive at the 10% level. The p-value is easily computed as P(T25 � �1.26) � .110. This may be a low 
enough p-value to conclude that the estimated effect of training is not just due to sampling error, but 
opinions would legitimately differ on whether a one-sided p-value of .11 is sufficiently small.

 

 Remember that large standard errors can also be a result of multicollinearity (high cor-
relation among some of the independent variables), even if the sample size seems fairly 
large. As we discussed in Section 3.4, there is not much we can do about this problem 
other than to collect more data or change the scope of the analysis by dropping or combin-
ing certain independent variables. As in the case of a small sample size, it can be hard to 
precisely estimate partial effects when some of the explanatory variables are highly cor-
related. (Section 4.5 contains an example.)
 We end this section with some guidelines for discussing the economic and statistical 
significance of a variable in a multiple regression model:

 1.  Check for statistical significance. If the variable is statistically significant, discuss 
the magnitude of the coefficient to get an idea of its practical or economic impor-
tance. This latter step can require some care, depending on how the independent 
and dependent variables appear in the equation. (In particular, what are the units of 
measurement? Do the variables appear in logarithmic form?)

 2.  If a variable is not statistically significant at the usual levels (10%, 5%, or 1%), you 
might still ask if the variable has the expected effect on y and whether that effect is 
practically large. If it is large, you should compute a p-value for the t statistic. For 
small sample sizes, you can sometimes make a case for p-values as large as .20 (but 
there are no hard rules). With large p-values, that is, small t statistics, we are treading 
on thin ice because the practically large estimates may be due to sampling error: A 
different random sample could result in a very different estimate.

 3.  It is common to find variables with small t statistics that have the “wrong” sign. For 
practical purposes, these can be ignored: we conclude that the variables are statisti-
cally insignificant. A significant variable that has the unexpected sign and a practi-
cally large effect is much more troubling and difficult to resolve. One must usually 
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think more about the model and the nature of the data to solve such problems. Often, 
a counterintuitive, significant estimate results from the omission of a key variable or 
from one of the important problems we will discuss in Chapters 9 and 15.

4.3 Confi dence Intervals
Under the classical linear model assumptions, we can easily construct a confidence inter-
val (CI) for the population parameter �j . Confidence intervals are also called interval 
estimates because they provide a range of likely values for the population parameter, and 
not just a point estimate.
 Using the fact that ( ̂  � j � �j)/se( ̂  � j) has a t distribution with n � k � 1 degrees of free-
dom [see (4.3)], simple manipulation leads to a CI for the unknown �j: a 95% confidence 
interval, given by

  ̂  � j � c�se(  ̂  � j), 4.16

where the constant c is the 97.5th percentile in a  t n�k�1  distribution. More precisely, the 
lower and upper bounds of the confi dence interval are given by

�
�j

 �  ̂  � j � c�se(  ̂  � j)

and

 ��
j
 �  ̂  � j� c�se(  ̂  � j), 

respectively.
 At this point, it is useful to review the meaning of a confidence interval. If random 
samples were obtained over and over again, with �

�j
 and ��

j 
computed each time, then 

the (unknown) population value �j would lie in the interval ( �
�j

 , ��
j
) for 95% of the sam-

ples. Unfortunately, for the single sample that we use to construct the CI, we do not know 
whether �j is actually contained in the interval. We hope we have obtained a sample that 
is one of the 95% of all samples where the interval estimate contains �j , but we have no 
guarantee.
 Constructing a confidence interval is very simple when using current computing 
technology. Three quantities are needed:  ̂  � j , se(  ̂  � j ), and c. The coefficient estimate and 
its standard error are reported by any regression package. To obtain the value c, we must 
know the degrees of freedom, n � k � 1, and the level of confidence—95% in this case. 
Then, the value for c is obtained from the tn�k�1 distribution.
 As an example, for df � n � k � 1 � 25, a 95% confidence interval for any �j is given 
by [  ̂  � j � 2.06�se(  ̂  � j ),  ̂  � j � 2.06�se(  ̂  � j )].
 When n � k � 1 � 120, the tn�k�1 distribution is close enough to normal to use the 97.5th 
percentile in a standard normal distribution for constructing a 95% CI:  ̂  � j � 1.96�se(  ̂  � j ). 
In fact, when n � k � 1 � 50, the value of c is so close to 2 that we can use a simple rule 
of thumb for a 95% confidence interval:  ̂  � j plus or minus two of its standard errors. For 
small degrees of freedom, the exact percentiles should be obtained from the t tables.
 It is easy to construct confidence intervals for any other level of confidence. For exam-
ple, a 90% CI is obtained by choosing c to be the 95th percentile in the tn�k�1 distribution. 
When df � n � k � 1 � 25, c � 1.71, and so the 90% CI is  ̂  � j � 1.71�se(  ̂  � j ), which is 
necessarily narrower than the 95% CI. For a 99% CI, c is the 99.5th percentile in the t25 
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distribution. When df � 25, the 99% CI is roughly  ̂  � j � 2.79�se(  ̂  � j ), which is inevitably 
wider than the 95% CI.
 Many modern regression packages save us from doing any calculations by reporting 
a 95% CI along with each coefficient and its standard error. Once a confidence interval is 
constructed, it is easy to carry out two-tailed hypotheses tests. If the null hypothesis is H0: 
�j � aj, then H0 is rejected against H1: �j 	 aj at (say) the 5% significance level if, and 
only if, aj is not in the 95% confidence interval.

E x a m p l e  4 . 8

[Model of R&D Expenditures]

Economists studying industrial organization are interested in the relationship between firm size—
often measured by annual sales—and spending on research and development (R&D). Typically, 
a constant elasticity model is used. One might also be interested in the ceteris paribus effect of 
the profit margin—that is, profits as a percentage of sales—on R&D spending. Using the data in 
RDCHEM.RAW, on 32 U.S. firms in the chemical industry, we estimate the following equation 
(with standard errors in parentheses below the coefficients):

2log(rd) � �4.38 � 1.084 log(sales) � .0217 profmarg

 (.47) (.060) (.0218)

 n � 32, R2 � .918.

The estimated elasticity of R&D spending with respect to firm sales is 1.084, so that, holding 
profit margin fixed, a 1% increase in sales is associated with a 1.084% increase in R&D spending. 
(Incidentally, R&D and sales are both measured in millions of dollars, but their units of measure-
ment have no effect on the elasticity estimate.) We can construct a 95% confidence interval for the 
sales elasticity once we note that the estimated model has n � k � 1 � 32 � 2 � 1 � 29 degrees 
of freedom. From Table G.2, we find the 97.5th percentile in a t29 distribution: c � 2.045. Thus, the 
95% confidence interval for �log(sales) is 1.084 � .060(2.045), or about (.961,1.21) That zero is well 
outside this interval is hardly surprising: we expect R&D spending to increase with firm size. More 
interesting is that unity is included in the 95% confidence interval for �log(sales), which means that we 
cannot reject H0: �log(sales) � 1 against H1: �log(sales) 	 1 at the 5% significance level. In other words, 
the estimated R&D-sales elasticity is not statistically different from 1 at the 5% level. (The estimate 
is not practically different from 1, either.)
 The estimated coefficient on profmarg is also positive, and the 95% confidence interval for the 
population parameter, �profmarg, is .0217 � .0218(2.045), or about (�.0045,.0479). In this case, zero is 
included in the 95% confidence interval, so we fail to reject H0: �profmarg � 0 against H1: �profmarg 	 0 
at the 5% level. Nevertheless, the t statistic is about 1.70, which gives a two-sided p-value of about 
.10, and so we would conclude that profmarg is statistically significant at the 10% level against the 
two-sided alternative, or at the 5% level against the one-sided alternative H1: �profmarg � 0. Plus, the 
economic size of the profit margin coefficient is not trivial: holding sales fixed, a one percentage 
point increase in profmarg is estimated to increase R&D spending by 100(.0217) � 2.2%. A com-
plete analysis of this example goes beyond simply stating whether a particular value, zero in this 
case, is or is not in the 95% confidence interval.

 
 You should remember that a confidence interval is only as good as the underlying 
assumptions used to construct it. If we have omitted important factors that are correlated 
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with the explanatory variables, then the coefficient estimates are not reliable: OLS is 
biased. If heteroskedasticity is present—for instance, in the previous example, if the vari-
ance of log(rd) depends on any of the explanatory variables—then the standard error is 
not valid as an estimate of sd(  ̂  � j ) (as we discussed in Section 3.4), and the confidence 
interval computed using these standard errors will not truly be a 95% CI. We have also 
used the normality assumption on the errors in obtaining these CIs, but, as we will see in 
Chapter 5, this is not as important for applications involving hundreds of observations.

4.4 Testing Hypotheses about a Single Linear 
Combination of the Parameters
The previous two sections have shown how to use classical hypothesis testing or confi-
dence intervals to test hypotheses about a single �j at a time. In applications, we must often 
test hypotheses involving more than one of the population parameters. In this section, we 
show how to test a single hypothesis involving more than one of the �j . Section 4.5 shows 
how to test multiple hypotheses.
 To illustrate the general approach, we will consider a simple model to compare the 
returns to education at junior colleges and four-year colleges; for simplicity, we refer to 
the latter as “universities.” [Kane and Rouse (1995) provide a detailed analysis of the 
returns to two- and four-year colleges.] The population includes working people with a 
high school degree, and the model is

log(wage) � �0 � �1 jc � �2 univ � �3 exper � u, 4.17

where 
 jc � number of years attending a two-year college.
 univ � number of years at a four-year college.
 exper � months in the workforce. 

Note that any combination of junior college and four-year college is allowed, including 
jc � 0 and univ � 0.
 The hypothesis of interest is whether one year at a junior college is worth one year at 
a university: this is stated as

 H0: �1 � �2 . 4.18

Under H0 , another year at a junior college and another year at a university lead to the same 
ceteris paribus percentage increase in wage. For the most part, the alternative of interest 
is one-sided: a year at a junior college is worth less than a year at a university. This is 
stated as

 H1: �1 � �2 . 4.19

 The hypotheses in (4.18) and (4.19) concern two parameters, �1 and �2 , a situation 
we have not faced yet. We cannot simply use the individual t statistics for  ̂  � 1 and  ̂  � 2 to 
test H0. However, conceptually, there is no difficulty in constructing a t statistic for test-
ing (4.18). To do so, we rewrite the null and alternative as H0: �1 � �2 � 0 and H1: �1 � 
�2 � 0, respectively. The t statistic is based on whether the estimated difference  ̂  � 1 �  ̂  � 2 
is sufficiently less than zero to warrant rejecting (4.18) in favor of (4.19). To account for 
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the sampling error in our estimators, we standardize this difference by dividing by the 
standard error:

 t �   
 ̂  � 1 �  ̂  � 2 ________________ 

se( ̂  � 1 �  ̂  � 2)
  . 4.20

Once we have the t statistic in (4.20), testing proceeds as before. We choose a significance 
level for the test and, based on the df, obtain a critical value. Because the alternative is 
of the form in (4.19), the rejection rule is of the form t � �c, where c is a positive value 
chosen from the appropriate t distribution. Or we compute the t statistic and then compute 
the p-value (see Section 4.2).
 The only thing that makes testing the equality of two different parameters more dif-
ficult than testing about a single �j is obtaining the standard error in the denominator of 
(4.20). Obtaining the numerator is trivial once we have performed the OLS regression. 
Using the data in TWOYEAR.RAW, which comes from Kane and Rouse (1995), we esti-
mate equation (4.17):

2log(wage) � 1.472 � .0667 jc � .0769 univ � .0049 exper

 (.021) (.0068) (.0023) (.0002) 4.21

 n � 6,763, R2 � .222.

It is clear from (4.21) that jc and univ have both economically and statistically significant 
effects on wage. This is certainly of interest, but we are more concerned about testing 
whether the estimated difference in the coefficients is statistically significant. The differ-
ence is estimated as  ̂  � 1 �  ̂  � 2 � �.0102, so the return to a year at a junior college is about 
one percentage point less than a year at a university. Economically, this is not a trivial 
difference. The difference of �.0102 is the numerator of the t statistic in (4.20).
 Unfortunately, the regression results in equation (4.21) do not contain enough information 
to obtain the standard error of  ̂  � 1 �  ̂  � 2. It might be tempting to claim that se(  ̂  � 1 �  ̂  � 2) � se(  ̂  � 1) � 
se( ̂  � 2), but this is not true. In fact, if we reversed the roles of  ̂  � 1 and  ̂  � 2, we would wind 
up with a negative standard error of the difference using the difference in standard errors. 
Standard errors must always be positive because they are estimates of standard deviations. 
Although the standard error of the difference  ̂  � 1 �  ̂  � 2 certainly depends on se( ̂  � 1) and 
se( ̂  � 2), it does so in a somewhat complicated way. To find se( ̂  � 1 �  ̂  � 2), we first obtain the 
variance of the difference. Using the results on variances in Appendix B, we have

 Var(  ̂  � 1 �  ̂  � 2) � Var(  ̂  � 1) � Var(  ̂  � 2) � 2 Cov(  ̂  � 1,  ̂  � 2). 4.22

Observe carefully how the two variances are added together, and twice the covariance is 
then subtracted. The standard deviation of  ̂  � 1 �  ̂  � 2 is just the square root of (4.22), and, 
since [se(  ̂  � 1)]

2 is an unbiased estimator of Var(  ̂  � 1), and similarly for [se(  ̂  � 2 )]
2, we have

 se(  ̂  � 1 �  ̂  � 2) � {[se(  ̂  � 1 )]
2 � [se(    ̂  � 2 )]

2 � 2s12}1/2, 4.23

where s12 denotes an estimate of Cov(  ̂  � 1,  ̂  � 2 ). We have not displayed a formula for 
Cov( ̂  � 1,  ̂  � 2). Some regression packages have features that allow one to obtain s12, in 
which case one can compute the standard error in (4.23) and then the t statistic in (4.20). 
Appendix E shows how to use matrix algebra to obtain s12.
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 Some of the more sophisticated econometrics programs include special commands that 
can be used for testing hypotheses about linear combinations. Here, we cover an approach 
that is simple to compute in virtually any statistical package. Rather than trying to compute 
se(  ̂  � 1 �  ̂  � 2) from (4.23), it is much easier to estimate a different model that directly deliv-
ers the standard error of interest. Define a new parameter as the difference between �1 and 
�2: �1 � �1 � �2. Then, we want to test

 H0: �1 � 0 against H1: �1 � 0. 4.24

The t statistic in (4.20) in terms of  ̂  � 1 is just t �  ̂  � 1/se( ̂  � 1). The challenge is finding se( ̂  � 1).
 We can do this by rewriting the model so that �1 appears directly on one of the inde-
pendent variables. Because �1 � �1 � �2, we can also write �1 � �1 � �2. Plugging this 
into (4.17) and rearranging gives the equation

 log(wage) � �0 � (�1 � �2) jc � �2univ � �3exper � u

� �0 � �1 jc � �2 ( jc � univ) � �3exper � u.
 4.25

The key insight is that the parameter we are interested in testing hypotheses about, �1, 
now multiplies the variable jc. The intercept is still �0, and exper still shows up as being 
multiplied by �3. More importantly, there is a new variable multiplying �2, namely jc � 
univ. Thus, if we want to directly estimate �1 and obtain the standard error  ̂  � 1, then we 
must construct the new variable jc � univ and include it in the regression model in place 
of univ. In this example, the new variable has a natural interpretation: it is total years of 
college, so define totcoll � jc � univ and write (4.25) as

 log(wage) � �0 � �1 jc � �2totcoll � �3exper � u. 4.26

The parameter �1 has disappeared from the model, while �1 appears explicitly. This model 
is really just a different way of writing the original model. The only reason we have 
defined this new model is that, when we estimate it, the coefficient on jc is  ̂  � 1, and, more 
importantly, se( ̂  � 1) is reported along with the estimate. The t statistic that we want is the 
one reported by any regression package on the variable jc (not the variable totcoll).
 When we do this with the 6,763 observations used earlier, the result is

 2log(wage) � 1.472 � .0102 jc � .0769 totcoll � .0049 exper

 (.021) (.0069) (.0023) (.0002) 4.27

 n � 6,763, R2 � .222.

The only number in this equation that we could not get from (4.21) is the standard error for 
the estimate �.0102, which is .0069. The t statistic for testing (4.18) is �.0102/.0069 � 
�1.48. Against the one-sided alternative (4.19), the p-value is about .070, so there is some, 
but not strong, evidence against (4.18).
 The intercept and slope estimate on exper, along with their standard errors, are the 
same as in (4.21). This fact must be true, and it provides one way of checking whether 
the transformed equation has been properly estimated. The coefficient on the new vari-
able, totcoll, is the same as the coefficient on univ in (4.21), and the standard error is also 
the same. We know that this must happen by comparing (4.17) and (4.25).
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 It is quite simple to compute a 95% confidence interval for �1 � �1 � �2. Using the 
standard normal approximation, the CI is obtained as usual:  ̂  � 1 � 1.96 se( ̂  � 1), which in this 
case leads to �.0102 � .0135.
 The strategy of rewriting the model so that it contains the parameter of interest works 
in all cases and is easy to implement. (See Computer Exercises C4.1 and C4.3 for other 
examples.)

4.5 Testing Multiple Linear Restrictions: 
The F Test
The t statistic associated with any OLS coefficient can be used to test whether the cor-
responding unknown parameter in the population is equal to any given constant (which is 
usually, but not always, zero). We have just shown how to test hypotheses about a single 
linear combination of the �j by rearranging the equation and running a regression using 
transformed variables. But so far, we have only covered hypotheses involving a single 
restriction. Frequently, we wish to test multiple hypotheses about the underlying param-
eters �0, �1, …, �k . We begin with the leading case of testing whether a set of independent 
variables has no partial effect on a dependent variable.

Testing Exclusion Restrictions
We already know how to test whether a particular variable has no partial effect on the 
dependent variable: use the t statistic. Now, we want to test whether a group of variables 
has no effect on the dependent variable. More precisely, the null hypothesis is that a set of 
variables has no effect on y, once another set of variables has been controlled.
 As an illustration of why testing significance of a group of variables is useful, we 
consider the following model that explains major league baseball players’ salaries:

 log(salary) � �0 � �1 years � �2gamesyr � �3bavg 

� �4hrunsyr � �5rbisyr � u,
 4.28

where salary is the 1993 total salary, years is years in the league, gamesyr is average 
games played per year, bavg is career batting average (for example, bavg � 250), hrunsyr 
is home runs per year, and rbisyr is runs batted in per year. Suppose we want to test the 
null hypothesis that, once years in the league and games per year have been controlled 
for, the statistics measuring performance—bavg, hrunsyr, and rbisyr—have no effect on 
salary. Essentially, the null hypothesis states that productivity as measured by baseball 
statistics has no effect on salary.
 In terms of the parameters of the model, the null hypothesis is stated as

 H0: �3 � 0, �4 � 0, �5 � 0. 4.29

The null (4.29) constitutes three exclusion restrictions: If (4.29) is true, then bavg, 
hrunsyr, and rbisyr have no effect on log(salary) after years and gamesyr have been con-
trolled for and therefore should be excluded from the model. This is an example of a set of 
multiple restrictions because we are putting more than one restriction on the parameters 
in (4.28); we will see more general examples of multiple restrictions later. A test of multi-
ple restrictions is called a multiple hypotheses test or a joint hypotheses test.
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 What should be the alternative to (4.29)? If what we have in mind is that “performance 
statistics matter, even after controlling for years in the league and games per year,” then 
the appropriate alternative is simply

 H1: H0 is not true. 4.30

The alternative (4.30) holds if at least one of �3, �4, or �5 is different from zero. (Any or 
all could be different from zero.) The test we study here is constructed to detect any viola-
tion of H0. It is also valid when the alternative is something like H1: �3 � 0, or �4 � 0, 
or �5 � 0, but it will not be the best possible test under such alternatives. We do not have 
the space or statistical background necessary to cover tests that have more power under 
multiple one-sided alternatives.
 How should we proceed in testing (4.29) against (4.30)? It is tempting to test (4.29) by 
using the t statistics on the variables bavg, hrunsyr, and rbisyr to determine whether each 
variable is individually significant. This option is not appropriate. A particular t statistic 
tests a hypothesis that puts no restrictions on the other parameters. Besides, we would have 
three outcomes to contend with—one for each t statistic. What would constitute rejection of 
(4.29) at, say, the 5% level? Should all three or only one of the three t statistics be required 
to be significant at the 5% level? These are hard questions, and fortunately we do not have 
to answer them. Furthermore, using separate t statistics to test a multiple hypothesis like 
(4.29) can be very misleading. We need a way to test the exclusion restrictions jointly.
 To illustrate these issues, we estimate equation (4.28) using the data in MLB1.RAW. 
This gives

2log (salary) � 11.19 � .0689 years � .0126 gamesyr

 (0.29) (.0121) (.0026) 

� .00098 bavg � .0144 hrunsyr � .0108 rbisyr 4.31

 (.00110) (.0161) (.0072)

n � 353, SSR � 183.186, R2 � .6278,

where SSR is the sum of squared residuals. (We will use this later.) We have left 
several terms after the decimal in SSR and R-squared to facilitate future comparisons. 
Equation (4.31) reveals that, whereas years and gamesyr are statistically significant, none 
of the variables bavg, hrunsyr, and rbisyr has a statistically significant t statistic against a 
two-sided alternative, at the 5% significance level. (The t statistic on rbisyr is the closest 
to being significant; its two-sided p-value is .134.) Thus, based on the three t statistics, it 
appears that we cannot reject H0.
 This conclusion turns out to be wrong. To see this, we must derive a test of multiple 
restrictions whose distribution is known and tabulated. The sum of squared residuals now 
turns out to provide a very convenient basis for testing multiple hypotheses. We will also 
show how the R-squared can be used in the special case of testing for exclusion restrictions.
 Knowing the sum of squared residuals in (4.31) tells us nothing about the truth of 
the hypothesis in (4.29). However, the factor that will tell us something is how much the 
SSR increases when we drop the variables bavg, hrunsyr, and rbisyr from the model. 
Remember that, because the OLS estimates are chosen to minimize the sum of squared 
residuals, the SSR always increases when variables are dropped from the model; this is an 
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algebraic fact. The question is whether this increase is large enough, relative to the SSR 
in the model with all of the variables, to warrant rejecting the null hypothesis.
 The model without the three variables in question is simply

 log(salary) � �0 � �1years � �2gamesyr � u. 4.32

In the context of hypothesis testing, equation (4.32) is the restricted model for testing 
(4.29); model (4.28) is called the unrestricted model. The restricted model always has 
fewer parameters than the unrestricted model.
 When we estimate the restricted model using the data in MLB1.RAW, we obtain

2log(salary) � 11.22 � .0713 years � .0202 gamesyr

 (.11) (.0125) (.0013) 4.33

n � 353, SSR � 198.311, R2 � .5971.

As we surmised, the SSR from (4.33) is greater than the SSR from (4.31), and the 
R-squared from the restricted model is less than the R-squared from the unrestricted model. 
What we need to decide is whether the increase in the SSR in going from the unrestricted 
model to the restricted model (183.186 to 198.311) is large enough to warrant rejection 
of (4.29). As with all testing, the answer depends on the significance level of the test. But 
we cannot carry out the test at a chosen significance level until we have a statistic whose 
distribution is known, and can be tabulated, under H0. Thus, we need a way to combine the 
information in the two SSRs to obtain a test statistic with a known distribution under H0.
 Because it is no more difficult, we might as well derive the test for the general case. 
Write the unrestricted model with k independent variables as

 y � �0 � �1x1 � … � �kxk � u; 4.34

the number of parameters in the unrestricted model is k � 1. (Remember to add one for the 
intercept.) Suppose that we have q exclusion restrictions to test: that is, the null hypothesis 
states that q of the variables in (4.34) have zero coefficients. For notational simplicity, assume 
that it is the last q variables in the list of independent variables: xk�q � 1, …, xk . (The order of 
the variables, of course, is arbitrary and unimportant.) The null hypothesis is stated as

 H0: �k�q�1 � 0, …, �k � 0, 4.35

which puts q exclusion restrictions on the model (4.34). The alternative to (4.35) is simply 
that it is false; this means that at least one of the parameters listed in (4.35) is different from 
zero. When we impose the restrictions under H0, we are left with the restricted model:

 y � �0 � �1x1 � … � �k�q xk�q � u. 4.36

In this subsection, we assume that both the unrestricted and restricted models contain an 
intercept, since that is the case most widely encountered in practice.
 Now, for the test statistic itself. Earlier, we suggested that looking at the relative 
increase in the SSR when moving from the unrestricted to the restricted model should be 
informative for testing the hypothesis (4.35). The F statistic (or F ratio) is defined by

 F �   
(SSR

r 
� SSR

ur
)�q
  ________________  

SSR
ur

�(n � k � 1)
  , 4.37
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where SSRr is the sum of squared residuals from the restricted model and SSRur is the sum 
of squared residuals from the unrestricted model.

 You should immediately notice that, 
since SSRr can be no smaller than SSRur, 
the F statistic is always nonnegative (and 
almost always strictly positive). Thus, 
if you compute a negative F statistic, 
then something is wrong; the order of 
the SSRs in the numerator of F has usu-
ally been reversed. Also, the SSR in the 
denominator of F is the SSR from the 
unrestricted model. The easiest way to 
remember where the SSRs appear is 
to think of F as measuring the relative 
increase in SSR when moving from the 
unrestricted to the restricted model.
 The difference in SSRs in the 
numerator of F is divided by q, which 
is the number of restrictions imposed 

in moving from the unrestricted to the restricted model (q independent variables are 
dropped). Therefore, we can write

 q � numerator degrees of freedom � df
r
 � df

ur
 , 4.38

which also shows that q is the difference in degrees of freedom between the restricted and 
unrestricted models. (Recall that df � number of observations � number of estimated 
parameters.) Since the restricted model has fewer parameters—and each model is esti-
mated using the same n observations—dfr is always greater than dfur.
 The SSR in the denominator of F is divided by the degrees of freedom in the unre-
stricted model:

 n � k � 1 � denominator degrees of freedom � dfur . 4.39

In fact, the denominator of F is just the unbiased estimator of � 2 � Var(u) in the unre-
stricted model.
 In a particular application, computing the F statistic is easier than wading through 
the somewhat cumbersome notation used to describe the general case. We first obtain the 
degrees of freedom in the unrestricted model, dfur. Then, we count how many variables are 
excluded in the restricted model; this is q. The SSRs are reported with every OLS regres-
sion, and so forming the F statistic is simple.
 In the major league baseball salary regression, n � 353, and the full model (4.28) contains 
six parameters. Thus, n � k � 1 � dfur � 353 � 6 � 347. The restricted model (4.32) contains 
three fewer independent variables than (4.28), and so q � 3. Thus, we have all of the ingredi-
ents to compute the F statistic; we hold off doing so until we know what to do with it.
 To use the F statistic, we must know its sampling distribution under the null in order 
to choose critical values and rejection rules. It can be shown that, under H0 (and assuming 
the CLM assumptions hold), F is distributed as an F random variable with (q,n � k � 1) 
degrees of freedom. We write this as

F 	 Fq,n�k�1.

Q u e s t i o n  4 . 4
Consider relating individual performance on a standardized test, 
score, to a variety of other variables. School factors include aver-
age class size, per student expenditures, average teacher com-
pensation, and total school enrollment. Other variables specific 
to the student are family income, mother’s education, father’s 
education, and number of siblings. The model is

score � �0 � �1classize � �2expend � �3tchcomp � 
�4enroll � �5  faminc � �6 motheduc � 

�7  fatheduc � �8siblings � u.

State the null hypothesis that student-specific variables have no 
effect on standardized test performance, once school-related fac-
tors have been controlled for. What are k and q for this example? 
Write down the restricted version of the model.
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The distribution of Fq,n�k�1 is readily tabulated and available in statistical tables (see 
Table G.3) and, even more importantly, in statistical software.
 We will not derive the F distribution because the mathematics is very involved. 
Basically, it can be shown that equation (4.37) is actually the ratio of two independent chi-
square random variables, divided by their respective degrees of freedom. The numerator 
chi-square random variable has q degrees of freedom, and the chi-square in the denomina-
tor has n � k � 1 degrees of freedom. This is the definition of an F distributed random 
variable (see Appendix B).
 It is pretty clear from the definition of F that we will reject H0 in favor of H1 when F 
is sufficiently “large.” How large depends on our chosen significance level. Suppose that 
we have decided on a 5% level test. Let c be the 95th percentile in the Fq,n�k�1 distribution. 
This critical value depends on q (the numerator df ) and n � k � 1 (the denominator df ). 
It is important to keep the numerator and denominator degrees of freedom straight.
 The 10%, 5%, and 1% critical values for the F distribution are given in Table G.3. The 
rejection rule is simple. Once c has been obtained, we reject H0 in favor of H1 at the chosen 
significance level if

 F � c. 4.40

With a 5% significance level, q � 3, and n � k � 1 � 60, the critical value is c � 2.76. 
We would reject H0 at the 5% level if the computed value of the F statistic exceeds 2.76. 
The 5% critical value and rejection region are shown in Figure 4.7. For the same degrees 
of freedom, the 1% critical value is 4.13.
 In most applications, the numerator degrees of freedom (q) will be notably smaller 
than the denominator degrees of freedom (n � k � 1). Applications where n � k � 1 is 
small are unlikely to be successful because the parameters in the unrestricted model will 
probably not be precisely estimated. When the denominator df reaches about 120, the F 
distribution is no longer sensitive to it. (This is entirely analogous to the t distribution 
being well approximated by the standard normal distribution as the df gets large.) Thus, 
there is an entry in the table for the denominator df � , and this is what we use with 
large samples (because n � k � 1 is then large). A similar statement holds for a very large 
numerator df, but this rarely occurs in applications.
 If H0 is rejected, then we say that xk�q�1, …, xk are jointly statistically significant (or 
just jointly significant) at the appropriate significance level. This test alone does not allow 
us to say which of the variables has a partial effect on y; they may all affect y or maybe 
only one affects y. If the null is not rejected, then the variables are jointly insignificant, 
which often justifies dropping them from the model.
 For the major league baseball example with three numerator degrees of freedom and 
347 denominator degrees of freedom, the 5% critical value is 2.60, and the 1% critical 
value is 3.78. We reject H0 at the 1% level if F is above 3.78; we reject at the 5% level if 
F is above 2.60.
 We are now in a position to test the hypothesis that we began this section with: After 
controlling for years and gamesyr, the variables bavg, hrunsyr, and rbisyr have no effect 
on players’ salaries. In practice, it is easiest to first compute (SSRr � SSRur)/SSRur and to 
multiply the result by (n � k � 1)/q; the reason the formula is stated as in (4.37) is that it 
makes it easier to keep the numerator and denominator degrees of freedom straight. Using 
the SSRs in (4.31) and (4.33), we have

F �   
(198.311 � 183.186)

  __________________  
183.186

   �   347 ____ 
3

   � 9.55.
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This number is well above the 1% critical value in the F distribution with 3 and 347 
degrees of freedom, and so we soundly reject the hypothesis that bavg, hrunsyr, and rbisyr 
have no effect on salary.
 The outcome of the joint test may seem surprising in light of the insignificant t statistics 
for the three variables. What is happening is that the two variables hrunsyr and rbisyr are 
highly correlated, and this multicollinearity makes it difficult to uncover the partial effect 
of each variable; this is reflected in the individual t statistics. The F statistic tests whether 
these variables (including bavg) are jointly significant, and multicollinearity between 
hrunsyr and rbisyr is much less relevant for testing this hypothesis. In Problem 4.16, you 
are asked to reestimate the model while dropping rbisyr, in which case hrunsyr becomes 
very significant. The same is true for rbisyr when hrunsyr is dropped from the model.
 The F statistic is often useful for testing exclusion of a group of variables when the 
variables in the group are highly correlated. For example, suppose we want to test whether 
firm performance affects the salaries of chief executive officers. There are many ways to 
measure firm performance, and it probably would not be clear ahead of time which mea-
sures would be most important. Since measures of firm performance are likely to be highly 
correlated, hoping to find individually significant measures might be asking too much due 
to multicollinearity. But an F test can be used to determine whether, as a group, the firm 
performance variables affect salary.

F I GURE  4 . 7

The 5% critical value and rejection region in an F3,60 distribution.
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Relationship between F and t Statistics
We have seen in this section how the F statistic can be used to test whether a group of vari-
ables should be included in a model. What happens if we apply the F statistic to the case of 
testing significance of a single independent variable? This case is certainly not ruled out by 
the previous development. For example, we can take the null to be H0: �k � 0 and q � 1 (to 
test the single exclusion restriction that xk can be excluded from the model). From Section 4.2, 
we know that the t statistic on �k can be used to test this hypothesis. The question, then, is: 
Do we have two separate ways of testing hypotheses about a single coefficient? The answer 
is no. It can be shown that the F statistic for testing exclusion of a single variable is equal 
to the square of the corresponding t statistic. Since t2

n�k�1 has an F1,n�k�1 distribution, the 
two approaches lead to exactly the same outcome, provided that the alternative is two-sided. 
The t statistic is more flexible for testing a single hypothesis because it can be used to test 
against one-sided alternatives. Since t statistics are also easier to obtain than F statistics, 
there is really no reason to use an F statistic to test hypotheses about a single parameter.
 We have already seen in the salary regressions for major league baseball players that 
two (or more) variables that each have insignificant t statistics can be jointly very signifi-
cant. It is also possible that, in a group of several explanatory variables, one variable has a 
significant t statistic, but the group of variables is jointly insignificant at the usual signifi-
cance levels. What should we make of this kind of outcome? For concreteness, suppose that 
in a model with many explanatory variables we cannot reject the null hypothesis that �1, �2, 
�3, �4, and �5 are all equal to zero at the 5% level, yet the t statistic for  ̂  � 1 is significant at 
the 5% level. Logically, we cannot have �1 	 0 but also have �1, �2, �3, �4, and �5 all equal 
to zero! But as a matter of testing, it is possible that we can group a bunch of insignificant 
variables with a significant variable and conclude that the entire set of variables is jointly 
insignificant. (Such possible conflicts between a t test and a joint F test give another exam-
ple of why we should not “accept” null hypotheses; we should only fail to reject them.) 
The F statistic is intended to detect whether a set of coefficients is different from zero, but 
it is never the best test for determining whether a single coefficient is different from zero. 
The t test is best suited for testing a single hypothesis. (In statistical terms, an F statistic for 
joint restrictions including �1 � 0 will have less power for detecting �1 	 0 than the usual 
t statistic. See Section C.6 in Appendix C for a discussion of the power of a test.)
 Unfortunately, the fact that we can sometimes hide a statistically significant variable 
along with some insignificant variables could lead to abuse if regression results are not 
carefully reported. For example, suppose that, in a study of the determinants of loan-
acceptance rates at the city level, x1 is the fraction of black households in the city. Suppose 
that the variables x2, x3, x4, and x5 are the fractions of households headed by different age 
groups. In explaining loan rates, we would include measures of income, wealth, credit rat-
ings, and so on. Suppose that age of household head has no effect on loan approval rates, 
once other variables are controlled for. Even if race has a marginally significant effect, it 
is possible that the race and age variables could be jointly insignificant. Someone want-
ing to conclude that race is not a factor could simply report something like “Race and age 
variables were added to the equation, but they were jointly insignificant at the 5% level.” 
Hopefully, peer review prevents these kinds of misleading conclusions, but you should be 
aware that such outcomes are possible.
 Often, when a variable is very statistically significant and it is tested jointly with 
another set of variables, the set will be jointly significant. In such cases, there is no logical 
inconsistency in rejecting both null hypotheses.
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The R-Squared Form of the F Statistic
For testing exclusion restrictions, it is often more convenient to have a form of the F 
statistic that can be computed using the R-squareds from the restricted and unrestricted 
models. One reason for this is that the R-squared is always between zero and one, whereas 
the SSRs can be very large depending on the unit of measurement of y, making the calcu-
lation based on the SSRs tedious. Using the fact that SSRr � SST(1 � Rr

2 ) and SSRur � 
SST(1 � R2

ur), we can substitute into (4.37) to obtain

 F �   
(R2

ur � R2
r )�q
  ___________________  

(1 � R2
ur)�(n � k � 1)

   �   
(R2

ur � R
2
r )�q
 ____________  

(1 � R2
ur)�dfur

  
 4.41

(note that the SST terms cancel everywhere). This is called the R-squared form of the 
F statistic. [At this point, you should be cautioned that although equation (4.41) is very 
convenient for testing exclusion restrictions, it cannot be applied for testing all linear 
restrictions. As we will see when we discuss testing general linear restrictions, the sum of 
squared residuals form of the F statistic is sometimes needed.]
 Because the R-squared is reported with almost all regressions (whereas the SSR is not), 
it is easy to use the R-squareds from the unrestricted and restricted models to test for exclu-
sion of some variables. Particular attention should be paid to the order of the R-squareds 
in the numerator: the unrestricted R-squared comes first [contrast this with the SSRs in 
(4.37)]. Because R2

ur � R2
r , this shows again that F will always be positive.

 In using the R-squared form of the test for excluding a set of variables, it is important 
to not square the R-squared before plugging it into formula (4.41); the squaring has already 
been done. All regressions report R2, and these numbers are plugged directly into (4.41). 
For the baseball salary example, we can use (4.41) to obtain the F statistic:

F �   
(.6278 � .5971)

  ______________  
(1 � .6278) 

   �   347 ____ 
3

   � 9.54,

which is very close to what we obtained before. (The difference is due to rounding error.)

E x a m p l e  4 . 9

[Parents’ Education in a Birth Weight Equation]

As another example of computing an F statistic, consider the following model to explain child birth 
weight in terms of various factors:

bwght � �0 � �1cigs � �2  parity � �3  faminc

� �4 motheduc � �5  fatheduc � u, 
4.42

where 
 bwght � birth weight, in pounds.
 cigs � average number of cigarettes the mother smoked per day during pregnancy.
 parity � the birth order of this child.
 faminc � annual family income.
 motheduc � years of schooling for the mother.
 fatheduc � years of schooling for the father. 

Let us test the null hypothesis that, after controlling for cigs, parity, and faminc, parents’ education 
has no effect on birth weight. This is stated as H0: �4 � 0, �5 � 0, and so there are q � 2 exclusion 
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restrictions to be tested. There are k � 1 � 6 parameters in the unrestricted model (4.42); so the df 
in the unrestricted model is n � 6, where n is the sample size.
 We will test this hypothesis using the data in BWGHT.RAW. This data set contains informa-
tion on 1,388 births, but we must be careful in counting the observations used in testing the null 
hypothesis. It turns out that information on at least one of the variables motheduc and fatheduc is 
missing for 197 births in the sample; these observations cannot be included when estimating the 
unrestricted model. Thus, we really have n � 1,191 observations, and so there are 1,191 � 6 � 1,185 
df in the unrestricted model. We must be sure to use these same 1,191 observations when estimating 
the restricted model (not the full 1,388 observations that are available). Generally, when estimating the 
restricted model to compute an F test, we must use the same observations to estimate the unrestricted 
model; otherwise, the test is not valid. When there are no missing data, this will not be an issue.
 The numerator df is 2, and the denominator df is 1,185; from Table G.3, the 5% critical value 
is c � 3.0. Rather than report the complete results, for brevity, we present only the R-squareds. The 
R-squared for the full model turns out to be R2

ur � .0387. When motheduc and fatheduc are dropped 
from the regression, the R-squared falls to R2

r � .0364. Thus, the F statistic is F � [(.0387 � 
.0364)/(1 � .0387)](1,185/2) � 1.42; since this is well below the 5% critical value, we fail to reject 
H0. In other words, motheduc and fatheduc are jointly insignificant in the birth weight equation.

 

Computing p-Values for F Tests
For reporting the outcomes of F tests, p-values are especially useful. Since the F distri-
bution depends on the numerator and denominator df, it is difficult to get a feel for how 
strong or weak the evidence is against the null hypothesis simply by looking at the value 
of the F statistic and one or two critical values.
 In the F testing context, the p-value is defined as

 p-value � P(� � F ), 4.43

where, for emphasis, we let � denote an F random variable with (q,n � k � 1) degrees of 
freedom, and F is the actual value of the 
test statistic. The p-value still has the 
same interpretation as it did for t sta-
tistics: it is the probability of observing 
a value of F at least as large as we did, 
given that the null hypothesis is true. A 
small p-value is evidence against H0. 
For example, p-value � .016 means that 
the chance of observing a value of F as 
large as we did when the null hypoth-
esis was true is only 1.6%; we usually 
reject H0 in such cases. If the p-value �
.314, then the chance of observing a 
value of the F statistic as large as we 
did under the null hypothesis is 31.4%. 
Most would find this to be pretty weak 
evidence against H0.

Q u e s t i o n  4 . 5
The data in ATTEND.RAW were used to estimate the two equations

2atndrte � (47.13) � (13.37) priGPA
at ̂  n drte � (2.87) �  (1.09) priGPA

 n � 680, R2 � .183

and

2atndrte � (75.70) � (17.26) priGPA � 1.72 ACT
at ̂  n drte � (3.88) � (1.08) priGPA � 1(?) ACT,

 n � 680, R2 � .291,

where, as always, standard errors are in parentheses; the standard 
error for ACT is missing in the second equation. What is the t sta-
tistic for the coefficient on ACT ? (Hint: First compute the F statistic 
for significance of ACT.)
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 As with t testing, once the p-value has been computed, the F test can be carried out at 
any significance level. For example, if the p-value � .024, we reject H0 at the 5% signifi-
cance level but not at the 1% level.
 The p-value for the F test in Example 4.9 is .238, and so the null hypothesis that 
�motheduc and �fatheduc are both zero is not rejected at even the 20% significance level.
 Many econometrics packages have a built-in feature for testing multiple exclusion 
restrictions. These packages have several advantages over calculating the statistics by hand: 
we will less likely make a mistake, p-values are computed automatically, and the problem 
of missing data, as in Example 4.9, is handled without any additional work on our part.

The F Statistic for Overall Signifi cance of a Regression
A special set of exclusion restrictions is routinely tested by most regression packages. 
These restrictions have the same interpretation, regardless of the model. In the model with 
k independent variables, we can write the null hypothesis as

H0: x1, x2, …, xk do not help to explain y.

This null hypothesis is, in a way, very pessimistic. It states that none of the explanatory 
variables has an effect on y. Stated in terms of the parameters, the null is that all slope 
parameters are zero:

 H0: �1 � �2 � … � �k � 0, 4.44

and the alternative is that at least one of the �j is different from zero. Another useful way of 
stating the null is that H0: E(y�x1, x2, …, xk) � E(y), so that knowing the values of x1, x2, …, 
xk does not affect the expected value of y.
 There are k restrictions in (4.44), and when we impose them, we get the restricted 
model

 y � �0 � u; 4.45

all independent variables have been dropped from the equation. Now, the R-squared from 
estimating (4.45) is zero; none of the variation in y is being explained because there are no 
explanatory variables. Therefore, the F statistic for testing (4.44) can be written as

   
R2�k

  __________________  
(1 � R2)�(n � k � 1)

  , 4.46

where R2 is just the usual R-squared from the regression of y on x1, x2, …, xk.
 Most regression packages report the F statistic in (4.46) automatically, which makes 
it tempting to use this statistic to test general exclusion restrictions. You must avoid this 
temptation. The F statistic in (4.41) is used for general exclusion restrictions; it depends 
on the R-squareds from the restricted and unrestricted models. The special form of (4.46) 
is valid only for testing joint exclusion of all independent variables. This is sometimes 
called determining the overall significance of the regression.
 If we fail to reject (4.44), then there is no evidence that any of the independent variables 
help to explain y. This usually means that we must look for other variables to explain y. For 
Example 4.9, the F statistic for testing (4.44) is about 9.55 with k � 5 and n � k � 1 � 
1,185 df. The p-value is zero to four places after the decimal point, so that (4.44) is rejected 
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very strongly. Thus, we conclude that the variables in the bwght equation do explain some 
variation in bwght. The amount explained is not large: only 3.87%. But the seemingly small 
R-squared results in a highly significant F statistic. That is why we must compute the F 
statistic to test for joint significance and not just look at the size of the R-squared.
 Occasionally, the F statistic for the hypothesis that all independent variables are jointly 
insignificant is the focus of a study. Problem 4.10 asks you to use stock return data to 
test whether stock returns over a four-year horizon are predictable based on information 
known only at the beginning of the period. Under the efficient markets hypothesis, the 
returns should not be predictable; the null hypothesis is precisely (4.44).

Testing General Linear Restrictions
Testing exclusion restrictions is by far the most important application of F statistics. 
Sometimes, however, the restrictions implied by a theory are more complicated than just 
excluding some independent variables. It is still straightforward to use the F statistic for 
testing.
 As an example, consider the following equation:

log(price) � �0 � �1log(assess) � �2log(lotsize)

� �3log(sqrft) � �4bdrms � u, 
4.47

where
 price � house price.
 assess � the assessed housing value (before the house was sold). 
 lotsize � size of the lot, in feet. 
 sqrft � square footage.
 bdrms � number of bedrooms. 

Now, suppose we would like to test whether the assessed housing price is a rational valua-
tion. If this is the case, then a 1% change in assess should be associated with a 1% change 
in price; that is, �1 � 1. In addition, lotsize, sqrft, and bdrms should not help to explain 
log(price), once the assessed value has been controlled for. Together, these hypotheses 
can be stated as

 H0: �1 � 1, �2 � 0, �3 � 0, �4 � 0. 4.48

Four restrictions have to be tested; three are exclusion restrictions, but �1 � 1 is not. How 
can we test this hypothesis using the F statistic?
 As in the exclusion restriction case, we estimate the unrestricted model, (4.47) in this 
case, and then impose the restrictions in (4.48) to obtain the restricted model. It is the second 
step that can be a little tricky. But all we do is plug in the restrictions. If we write (4.47) as

 y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � u, 4.49

then the restricted model is y � �0 � x1 � u. Now, to impose the restriction that the coef-
ficient on x1 is unity, we must estimate the following model:

 y � x1 � �0 � u. 4.50

This is just a model with an intercept (�0) but with a different dependent variable than in 
(4.49). The procedure for computing the F statistic is the same: estimate (4.50), obtain the 



154 Part 1   Regression Analysis with Cross-Sectional Data

SSR (SSRr), and use this with the unrestricted SSR from (4.49) in the F statistic (4.37). 
We are testing q � 4 restrictions, and there are n � 5 df in the unrestricted model. The F 
statistic is simply [(SSRr � SSRur)/SSRur][(n � 5)/4].
 Before illustrating this test using a data set, we must emphasize one point: we cannot 
use the R-squared form of the F statistic for this example because the dependent variable 
in (4.50) is different from the one in (4.49). This means the total sum of squares from the 
two regressions will be different, and (4.41) is no longer equivalent to (4.37). As a general 
rule, the SSR form of the F statistic should be used if a different dependent variable is 
needed in running the restricted regression.
 The estimated unrestricted model using the data in HPRICE1.RAW is

2log(price) � .264 � 1.043 log(assess) � .0074 log(lotsize)

  (.570) (.151) (.0386)

   � .1032 log(sqrft) �  .0338 bdrms

   (.1384)  (.0221) 

 n � 88, SSR � 1.822, R2 � .773.

If we use separate t statistics to test each hypothesis in (4.48), we fail to reject each one. 
But rationality of the assessment is a joint hypothesis, so we should test the restrictions 
jointly. The SSR from the restricted model turns out to be SSRr � 1.880, and so the F 
statistic is [(1.880 � 1.822)/1.822](83/4) � .661. The 5% critical value in an F distribution 
with (4,83) df is about 2.50, and so we fail to reject H0. There is essentially no evidence 
against the hypothesis that the assessed values are rational.

4.6 Reporting Regression Results
We end this chapter by providing a few guidelines on how to report multiple regres-
sion results for relatively complicated empirical projects. This should help you to 
read published works in the applied social sciences, while also preparing you to 
write your own empirical papers. We will expand on this topic in the remainder of 
the text by reporting results from various examples, but many of the key points can 
be made now.
 Naturally, the estimated OLS coefficients should always be reported. For the key 
variables in an analysis, you should interpret the estimated coefficients (which often 
requires knowing the units of measurement of the variables). For example, is an esti-
mate an elasticity, or does it have some other interpretation that needs explanation? 
The economic or practical importance of the estimates of the key variables should be 
discussed.
 The standard errors should always be included along with the estimated coefficients. 
Some authors prefer to report the t statistics rather than the standard errors (and some-
times just the absolute value of the t statistics). Although nothing is really wrong with 
this, there is some preference for reporting standard errors. First, it forces us to think 
carefully about the null hypothesis being tested; the null is not always that the popula-
tion parameter is zero. Second, having standard errors makes it easier to compute con-
fidence intervals.
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 The R-squared from the regression should always be included. We have seen that, 
in addition to providing a goodness-of-fit measure, it makes calculation of F statis-
tics for exclusion restrictions simple. Reporting the sum of squared residuals and the 
standard error of the regression is sometimes a good idea, but it is not crucial. The 
number of observations used in estimating any equation should appear near the esti-
mated equation.
 If only a couple of models are being estimated, the results can be summarized in equa-
tion form, as we have done up to this point. However, in many papers, several equations 
are estimated with many different sets of independent variables. We may estimate the 
same equation for different groups of people, or even have equations explaining different 
dependent variables. In such cases, it is better to summarize the results in one or more 
tables. The dependent variable should be indicated clearly in the table, and the independent 
variables should be listed in the first column. Standard errors (or t statistics) can be put in 
parentheses below the estimates.

E x a m p l e  4 . 1 0

[Salary-Pension Tradeoff for Teachers]

Let totcomp denote average total annual compensation for a teacher, including salary and all fringe 
benefits (pension, health insurance, and so on). Extending the standard wage equation, total com-
pensation should be a function of productivity and perhaps other characteristics. As is standard, we 
use logarithmic form:

log(totcomp) � f (productivity characteristics,other factors),

where f (�) is some function (unspecified for now). Write

totcomp � salary � benefits � salary  � 1 �   
benefits

 _______ 
salary

   � .
This equation shows that total compensation is the product of two terms: salary and 1 � b/s, where 
b/s is shorthand for the “benefits to salary ratio.” Taking the log of this equation gives log(totcomp) �
log(salary) � log(1 � b/s). Now, for “small” b/s, log(1 � b/s) � b/s; we will use this approximation. 
This leads to the econometric model

log(salary) � �0 � �1(b/s) � other factors.

Testing the salary-benefits tradeoff then is the same as a test of H0: �1 � �1 against H1: �1 	 �1.
 We use the data in MEAP93.RAW to test this hypothesis. These data are averaged at the school 
level, and we do not observe very many other factors that could affect total compensation. We will 
include controls for size of the school (enroll ), staff per thousand students (staff ), and measures 
such as the school dropout and graduation rates. The average b/s in the sample is about .205, and the 
largest value is .450.
 The estimated equations are given in Table 4.1, where standard errors are given in parentheses 
below the coefficient estimates. The key variable is b/s, the benefits-salary ratio.
 From the first column in Table 4.1, we see that, without controlling for any other factors, 
the OLS coefficient for b/s is �.825. The t statistic for testing the null hypothesis H0: �1 � �1 is 
t � (�.825 � 1)/.200 � .875, and so the simple regression fails to reject H0. After adding controls 
for school size and staff size (which roughly captures the number of students taught by each teacher), 
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the estimate of the b/s coefficient becomes 
�.605. Now, the test of �1 � �1 gives a t 
statistic of about 2.39; thus, H0 is rejected at 
the 5% level against a two-sided alternative. 
The variables log(enroll) and log(staff ) are 
very statistically significant.

S U M M A R Y

In this chapter, we have covered the very important topic of statistical inference, which allows 
us to infer something about the population model from a random sample. We summarize the 
main points:

1.  Under the classical linear model assumptions MLR.1 through MLR.6, the OLS estimators 
are normally distributed.

2.  Under the CLM assumptions, the t statistics have t distributions under the null 
 hypothesis.

3.  We use t statistics to test hypotheses about a single parameter against one- or two-sided 
alternatives, using one- or two-tailed tests, respectively. The most common null hypoth-
esis is H0: �j � 0, but we sometimes want to test other values of �j under H0.

4.  In classical hypothesis testing, we first choose a significance level, which, along with the 
df and alternative hypothesis, determines the critical value against which we compare 

TABLE  4 . 1

Testing the Salary-Benefits Tradeoff

Dependent Variable: log(salary)

Independent Variables (1) (2) (3)

b/s �.825
   (.200)

�.605
   (.165)

�.589
   (.165)

log(enroll) ——      .0874
     (.0073)

     .0881
     (.0073)

log(staff) —— �.222
   (.050)

�.218
   (.050)

droprate —— ——     �.00028
       (.00161)

gradrate —— ——        .00097
       (.00066)

intercept 10.523
  (0.042)

10.884
  (0.252)

10.738
  (0.258)

Observations
R-squared

408
.040

408
.353

408
.361

Q u e s t i o n  4 . 6

How does adding droprate and gradrate affect the estimate of 
the salary-benefits tradeoff? Are these variables jointly signifi-
cant at the 5% level? What about the 10% level?
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the t statistic. It is more informative to compute the p-value for a t test—the smallest 
significance level for which the null hypothesis is rejected—so that the hypothesis can 
be tested at any significance level.

5.  Under the CLM assumptions, confidence intervals can be constructed for each �j. 
These CIs can be used to test any null hypothesis concerning �j against a two-sided 
 alternative.

6.  Single hypothesis tests concerning more than one �j can always be tested by rewriting the 
model to contain the parameter of interest. Then, a standard t statistic can be used.

7.  The F statistic is used to test multiple exclusion restrictions, and there are two equivalent 
forms of the test. One is based on the SSRs from the restricted and unrestricted models. 
A more convenient form is based on the R-squareds from the two models.

8.  When computing an F statistic, the numerator df is the number of restrictions being tested, 
while the denominator df is the degrees of freedom in the unrestricted model.

9.  The alternative for F testing is two-sided. In the classical approach, we specify a sig-
nificance level which, along with the numerator df and the denominator df, determines 
the critical value. The null hypothesis is rejected when the statistic, F, exceeds the 
critical value, c. Alternatively, we can compute a p-value to summarize the evidence 
against H0.

10.  General multiple linear restrictions can be tested using the sum of squared residuals form 
of the F statistic.

11.  The F statistic for the overall significance of a regression tests the null hypothesis that 
all slope parameters are zero, with the intercept unrestricted. Under H0, the explanatory 
variables have no effect on the expected value of y.

The Classical Linear Model Assumptions

Now is a good time to review the full set of classical linear model (CLM) assumptions for 
cross-sectional regression. Following each assumption is a comment about its role in multiple 
regression analysis.

Assumption MLR.1 (Linear in Parameters)

The model in the population can be written as

y � �0 � �1x1 � �2x2 � … � �kxk � u,

where �0, �1, …, �k are the unknown parameters (constants) of interest and u is an unobservable 
random error or disturbance term.

 Assumption MLR.1 describes the population relationship we hope to estimate, and 
 explicitly sets out the �j—the ceteris paribus population effects of the xj on y—as the param-
eters of interest.

Assumption MLR.2 (Random Sampling)

We have a random sample of n observations, {(xi1, xi2, …, xik, yi): i � 1, …, n}, following the 
population model in Assumption MLR.1.

 This random sampling assumption means that we have data that can be used to esti-
mate the �j, and that the data have been chosen to be representative of the population 
described in Assumption MLR.1.
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Assumption MLR.3 (No Perfect Collinearity)

In the sample (and therefore in the population), none of the independent variables is constant, 
and there are no exact linear relationships among the independent variables.

 Once we have a sample of data, we need to know that we can use the data to compute the 
OLS estimates, the  ̂  � j . This is the role of Assumption MLR.3: if we have sample variation in 
each independent variable and no exact linear relationships among the independent variables, 
we can compute the  ̂  � j.

Assumption MLR.4 (Zero Conditional Mean)

The error u has an expected value of zero given any values of the explanatory variables. In 
other words, E(u�x1, x2, …, xk) � 0.

 As we discussed in the text, assuming that the unobservables are, on average, unrelated to 
the explanatory variables is key to deriving the first statistical property of each OLS estimator: 
its unbiasedness for the corresponding population parameter. Of course, all of the previous 
assumptions are used to show unbiasedness.

Assumption MLR.5 (Homoskedasticity)

The error u has the same variance given any values of the explanatory variables. In other words,

Var(u�x1, x2, …, xk) � � 2.

 Compared with Assumption MLR.4, the homoskedasticity assumption is of secondary 
importance; in particular, Assumption MLR.5 has no bearing on the unbiasedness of the  ̂  � j. Still, 
homoskedasticity has two important implications: (1) We can derive formulas for the sampling 
variances whose components are easy to characterize; (2) We can conclude, under the Gauss-
Markov assumptions MLR.1 to MLR.5, that the OLS estimators have smallest variance among 
all linear, unbiased estimators.

Assumption MLR.6 (Normality)

The population error u is independent of the explanatory variables x1, x2, …, xk and is normally 
distributed with zero mean and variance � 2: u ~ Normal(0, � 2).

 In this chapter, we added Assumption MLR.6 to obtain the exact sampling distributions of 
t statistics and F statistics, so that we can carry out exact hypotheses tests. In the next chapter, 
we will see that MLR.6 can be dropped if we have a reasonably large sample size. Assumption 
MLR.6 does imply a stronger efficiency property of OLS: the OLS estimators have smallest 
variance among all unbiased estimators; the comparison group is no longer restricted to estima-
tors linear in the {yi: i � 1, 2, …, n}.

K E Y  T E R M S
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P R O B L E M S

4.1  Which of the following can cause the usual OLS t statistics to be invalid (that is, not to 
have t distributions under H0)?

 (i) Heteroskedasticity.
 (ii)  A sample correlation coefficient of .95 between two independent variables that are 

in the model.
 (iii) Omitting an important explanatory variable.

4.2  Consider an equation to explain salaries of CEOs in terms of annual firm sales, return on 
equity (roe, in percentage form), and return on the firm’s stock (ros, in percentage form):

log(salary) � �0 � �1log(sales) � �2roe � �3ros � u.

 (i)  In terms of the model parameters, state the null hypothesis that, after controlling for 
sales and roe, ros has no effect on CEO salary. State the alternative that better stock 
market performance increases a CEO’s salary.

 (ii) Using the data in CEOSAL1.RAW, the following equation was obtained by OLS:

2log(salary)  � 4.32 � .280 log(sales) � .0174 roe � .00024 ros
  (.32)  (.035)  (.0041)  (.00054) 

 n � 209, R2 � .283.

   By what percentage is salary predicted to increase if ros increases by 50 points? 
Does ros have a practically large effect on salary?

 (iii)  Test the null hypothesis that ros has no effect on salary against the alternative that 
ros has a positive effect. Carry out the test at the 10% significance level.

 (iv)  Would you include ros in a final model explaining CEO compensation in terms of 
firm performance? Explain.

4.3  The variable rdintens is expenditures on research and development (R&D) as a percent-
age of sales. Sales are measured in millions of dollars. The variable profmarg is profits as 
a percentage of sales.

  Using the data in RDCHEM.RAW for 32 firms in the chemical industry, the follow-
ing equation is estimated:

2rdintens  � .472 � .321 log(sales) � .050 profmarg
(1.369) (.216)  (.046) 

 n � 32, R2 � .099.
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Two-Tailed Test
Unrestricted Model



160 Part 1   Regression Analysis with Cross-Sectional Data

 (i)  Interpret the coefficient on log(sales). In particular, if sales increases by 10%, what 
is the estimated percentage point change in rdintens? Is this an economically large 
effect?

 (ii)  Test the hypothesis that R&D intensity does not change with sales against the alter-
native that it does increase with sales. Do the test at the 5% and 10% levels.

 (iii)  Interpret the coefficient on profmarg. Is it economically large?
 (iv) Does profmarg have a statistically significant effect on rdintens?

4.4  Are rent rates influenced by the student population in a college town? Let rent be the aver-
age monthly rent paid on rental units in a college town in the United States. Let pop denote 
the total city population, avginc the average city income, and pctstu the student population 
as a percentage of the total population. One model to test for a relationship is

log(rent) � �0 � �1log( pop) � �2log(avginc) � �3pctstu � u.

 (i)  State the null hypothesis that size of the student body relative to the population 
has no ceteris paribus effect on monthly rents. State the alternative that there is an 
effect.

 (ii) What signs do you expect for �1 and �2?
 (iii)  The equation estimated using 1990 data from RENTAL.RAW for 64 college towns is

3log(rent)  � .043  � .066  log(pop) � .507  log(avginc) � .0056  pctstu
 (.844)  (.039) (.081)  (.0017)

 n � 64, R2 � .458.

   What is wrong with the statement: “A 10% increase in population is associated with 
about a 6.6% increase in rent”?

 (iv) Test the hypothesis stated in part (i) at the 1% level.

4.5  Consider the estimated equation from Example 4.3, which can be used to study the effects 
of skipping class on college GPA:

2colGPA  � 1.39  � .412  hsGPA � .015  ACT � .083  skipped
 (.33) (.094) (.011) (.026)

 n � 141, R2 � .234.

 (i)  Using the standard normal approximation, find the 95% confidence interval for 
�hsGPA.

 (ii)  Can you reject the hypothesis H0: �hsGPA � .4 against the two-sided alternative at the 
5% level?

 (iii)  Can you reject the hypothesis H0: �hsGPA � 1 against the two-sided alternative at the 
5% level?

4.6  In Section 4.5, we used as an example testing the rationality of assessments of housing 
prices. There, we used a log-log model in price and assess [see equation (4.47)]. Here, 
we use a level-level formulation.

 (i) In the simple regression model

price � �0 � �1assess � u,

  the assessment is rational if �1 � 1 and �0 � 0. The estimated equation is

 1price  � �14.47  � .976  assess
(16.27)  (.049)

 n � 88, SSR � 165,644.51, R2 � .820.
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   First, test the hypothesis that H0: �0 � 0 against the two-sided alternative. Then, 
test H0: �1 � 1 against the two-sided alternative. What do you conclude?

 (ii)  To test the joint hypothesis that �0 � 0 and �1 � 1, we need the SSR in the restricted 
model. This amounts to computing  ∑ 

i�1
  

n
   (pricei � assessi)

2, where n � 88, since 
the residuals in the restricted model are just pricei � assessi. (No estimation is needed 
for the restricted model because both parameters are specified under H0.) This turns 
out to yield SSR � 209,448.99. Carry out the F test for the joint hypothesis.

 (iii) Now, test H0: �2 � 0, �3 � 0, and �4 � 0 in the model

price � �0 � �1assess � �2lotsize � �3sqrft � �4bdrms � u.

  The R-squared from estimating this model using the same 88 houses is .829.
 (iv)  If the variance of price changes with assess, lotsize, sqrft, or bdrms, what can you 

say about the F test from part (iii)?

4.7  In Example 4.7, we used data on nonunionized manufacturing firms to estimate the 
relationship between the scrap rate and other firm characteristics. We now look at this 
example more closely and use all available firms.

 (i) The population model estimated in Example 4.7 can be written as

log(scrap) � �0 � �1hrsemp � �2log(sales) � �3log(employ) � u.

  Using the 43 observations available for 1987, the estimated equation is

2log(scrap)  � 11.74  � .042  hrsemp � .951  log(sales) � .992  log(employ)
 (4.57)  (.019) (.370) (.360)

 n � 43, R2 � .310.

   Compare this equation to that estimated using only the 29 nonunionized firms in the 
sample.

 (ii) Show that the population model can also be written as

log(scrap) � �0 � �1hrsemp � �2log(sales/employ) � �3log(employ) � u,

   where �3 � �2 � �3. [Hint: Recall that log(x2/x3) � log(x2) � log(x3).] Interpret the 
hypothesis H0: �3 � 0.

 (iii) When the equation from part (ii) is estimated, we obtain

2log(scrap)  � 11.74  � .042  hrsemp � .951  log(sales/employ) � .041  log(employ)
   (4.57)  (.019) (.370)  (.205)

 n � 43, R2 � .310.

   Controlling for worker training and for the sales-to-employee ratio, do bigger firms 
have larger statistically significant scrap rates?

 (iv)  Test the hypothesis that a 1% increase in sales/employ is associated with a 1% drop 
in the scrap rate.

4.8  Consider the multiple regression model with three independent variables, under the clas-
sical linear model assumptions MLR.1 through MLR.6:

y � �0 � �1x1 � �2x2 � �3x3 � u.

 You would like to test the null hypothesis H0: �1 � 3�2 � 1.
 (i)  Let  ̂  � 1 and  ̂  � 2 denote the OLS estimators of �1 and �2. Find Var( ̂  � 1 � 3 ̂  � 2) in terms 

of the variances of  ̂  � 1 and  ̂  � 2 and the covariance between them. What is the standard 
error of  ̂  � 1 � 3 ̂  � 2?
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 (ii) Write the t statistic for testing H0: �1 � 3�2 � 1.
 (iii)  Define �1 � �1 � 3�2 and  ̂  � 1 �  ̂  � 1 � 3 ̂  � 2. Write a regression equation involving �0, 

�1, �2, and �3 that allows you to directly obtain  ̂  � 1 and its standard error.

4.9 In Problem 3.3, we estimated the equation

1sleep � 3,638.25  � .148  totwrk � 11.13  educ � 2.20  age
 (112.28) (.017) (5.88) (1.45)

 n � 706, R2 � .113,

 where we now report standard errors along with the estimates.
 (i)  Is either educ or age individually significant at the 5% level against a two-sided 

alternative? Show your work.
 (ii) Dropping educ and age from the equation gives

1sleep � 3,586.38  � .151  totwrk
 (38.91) (.017)

 n � 706, R2 � .103. 

   Are educ and age jointly significant in the original equation at the 5% level? Justify 
your answer.

 (iii)  Does including educ and age in the model greatly affect the estimated tradeoff 
between sleeping and working?

 (iv)  Suppose that the sleep equation contains heteroskedasticity. What does this mean 
about the tests computed in parts (i) and (ii)?

4.10  Regression analysis can be used to test whether the market efficiently uses information 
in valuing stocks. For concreteness, let return be the total return from holding a firm’s 
stock over the four-year period from the end of 1990 to the end of 1994. The efficient 
markets hypothesis says that these returns should not be systematically related to infor-
mation known in 1990. If firm characteristics known at the beginning of the period help 
to predict stock returns, then we could use this information in choosing stocks.

    For 1990, let dkr be a firm’s debt to capital ratio, let eps denote the earnings per share, 
let netinc denote net income, and let salary denote total compensation for the CEO.

 (i) Using the data in RETURN.RAW, the following equation was estimated:

1return  � �14.37  � .321  dkr � .043  eps � .0051  netinc � .0035  salary
 (6.89) (.201) (.078) (.0047) (.0022)

 n � 142, R2 � .0395.

   Test whether the explanatory variables are jointly significant at the 5% level. Is any 
explanatory variable individually significant?

 (ii) Now, reestimate the model using the log form for netinc and salary:

1return  � �36.30  � .327  dkr � .069  eps � 4.74  log(netinc) � 7.24  log(salary)
 (39.37) (.203) (.080) (3.39) (6.31)

n � 142, R2 � .0330.

  Do any of your conclusions from part (i) change?
 (iii)  In this sample, some firms have zero debt and others have negative earnings. Should we 

try to use log(dkr) or log(eps) in the model to see if these improve the fit? Explain.
 (iv) Overall, is the evidence for predictability of stock returns strong or weak?
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4.11 The following table was created using the data in CEOSAL2.RAW:

Dependent Variable: log(salary)

Independent Variables (1) (2) (3)

log(sales)    .224
   (.027)

.158
(.040)

 .188
 (.040)

log(mktval) —— .112
(.050)

  .100
 (.049)

profmarg —— �.0023
   (.0022)

 �.0022
 (.0021)

ceoten —— ——  .0171
 (.0055)

comten —— ——  �.0092
 (.0033)

intercept 4.94
  (0.20)

4.62
0.25)

 4.57
 (0.25)

Observations
R-squared

  177
  .281

177
.304

  177
 .353

  The variable mktval is market value of the firm, profmarg is profit as a percentage of 
sales,  ceoten is years as CEO with the current company, and comten is total years with the 
company.

 (i) Comment on the effect of profmarg on CEO salary.
 (ii) Does market value have a significant effect? Explain.
 (iii)  Interpret the coefficients on ceoten and comten. Are these explanatory variables 

statistically significant?
 (iv)  What do you make of the fact that longer tenure with the company, holding the other 

factors fixed, is associated with a lower salary?

C O M P U T E R  E X E R C I S E S

C4.1  The following model can be used to study whether campaign expenditures affect elec-
tion outcomes:

voteA � �0 � �1log(expendA) � �2log(expendB) � �3 prtystrA � u,

  where voteA is the percentage of the vote received by Candidate A, expendA and 
expendB are campaign expenditures by Candidates A and B, and prtystrA is a measure 
of party strength for Candidate A (the percentage of the most recent presidential vote 
that went to A’s party).

 (i) What is the interpretation of �1?
 (ii)  In terms of the parameters, state the null hypothesis that a 1% increase in A’s 

expenditures is offset by a 1% increase in B’s expenditures.
 (iii)  Estimate the given model using the data in VOTE1.RAW and report the results 

in usual form. Do A’s expenditures affect the outcome? What about B’s expendi-
tures? Can you use these results to test the hypothesis in part (ii)?
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 (iv)  Estimate a model that directly gives the t statistic for testing the hypothesis in part 
(ii). What do you conclude? (Use a two-sided alternative.)

C4.2 Use the data in LAWSCH85.RAW for this exercise.
 (i)  Using the same model as Problem 3.4, state and test the null hypothesis that the 

rank of law schools has no ceteris paribus effect on median starting salary.
 (ii)  Are features of the incoming class of students—namely, LSAT and GPA—

 individually or jointly significant for explaining salary? (Be sure to account for 
missing data on LSAT and GPA.)

 (iii)  Test whether the size of the entering class (clsize) or the size of the faculty 
( faculty) needs to be added to this equation; carry out a single test. (Be careful to 
account for missing data on clsize and faculty.)

 (iv)  What factors might influence the rank of the law school that are not included in the 
salary regression?

C4.3  Refer to Problem 3.14. Now, use the log of the housing price as the dependent 
variable:

log(price) � �0 � �1sqrft � �2bdrms � u.

 (i)  You are interested in estimating and obtaining a confidence interval for the per-
centage change in price when a 150-square-foot bedroom is added to a house. 
In decimal form, this is �1 � 150�1 � �2. Use the data in HPRICE1.RAW to 
estimate �1.

 (ii) Write �2 in terms of �1 and �1 and plug this into the log(price) equation.
 (iii)  Use part (ii) to obtain a standard error for  ̂  � 1 and use this standard error to construct 

a 95% confidence interval.

C4.4  In Example 4.9, the restricted version of the model can be estimated using all 1,388 
observations in the sample. Compute the R-squared from the regression of bwght on 
cigs,  parity, and faminc using all observations. Compare this to the R-squared reported 
for the restricted model in Example 4.9.

C4.5 Use the data in MLB1.RAW for this exercise.
 (i)  Use the model estimated in equation (4.31) and drop the variable rbisyr. What 

happens to the statistical significance of hrunsyr? What about the size of the coef-
ficient on hrunsyr?

 (ii)  Add the variables runsyr (runs per year), fldperc (fielding percentage), and 
 sbasesyr (stolen bases per year) to the model from part (i). Which of these factors 
are individually significant?

 (iii)  In the model from part (ii), test the joint significance of bavg, fldperc, and 
 sbasesyr.

C4.6 Use the data in WAGE2.RAW for this exercise.
 (i) Consider the standard wage equation

log(wage) � �0 � �1educ � �2exper � �3tenure � u.

   State the null hypothesis that another year of general workforce experience has the 
same effect on log(wage) as another year of tenure with the current employer.

 (ii)  Test the null hypothesis in part (i) against a two-sided alternative, at the 5% signifi-
cance level, by constructing a 95% confidence interval. What do you conclude?
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C4.7 Refer to the example used in Section 4.4. You will use the data set TWOYEAR.RAW.
 (i)  The variable phsrank is the person’s high school percentile. (A higher number is 

better. For example, 90 means you are ranked better than 90 percent of your gradu-
ating class.) Find the smallest, largest, and average phsrank in the sample.

 (ii)  Add phsrank to equation (4.26) and report the OLS estimates in the usual form. Is 
phsrank statistically significant? How much is 10 percentage points of high school 
rank worth in terms of wage?

 (iii)  Does adding phsrank to (4.26) substantively change the conclusions on the returns 
to two- and four-year colleges? Explain.

 (iv)  The data set contains a variable called id. Explain why if you add id to equation 
(4.17) or (4.26) you expect it to be statistically insignificant. What is the two-sided 
p-value?

C4.8  The data set 401KSUBS.RAW contains information on net financial wealth (nettfa), 
age of the survey respondent (age), annual family income (inc), family size (fsize), and 
participation in certain pension plans for people in the United States. The wealth and 
income variables are both recorded in thousands of dollars. For this question, use only 
the data for single-person households (so fsize � 1).

 (i) How many single-person households are there in the data set?
 (ii) Use OLS to estimate the model

nettfa � �0 � �1inc � �2age � u,

   and report the results using the usual format. Be sure to use only the single-person 
households in the sample. Interpret the slope coefficients. Are there any surprises 
in the slope estimates?

 (iii)  Does the intercept from the regression in part (ii) have an interesting meaning? 
Explain.

 (iv)  Find the p-value for the test H0: �2 � 1 against H0: �2 � 1. Do you reject H0 at the 
1% significance level?

 (v)  If you do a simple regression of nettfa on inc, is the estimated coefficient on inc 
much different from the estimate in part (ii)? Why or why not?

C4.9  Use the data in DISCRIM.RAW to answer this question. (See also Computer Exercise 
C3.8 in Chapter 3.)

 (i) Use OLS to estimate the model

log(psoda) � �0 � �1prpblck � �2 log(income) � �3 prppov � u,

   and report the results in the usual form. Is  ̂  � 1 statistically different from zero at the 
5% level against a two-sided alternative? What about at the 1% level?

 (ii)  What is the correlation between log(income) and prppov? Is each variable statisti-
cally significant in any case? Report the two-sided p-values.

 (iii)  To the regression in part (i), add the variable log(hseval). Interpret its coefficient 
and report the two-sided p-value for H0: �log(hseval) � 0.

 (iv)  In the regression in part (iii), what happens to the individual statistical significance 
of log(income) and prppov? Are these variables jointly significant? (Compute a 
p-value.) What do you make of your answers?

 (v)  Given the results of the previous regressions, which one would you report as most 
reliable in determining whether the racial makeup of a zip code influences local 
fast-food prices?



166 Part 1   Regression Analysis with Cross-Sectional Data

C4.10  Use the data in ELEM94_95 to answer this question. The findings can be compared 
with those in Table 4.1. The dependent variable lavgsal is the log of average teacher 
salary and bs is the ratio of average benefits to average salary (by school).

 (i)  Run the simple regression of lavgsal on bs. Is the estimated slope statistically 
different from zero? Is it statistically different from �1?

 (ii)  Add the variables lenrol and lstaff to the regression from part (i). What happens 
to the coefficient on bs? How does the situation compare with that in Table 4.1?

 (iii)  How come the standard error on the bs coefficient is smaller in part (ii) than in 
part (i)? (Hint: What happens to the error variance versus multicollinearity when 
lenrol and lstaff are added?)

 (iv) How come the coefficient on lstaff is negative? Is it large in magnitude?
 (v)  Now add the variable lunch to the regression. Holding other factors fixed, are 

teachers being compensated for teaching students from disadvantaged back-
grounds? Explain.

 (vi)  Overall, is the pattern of results that you find with ELEM94_95.RAW consistent 
with the pattern in Table 4.1?
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5
Multiple Regression Analysis: 
OLS Asymptotics

In Chapters 3 and 4, we covered what are called finite sample, small sample, or exact 
properties of the OLS estimators in the population model

 y � �0 � �1x1 � �2 x2 � ... � �k  xk � u. 5.1

For example, the unbiasedness of OLS (derived in Chapter 3) under the first four Gauss-
Markov assumptions is a finite sample property because it holds for any sample size 
n (subject to the mild restriction that n must be at least as large as the total number of 
parameters in the regression model, k � 1). Similarly, the fact that OLS is the best linear 
unbiased estimator under the full set of Gauss-Markov assumptions (MLR.1 through 
MLR.5) is a finite sample property.
 In Chapter 4, we added the classical linear model Assumption MLR.6, which states that 
the error term u is normally distributed and independent of the explanatory variables. This 
allowed us to derive the exact sampling distributions of the OLS estimators (conditional on 
the explanatory variables in the sample). In particular, Theorem 4.1 showed that the OLS 
estimators have normal sampling distributions, which led directly to the t and F distributions 
for t and F statistics. If the error is not normally distributed, the distribution of a t statistic is 
not exactly t, and an F statistic does not have an exact F distribution for any sample size.
 In addition to finite sample properties, it is important to know the asymptotic proper-
ties or large sample properties of estimators and test statistics. These properties are not 
defined for a particular sample size; rather, they are defined as the sample size grows with-
out bound. Fortunately, under the assumptions we have made, OLS has satisfactory large 
sample properties. One practically important finding is that even without the normality 
assumption (Assumption MLR.6), t and F statistics have approximately t and F distribu-
tions, at least in large sample sizes. We discuss this in more detail in Section 5.2, after we 
cover the consistency of OLS in Section 5.1.

5.1 Consistency
Unbiasedness of estimators, although important, cannot always be achieved. For example, 
as we discussed in Chapter 3, the standard error of the regression,  ̂  � , is not an unbiased 
estimator for �, the standard deviation of the error u in a multiple regression model. 
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Although the OLS estimators are unbiased under MLR.1 through MLR.4, in Chapter 11 
we will find that there are time series regressions where the OLS estimators are not unbi-
ased. Further, in Part 3 of the text, we encounter several other estimators that are biased 
yet useful.
 Although not all useful estimators are unbiased, virtually all economists agree that 
consistency is a minimal requirement for an estimator. The Nobel Prize–winning econo-
metrician Clive W. J. Granger once remarked, “If you can’t get it right as n goes to infinity,
you shouldn’t be in this business.” The implication is that, if your estimator of a particular 
population parameter is not consistent, then you are wasting your time.
 There are a few different ways to describe consistency. Formal definitions and results are 
given in Appendix C; here, we focus on an intuitive understanding. For concreteness, let  ̂  � 

j 

be the OLS estimator of �j for some j. For each n,  ̂  � 
j
 has a probability distribution (repre-

senting its possible values in different random samples of size n). Because  ̂  � 
j
 is unbiased 

under Assumptions MLR.1 through MLR.4, this distribution has mean value �j. If this 
estimator is consistent, then the distribution of  ̂  � 

j
 becomes more and more tightly dis-

tributed around �j as the sample size grows. As n tends to infinity, the distribution of  
ˆ � 

j
 collapses to the single point �j

 . In effect, this means that we can make our estimator 
arbitrarily close to �j if we can collect as much data as we want. This convergence is 
illustrated in Figure 5.1.

F I G U R E  5 . 1

Sampling distributions of  ̂  � 1 for sample sizes n1 � n2 � n3.

b1 b1

fb1

n3
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n1

ˆ

ˆ
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 Naturally, for any application, we have a fixed sample size, which is the reason an 
asymptotic property such as consistency can be difficult to grasp. Consistency involves a 
thought experiment about what would happen as the sample size gets large (while, at the 
same time, we obtain numerous random samples for each sample size). If obtaining more 
and more data does not generally get us closer to the parameter value of interest, then we 
are using a poor estimation procedure.
 Conveniently, the same set of assumptions implies both unbiasedness and consistency 
of OLS. We summarize with a theorem.

Theorem 5.1   (Consistency of OLS)

Under Assumptions MLR.1 through MLR.4, the OLS estimator  ̂  � j is consistent for �
j , for all 

j  � 0,1, ..., k.

A general proof of this result is most easily developed using the matrix algebra methods 
described in Appendices D and E. But we can prove Theorem 5.1 without difficulty in the 
case of the simple regression model. We focus on the slope estimator,  ̂  � 

1
.

 The proof starts out the same as the proof of unbiasedness: we write down the formula 
for  ̂  � 

1
, and then plug in yi � �0 � �1xi1 � u

i
:

  ̂  � 1 � � ∑ 
i�1

   
n

    (xi1 �  - x 1)yi ��� ∑ 
i�1

   
n

    (xi1 �  - x 1)
2�

� �1 � �n�1   ∑ 
i�1

   
n

    (xi1 �  - x 1)ui���n�1   ∑ 
i�1

   
n

    (xi1 �  - x 1)
2�. 

5.2

We can apply the law of large numbers to the numerator and denominator, which converge 
in probability to the population quantities, Cov(x1,u) and Var(x1), respectively. Provided 
that Var(x1) 	 0—which is assumed in MLR.3—we can use the properties of probability 
limits (see Appendix C) to get

plim  ̂  � 1 � �1 � Cov(x1,u)/Var(x1)

� �1 because Cov(x1,u) � 0. 
5.3

We have used the fact, discussed in Chapters 2 and 3, that E(u�x1) � 0 (Assumption 
MLR.4) implies that x1 and u are uncorrelated (have zero covariance).
 As a technical matter, to ensure that the probability limits exist, we should assume that 
Var(x1) �  and Var(u) �  (which means that their probability distributions are not too 
spread out), but we will not worry about cases where these assumptions might fail.
 The previous arguments, and equation (5.3) in particular, show that OLS is consistent 
in the simple regression case if we assume only zero correlation. This is also true in the 
general case. We now state this as an assumption.

Assumption MLR.4�  (Zero Mean and Zero Correlation)

E(u) � 0 and Cov(xj, u) � 0, for j � 1, 2, ..., k.
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 Assumption MLR.4� is weaker than Assumption MLR.4 in the sense that the latter implies 
the former. One way to characterize the zero conditional mean assumption, E(u�x1, ..., xk

) � 0, 
is that any function of the explanatory variables is uncorrelated with u. Assumption MLR.4� 
requires only that each xj is uncorrelated with u (and that u has a zero mean in the population). 
In Chapter 2 we actually motivated the OLS estimator  for simple regression using Assumption 
MLR.4�, and the first order conditions for OLS in the multiple regression case, given in equa-
tions (3.13), are simply the sample analogs of the population zero correlation assumptions 
(and zero mean assumption). Therefore, in some ways, Assumption MLR.4� is more natural 
an assumption because it leads directly to the OLS estimates. Further, when we think about 
violations of Assumption MLR.4, we usually think in terms of Cov(x

j
, u) 	 0 for some j. So 

how come we have used Assumption MLR.4 until now? There are two reasons, both of which 
we have touched on earlier. First, OLS turns out to be biased (but consistent) under Assumption 
MLR.4� if E(u�x

1
, ..., x

k
) depends on any of the x

j 
. Because we have previously focused on 

finite sample, or exact, sampling properties of the OLS estimators, we needed the stronger zero 
conditional mean assumption. 
 Second, and probably more important, is that the zero conditional mean assumption 
means that we have properly modeled the population regression function (PRF). That is, 
under Assumption MLR.4 we can write 

E(y�x1, ..., xk) � �0 � �1x1 � ... � �k
 xk

 ,

and so we can obtain partial effects of the explanatory variables on the average or expected 
value of y. If we instead only assume Assumption MLR.4�, �0 � �1x1 � ... � �k

 x
k
 need 

not represent the population regression function, and we face the possibility that some 
nonlinear functions of the xj, such as x2

j, could be correlated with the error u. A situation 
like this means that we have neglected nonlinearities in the model that could help us better 
explain y; if we knew that, we would usually include such nonlinear functions. In other 
words, most of the time we hope to get a good estimate of the PRF, and so the zero con-
ditional mean assumption is natural. Nevertheless, the weaker zero correlation assumption 
turns out to be useful in interpreting OLS estimation of a linear model as providing the 
best linear approximation to the PRF. It is also used in more advanced settings, such as in 
Chapter 15, where we have no interest in modeling a PRF. For further discussion of this 
somewhat subtle point, see Wooldridge (2002, Chapter 4).

Deriving the Inconsistency in OLS
Just as failure of E(u�x1, ..., xk) � 0 causes bias in the OLS estimators, correlation between 
u and any of x1, x2, ..., xk generally causes all of the OLS estimators to be inconsistent. 
This simple but important observation is often summarized as: if the error is correlated 
with any of the independent variables, then OLS is biased and inconsistent. This is very 
unfortunate because it means that any bias persists as the sample size grows.
 In the simple regression case, we can obtain the inconsistency from the first part of 
equation (5.3), which holds whether or not u and x1 are uncorrelated. The inconsistency 
in  ̂  � 

1 
(sometimes loosely called the asymptotic bias) is

 plim  ̂  � 1 � �
1
 � Cov(x

1
, u)/Var(x

1
). 5.4

Because Var(x1) � 0, the inconsistency in  ̂  � 
1
 is positive if x1 and u are positively cor-

related, and the inconsistency is negative if x1 and u are negatively correlated. If the 
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covariance between x1 and u is small relative to the variance in x1, the inconsistency can 
be negligible; unfortunately, we cannot even estimate how big the covariance is because 
u is unobserved.
 We can use (5.4) to derive the asymptotic analog of the omitted variable bias (see 
Table 3.2 in Chapter 3). Suppose the true model,

 y � �
0
 � �1x1 � �2 x2 � v,

satisfies the first four Gauss-Markov assumptions. Then v has a zero mean and is uncor-
related with x1 and x2. If  ̂  � 

0
,  ̂  � 

1
, and  ̂  � 

2
 denote the OLS estimators from the regression of 

y on x1 and x2, then Theorem 5.1 implies that these estimators are consistent. If we omit 
x2 from the regression and do the simple regression of y on x1, then u � �2

 x2 � v. Let �̃1 
denote the simple regression slope estimator. Then

 plim �̃
1
 � �

1
 � �2

 �1, 5.5

where

 �1 � Cov(x1, x2)/ Var(x1). 5.6

Thus, for practical purposes, we can view the inconsistency as being the same as the bias. 
The difference is that the inconsistency is expressed in terms of the population variance of 
x1 and the population covariance between x1 and x2, while the bias is based on their sample 
counterparts (because we condition on the values of x1 and x2 in the sample).
 If x1 and x2 are uncorrelated (in the population), then �1 � 0, and �̃

1
 is a consistent 

estimator of �1 (although not necessarily unbiased). If x2 has a positive partial effect on y, 
so that �2 � 0, and x1 and x2 are positively correlated, so that �1 � 0, then the inconsistency 
in �̃

1
 is positive. And so on. We can obtain the direction of the inconsistency or asymptotic 

bias from Table 3.2. If the covariance between x1 and x2 is small relative to the variance of 
x1, the inconsistency can be small.

E x a m p l e  5 . 1

[Housing Prices and Distance from an Incinerator]

Let y denote the price of a house ( price), let x
1
 denote the distance from the house to a new trash 

incinerator (distance), and let x
2
 denote the “quality” of the house (quality). The variable quality 

is left vague so that it can include things like size of the house and lot, number of bedrooms and 
bathrooms, and intangibles such as attractiveness of the neighborhood. If the incinerator depresses 
house prices, then �

1
 should be positive: everything else being equal, a house that is farther away 

from the incinerator is worth more. By definition, �
2
 is positive since higher quality houses sell for 

more, other factors being equal. If the incinerator was built farther away, on average, from better 
homes, then distance and quality are positively correlated, and so �

1
 � 0. A simple regression of 

price on distance [or log(price) on log(distance)] will tend to overestimate the effect of the incinera-
tor: �

1
 � �

2
�

1
 � �

1
.
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 An important point about inconsis-
tency in OLS estimators is that, by defi-
nition, the problem does not go away 
by adding more observations to the 
sample. If anything, the problem gets 
worse with more data: the OLS estima-
tor gets closer and closer to �

1 
� �

2
 �

1
 

as the sample size grows.
 Deriving the sign and magnitude 
of the inconsistency in the general k 
regressor case is harder, just as deriving 

the bias is more difficult. We need to remember that if we have the model in equation (5.1) 
where, say, x

1
 is correlated with u but the other independent variables are uncorrelated with 

u, all of the OLS estimators are generally inconsistent. For example, in the k � 2 case,

y � �
0
 � �

1
x

1
 � �

2
 x

2
 � u,

suppose that x
2
 and u are uncorrelated but x

1
 and u are correlated. Then the OLS estimators  

ˆ � 
1
 and  ̂  � 

2
 will generally both be inconsistent. (The intercept will also be inconsistent.) The 

inconsistency in  ̂  � 
2
 arises when x

1
 and x

2
 are correlated, as is usually the case. If x

1
 and x

2
 

are uncorrelated, then any correlation between x
1
 and u does not result in the inconsis tency 

of  ̂  � 
2
: plim  ̂  � 

2
 � �

2
. Further, the inconsistency in  ̂  � 

1
 is the same as in (5.4). The same state-

ment holds in the general case: if x
1
 is correlated with u, but x

1
 and u are uncorrelated with 

the other independent variables, then only  ̂  � 
1
 is inconsistent, and the inconsistency is given 

by (5.4). The general case is very similar to the omitted variable case in Section 3A.4 of 
Appendix 3A.

5.2 Asymptotic Normality and Large 
Sample Inference
Consistency of an estimator is an important property, but it alone does not allow us to 
perform statistical inference. Simply knowing that the estimator is getting closer to the 
population value as the sample size grows does not allow us to test hypotheses about the 
parameters. For testing, we need the sampling distribution of the OLS estimators. Under 
the classical linear model assumptions MLR.1 through MLR.6, Theorem 4.1 shows that 
the sampling distributions are normal. This result is the basis for deriving the t and F dis-
tributions that we use so often in applied econometrics.
 The exact normality of the OLS estimators hinges crucially on the normality of the 
distribution of the error, u, in the population. If the errors u

1
, u

2
, ..., un are random draws 

from some distribution other than the normal, the  ̂  � 
j
 will not be normally distributed, 

which means that the t statistics will not have t distributions and the F statistics will not 
have F distributions. This is a potentially serious problem because our inference hinges on 
being able to obtain critical values or p-values from the t or F distributions.
 Recall that Assumption MLR.6 is equivalent to saying that the distribution of y given 
x

1
, x

2
, ..., x

k
 is normal. Because y is observed and u is not, in a particular application, it is 

much easier to think about whether the distribution of y is likely to be normal. In fact, we 
have already seen a few examples where y definitely cannot have a conditional normal 

Q u e s t i o n  5 . 1
Suppose that the model

score � �
0
 � �

1
skipped � �

2
 priGPA � u

satisfies the first four Gauss-Markov assumptions, where score 
is score on a final exam, skipped is number of classes skipped, 
and priGPA is GPA prior to the current semester. If �

~
1 is from the 

simple regression of score on skipped, what is the direction of the 
asymptotic bias in �

~
1?
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distribution. A normally distributed random variable is symmetrically distributed about its 
mean, it can take on any positive or negative value (but with zero probability), and more 
than 95% of the area under the distribution is within two standard deviations.
 In Example 3.5, we estimated a model explaining the number of arrests of young men 
during a particular year (narr86). In the population, most men are not arrested during the 
year, and the vast majority are arrested one time at the most. (In the sample of 2,725 men 
in the data set CRIME1.RAW, fewer than 8% were arrested more than once during 1986.) 
Because narr86 takes on only two values for 92% of the sample, it cannot be close to being 
normally distributed in the population.
 In Example 4.6, we estimated a model explaining participation percentages ( prate) in 
401(k) pension plans. The frequency distribution (also called a histogram) in Figure 5.2 shows 
that the distribution of prate is heavily skewed to the right, rather than being normally 
distributed. In fact, over 40% of the observations on prate are at the value 100, indicat-
ing 100% participation. This violates the normality assumption even conditional on the 
explanatory variables.
 We know that normality plays no role in the unbiasedness of OLS, nor does it affect 
the conclusion that OLS is the best linear unbiased estimator under the Gauss-Markov 
assumptions. But exact inference based on t and F statistics requires MLR.6. Does this 

F I G U R E  5 . 2

Histogram of prate using the data in 401K.RAW.
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mean that, in our analysis of prate in Example 4.6, we must abandon the t statistics for 
determining which variables are statistically significant? Fortunately, the answer to this 
question is no. Even though the y

i
 are not from a normal distribution, we can use the central 

limit theorem from Appendix C to conclude that the OLS estimators satisfy asymptotic 
normality, which means they are approximately normally distributed in large enough 
sample sizes.

Theorem 5.2  (Asymptotic Normality of OLS)

Under the Gauss-Markov Assumptions MLR.1 through MLR.5,

 (i)  �
__

 n  (  ̂  � j � �j) ~ª Normal(0,� 2/aj
2), where � 2/aj

2 � 0 is the asymptotic variance of  �
__

 n  

( ̂  � j � �j); for the slope coefficients, aj
2 � plim �n�1 ∑ i�1   

n
    ̂ r ij

2�, where the  ̂ r ij are the residuals 

from regressing xj on the other independent variables. We say that  ̂  � j is asymptotically normally 
distributed (see Appendix C);
 (ii)  ̂  �  2 is a consistent estimator of �2 � Var(u);
 (iii) For each j,

 ( ̂  � 
j
 � �

j
)/se( ̂  � 

j
) ~ª Normal(0,1), 5.7

where se( ̂  � 
j
) is the usual OLS standard error.

 The proof of asymptotic normality is somewhat complicated and is sketched in the appen-
dix for the simple regression case. Part (ii) follows from the law of large numbers, and part (iii) 
follows from parts (i) and (ii) and the asymptotic properties discussed in Appendix C.
 Theorem 5.2 is useful because the normality assumption MLR.6 has been dropped; the 
only restriction on the distribution of the error is that it has finite variance, something we 
will always assume. We have also assumed zero conditional mean (MLR.4) and homoske-
dasticity of u (MLR.5).
 Notice how the standard normal distribution appears in (5.7), as opposed to the tn�k�1 dis-
tribution. This is because the distribution is only approximate. By contrast, in Theorem 4.2, 
the distribution of the ratio in (5.7) was exactly tn�k�1 for any sample size. From a practical 
perspective, this difference is irrelevant. In fact, it is just as legitimate to write

( ̂  � j � �j)/se( ̂  � j) ~ª  tn�k�1, 5.8

since tn�k�1 approaches the standard normal distribution as the degrees of freedom gets 
large.
 Equation (5.8) tells us that t testing and the construction of confidence intervals are 
carried out exactly as under the classical linear model assumptions. This means that our 
analysis of dependent variables like prate and narr86 does not have to change at all if 
the Gauss-Markov assumptions hold: in both cases, we have at least 1,500 observations, 
which is certainly enough to justify the approximation of the central limit theorem.
 If the sample size is not very large, then the t distribution can be a poor approximation 
to the distribution of the t statistics when u is not normally distributed. Unfortunately, there 
are no general prescriptions on how big the sample size must be before the approximation 
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is good enough. Some econometricians think that n � 30 is satisfactory, but this cannot 
be sufficient for all possible distributions of u. Depending on the distribution of u, more 
observations may be necessary before the central limit theorem delivers a useful approxi-
mation. Further, the quality of the approximation depends not just on n, but on the df, 
n � k � 1: With more independent variables in the model, a larger sample size is usually 
needed to use the t approximation. Methods for inference with small degrees of freedom 
and nonnormal errors are outside the scope of this text. We will simply use the t statistics 
as we always have without worrying about the normality assumption.
 It is very important to see that Theorem 5.2 does require the homoskedasticity assumption 
(along with the zero conditional mean assumption). If Var(y�x) is not constant, the usual t statis-
tics and confidence intervals are invalid no matter how large the sample size is; the central limit 
theorem does not bail us out when it comes to heteroskedasticity. For this reason, we devote all 
of Chapter 8 to discussing what can be done in the presence of heteroskedasticity.
 One conclusion of Theorem 5.2 is that  ̂  � 2 is a consistent estimator of �2; we already 
know from Theorem 3.3 that  ̂  � 2 is unbiased for �2 under the Gauss-Markov assumptions. 
The consistency implies that  ̂  �  is a consistent estimator of �, which is important in estab-
lishing the asymptotic normality result in equation (5.7).
 Remember that  ̂  �  appears in the standard error for each  ̂  � j . In fact, the estimated vari-
ance of  ̂  � 

j
 is

 2Var( ̂  � 
j
) �   

 ̂  � 2 ___________  
SST

j 
(1 � R

j
2)

  , 5.9

where SST
j
 is the total sum of squares of 

x
j
 in the sample, and R2

j
 is the R-squared 

from regressing xj on all of the other 
independent variables. In Section 3.4, 
we studied each component of (5.9), 
which we will now expound on in the 
context of asymptotic analysis. As the 
sample size grows,  ̂  � 2 converges in probability to the constant �2. Further, R2

j
 approaches a 

number strictly between zero and unity (so that 1 � R2
j
 converges to some number between 

zero and one). The sample variance of x
j
 is SSTj /n, and so SSTj

 /n converges to Var(x
j
) 

as the sample size grows. This means that SSTj grows at approximately the same rate as 
the sample size: SSTj � n�2

j, where �2
j is the population variance of xj

 . When we combine 
these facts, we find that 2Var( ̂  � 

j
) shrinks to zero at the rate of 1/n; this is why larger sample 

sizes are better.
 When u is not normally distributed, the square root of (5.9) is sometimes called the 
asymptotic standard error, and t statistics are called asymptotic t statistics. Because 
these are the same quantities we dealt with in Chapter 4, we will just call them standard 
errors and t statistics, with the understanding that sometimes they have only large-sample 
justification. A similar comment holds for an asymptotic confidence interval constructed 
from the asymptotic standard error.
 Using the preceding argument about the estimated variance, we can write

 se( ̂  � 
j
) � cj / �

__
 n  , 5.10

where c
j
 is a positive constant that does not depend on the sample size. Equation (5.10) is 

only an approximation, but it is a useful rule of thumb: standard errors can be expected to 
shrink at a rate that is the inverse of the square root of the sample size.

Q u e s t i o n  5 . 2
In a regression model with a large sample size, what is an approxi-
mate 95% confidence interval for  ̂  � j under MLR.1 through MLR.5? 
We call this an asymptotic confidence interval.
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E x a m p l e  5 . 2

[Standard Errors in a Birth Weight Equation]

We use the data in BWGHT.RAW to estimate a relationship where log of birth weight is the 
dependent variable, and cigarettes smoked per day (cigs) and log of family income are independent 
variables. The total number of observations is 1,388. Using the first half of the observations (694), 
the standard error for  ̂  � cigs is about .0013. The standard error using all of the observations is about 
.00086. The ratio of the latter standard error to the former is .00086/.0013 � .662. This is pretty 
close to  �

_________
 694/1,388   � .707, the ratio obtained from the approximation in (5.10). In other words, 

equation (5.10) implies that the standard error using the larger sample size should be about 70.7% of 
the standard error using the smaller sample. This percentage is pretty close to the 66.2% we actually 
compute from the ratio of the standard errors.

 
 The asymptotic normality of the OLS estimators also implies that the F statistics have 
approximate F distributions in large sample sizes. Thus, for testing exclusion restrictions 
or other multiple hypotheses, nothing changes from what we have done before.

Other Large Sample Tests: The Lagrange 
Multiplier Statistic
Once we enter the realm of asymptotic analysis, other test statistics can be used for 
hypothesis testing. For most purposes, there is little reason to go beyond the usual t and F 
statistics: as we just saw, these statistics have large sample justification without the nor-
mality assumption. Nevertheless, sometimes it is useful to have other ways to test multiple 
exclusion restrictions, and we now cover the Lagrange multiplier (LM) statistic, which 
has achieved some popularity in modern econometrics.
 The name “Lagrange multiplier statistic” comes from constrained optimization, a 
topic beyond the scope of this text. [See Davidson and MacKinnon (1993).] The name 
score statistic—which also comes from optimization using calculus—is used as well. 
Fortunately, in the linear regression framework, it is simple to motivate the LM statistic 
without delving into complicated mathematics.
 The form of the LM statistic we derive here relies on the Gauss-Markov assumptions, 
the same assumptions that justify the F statistic in large samples. We do not need the nor-
mality assumption.
 To derive the LM statistic, consider the usual multiple regression model with k inde-
pendent variables:

 y � �
0
 � �

1
x

1
 � ... � �

k
x

k
 � u. 5.11

We would like to test whether, say, the last q of these variables all have zero population 
parameters: the null hypothesis is

 H
0
: �

k�q�1
 � 0, ..., �

k
 � 0, 5.12

which puts q exclusion restrictions on the model (5.11). As with F testing, the alternative 
to (5.12) is that at least one of the parameters is different from zero.
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 The LM statistic requires estimation of the restricted model only. Thus, assume that we 
have run the regression

 y � �̃
0
 � �̃

1
x

1
 � ... � �̃

k�q
 x

k�q
 � ũ  , 5.13

where “~” indicates that the estimates are from the restricted model. In particular, ũ indi-
cates the residuals from the restricted model. (As always, this is just shorthand to indicate 
that we obtain the restricted residual for each observation in the sample.)
 If the omitted variables x

k�q�1
 through x

k
 truly have zero population coefficients, then, 

at least approximately, ũ should be uncorrelated with each of these variables in the sam-
ple. This suggests running a regression of these residuals on those independent variables 
excluded under H

0
, which is almost what the LM test does. However, it turns out that, to 

get a usable test statistic, we must include all of the independent variables in the regres-
sion. (We must include all regressors because, in general, the omitted regressors in the 
restricted model are correlated with the regressors that appear in the restricted model.) 
Thus, we run the regression of

 ũ  on  x
1
, x

2
, ..., x

k
. 5.14

This is an example of an auxiliary regression, a regression that is used to compute a test 
statistic but whose coefficients are not of direct interest.
 How can we use the regression output from (5.14) to test (5.12)? If (5.12) is true, the 
R-squared from (5.14) should be “close” to zero, subject to sampling error, because ũ will be 
approximately uncorrelated with all the independent variables. The question, as always with 
hypothesis testing, is how to determine when the statistic is large enough to reject the null 
hypothesis at a chosen significance level. It turns out that, under the null hypothesis, the sam-
ple size multiplied by the usual R-squared from the auxiliary regression (5.14) is distributed 
asymptotically as a chi-square random variable with q degrees of freedom. This leads to a 
simple procedure for testing the joint significance of a set of q independent variables.

The Lagrange Multiplier Statistic for q Exclusion Restrictions:

 (i)  Regress y on the restricted set of independent variables and save the residu-
als, ũ.

 (ii)  Regress ũ on all of the independent variables and obtain the R-squared, say, R2
u (to 

distinguish it from the R-squareds obtained with y as the dependent variable).

 (iii)  Compute LM � nR2
u [the sample size times the R-squared obtained from step (ii)].

 (iv)  Compare LM to the appropriate critical value, c, in a 	2
q distribution; if LM � c, 

the null hypothesis is rejected. Even better, obtain the p-value as the probability 
that a 	2

q
 random variable exceeds the value of the test statistic. If the p-value 

is less than the desired significance level, then H0 is rejected. If not, we fail to 
reject H0. The rejection rule is essentially the same as for F testing.

 Because of its form, the LM statistic is sometimes referred to as the n-R-squared 
statistic. Unlike with the F statistic, the degrees of freedom in the unrestricted model plays 
no role in carrying out the LM test. All that matters is the number of restrictions being 
tested (q), the size of the auxiliary R-squared (R2

u), and the sample size (n). The df in the 
unrestricted model plays no role because of the asymptotic nature of the LM statistic. But 
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we must be sure to multiply R2
u by the sample size to obtain LM; a seemingly low value of 

the R-squared can still lead to joint significance if n is large.
 Before giving an example, a word of caution is in order. If in step (i), we mistakenly 
regress y on all of the independent variables and obtain the residuals from this unrestricted 
regression to be used in step (ii), we do not get an interesting statistic: the resulting 
R-squared will be exactly zero! This is because OLS chooses the estimates so that the 
residuals are uncorrelated in samples with all included independent variables [see equa-
tions in (3.13)]. Thus, we can only test (5.12) by regressing the restricted residuals on all 
of the independent variables. (Regressing the restricted residuals on the restricted set of 
independent variables will also produce R2 � 0.)

E x a m p l e  5 . 3

[Economic Model of Crime]

We illustrate the LM test by using a slight extension of the crime model from Example 3.5:

narr86 � �
0
 � �

1 
pcnv � �

2 
avgsen � �

3 
tottime � �

4 
ptime86 � �

5 
qemp86 � u,

where

 narr86 � the number of times a man was arrested.
 pcnv �  the proportion of prior arrests leading to conviction.
 avgsen � average sentence served from past convictions.
 tottime � total time the man has spent in prison prior to 1986 since reaching the age of 18.
 ptime86 � months spent in prison in 1986.
 qemp86 � number of quarters in 1986 during which the man was legally employed.

 We use the LM statistic to test the null hypothesis that avgsen and tottime have no effect on 
narr86 once the other factors have been controlled for.
 In step (i), we estimate the restricted model by regressing narr86 on pcnv, ptime86, and qemp86; 
the variables avgsen and tottime are excluded from this regression. We obtain the residuals ũ from 
this regression, 2,725 of them. Next, we run the regression of

 ũ on pcnv, ptime86, qemp86, avgsen, and tottime; 5.15

as always, the order in which we list the independent variables is irrelevant. This second regression 
produces R2

u, which turns out to be about .0015. This may seem small, but we must multiply it by n to 
get the LM statistic: LM � 2,725(.0015) � 4.09. The 10% critical value in a chi-square distribution 
with two degrees of freedom is about 4.61 (rounded to two decimal places; see Table G.4). Thus, 
we fail to reject the null hypothesis that �avgsen � 0 and �tottime � 0 at the 10% level. The p-value is 
P(	2

2
 � 4.09) � .129, so we would reject H

0
 at the 15% level.

 As a comparison, the F test for joint significance of avgsen and tottime yields a p-value of 
about .131, which is pretty close to that obtained using the LM statistic. This is not surprising since, 
asymptotically, the two statistics have the same probability of Type I error. (That is, they reject the 
null hypothesis with the same frequency when the null is true.)

 
 As the previous example suggests, with a large sample, we rarely see important dis-
crepancies between the outcomes of LM and F tests. We will use the F statistic for the 
most part because it is computed routinely by most regression packages. But you should 
be aware of the LM statistic as it is used in applied work.
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 One final comment on the LM statistic. As with the F statistic, we must be sure to use 
the same observations in steps (i) and (ii). If data are missing for some of the independent 
variables that are excluded under the null hypothesis, the residuals from step (i) should be 
obtained from a regression on the reduced data set.

5.3 Asymptotic Effi ciency of OLS
We know that, under the Gauss-Markov assumptions, the OLS estimators are best linear 
unbiased. OLS is also asymptotically efficient among a certain class of estimators under 
the Gauss-Markov assumptions. A general treatment requires matrix algebra and advanced 
asymptotic analysis. First, we describe the result in the simple regression case.
 In the model

 y � �
0
 � �

1
x � u, 5.16

u has a zero conditional mean under MLR.4: E(u�x) � 0. This opens up a variety of con-
sistent estimators for �

0
 and �

1
; as usual, we focus on the slope parameter, �

1
. Let g(x) 

be any function of x; for example, g(x) � x2 or g(x) � 1/(1 � �x�). Then u is uncorrelated 
with g(x) (see Property CE.5 in Appendix B). Let z

i
 � g(x

i
) for all observations i. Then 

the estimator

 �̃
1
 � � ∑ 

i�1

   
n

    (z
i
 �  - z )y

i��� ∑ 
i�1

   
n

    (z
i
 �  - z )x

i� 5.17

is consistent for �
1
, provided g(x) and x are correlated. [Remember, it is possible that g(x) 

and x are uncorrelated because correlation measures linear dependence.] To see this, we 
can plug in y

i
 � �

0
 � �

1
x

i
 � u

i
 and write �̃

1
 as

 �̃
1
 � �

1
 � � n�1  ∑ 

i�1

   
n

    (z
i
 �  - z )u

i��� n�1  ∑ 
i�1

   
n

    (z
i
 �  - z )x

i�. 5.18

Now, we can apply the law of large numbers to the numerator and denominator, which 
converge in probability to Cov(z,u) and Cov(z,x), respectively. Provided that Cov(z,x) 	 
0—so that z and x are correlated—we have

plim �̃
1
 � �

1
 � Cov(z,u)/Cov(z,x) � �

1
,

because Cov(z,u) � 0 under MLR.4.
 It is more difficult to show that �̃

1
 is asymptotically normal. Nevertheless, using argu-

ments similar to those in the appendix, it can be shown that  �
__

 n   (�̃
1
� �

1
) is asymptotically 

normal with mean zero and asymptotic variance �2Var(z)/[Cov(z, x)]2. The asymptotic variance 
of the OLS estimator is obtained when z � x, in which case, Cov(z, x) � Cov(x, x) � Var(x). 
Therefore, the asymptotic variance of  �

__
 n   ( ̂  � 

1
 � �

1
), where  ̂  � 

1
 is the OLS estimator, is 

�2Var(x)/[Var(x)]2 � �2/Var(x). Now, the Cauchy-Schwartz inequality (see Appendix B.4) 
implies that [Cov(z, x)]2 
 Var(z)Var(x), which implies that the asymptotic variance of 
 �

__
 n   ( ̂  � 

1
 � �

1
) is no larger than that of  �

__
 n   (�̃

1
 � �

1
). We have shown in the simple regression 

case that, under the Gauss-Markov assumptions, the OLS estimator has a smaller asymp-
totic variance than any estimator of the form (5.17). [The estimator in (5.17) is an example 
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of an instrumental variables estimator, which we will study extensively in Chapter 15.] 
If the homoskedasticity assumption fails, then there are estimators of the form (5.17) that 
have a smaller asymptotic variance than OLS. We will see this in Chapter 8.
 The general case is similar but much more difficult mathematically. In the k regres-
sor case, the class of consistent estimators is obtained by generalizing the OLS first order 
conditions:

  ∑ 
i�1

   
n

    g
j
(x

i
)(y

i
 � �̃

0
 � �̃

1
x

i1
 � ... � �̃

k
 x

ik
) � 0, j � 0, 1, ..., k, 5.19

where g
j
(x

i
) denotes any function of all explanatory variables for observation i. As can be 

seen by comparing (5.19) with the OLS first order conditions in (3.13), we obtain the OLS 
estimators when g

0
(x

i
) � 1 and g

j
(x

i
) � x

ij
 for j � 1, 2, ..., k. The class of estimators in 

(5.19) is infinite, because we can use any functions of the x
ij
 that we want.

Theorem 5.3  (Asymptotic Efficiency of OLS)

Under the Gauss-Markov assumptions, let �̃j denote estimators that solve equations of the 
form (5.19) and let  ̂  � j denote the OLS estimators. Then for j � 0, 1, 2, ..., k, the OLS estimators 
have the smallest asymptotic variances: Avar  �

__
 n   (  ̂  � j � �j) 
 Avar  �

__
 n   ( �̃j � �j).

S U M M A R Y

The claims underlying the material in this chapter are fairly technical, but their practical 
implications are straightforward. We have shown that the first four Gauss-Markov assump-
tions imply that OLS is consistent. Furthermore, all of the methods of testing and constructing 
confidence intervals that we learned in Chapter 4 are approximately valid without assuming 
that the errors are drawn from a normal distribution (equivalently, the distribution of y given 
the explanatory variables is not normal). This means that we can apply OLS and use previous 
methods for an array of applications where the dependent variable is not even approximately 
normally distributed. We also showed that the LM statistic can be used instead of the F statistic 
for testing exclusion restrictions.
 Before leaving this chapter, we should note that examples such as Example 5.3 may very 
well have problems that do require special attention. For a variable such as narr86, which 
is zero or one for most men in the population, a linear model may not be able to adequately 
capture the functional relationship between narr86 and the explanatory variables. Moreover, 
even if a linear model does describe the expected value of arrests, heteroskedasticity might be a 
problem. Problems such as these are not mitigated as the sample size grows, and we will return 
to them in later chapters.

 Proving consistency of the estimators in (5.19), let alone showing they are asymp-
totically normal, is mathematically difficult. [See Wooldridge (2002, Chapter 5).]
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Asymptotic Bias
Asymptotic Confidence 

Interval
Asymptotic Normality
Asymptotic Properties
Asymptotic Standard Error

Asymptotic t Statistics
Asymptotic Variance
Asymptotically Efficient
Auxiliary Regression
Consistency
Inconsistency

Lagrange Multiplier (LM) 
Statistic

Large Sample Properties
n-R-Squared Statistic
Score Statistic

P R O B L E M S

5.1  In the simple regression model under MLR.1 through MLR.4, we argued that the slope 
estimator,  ̂  � 

1
, is consistent for �

1
. Using  ̂  � 

0
 �  - y  �  ̂  � 

1
x̄

1
, show that plim  ̂  � 

0
 � �

0
. [You 

need to use the consistency of  ̂  � 
1
 and the law of large numbers, along with the fact that 

�
0
 � E(y) � �

1
E(x

1
).]

5.2 Suppose that the model

pctstck � �
0
 � �

1
 funds � �

2
risktol � u

  satisfies the first four Gauss-Markov assumptions, where pctstck is the percentage of a 
worker’s pension invested in the stock market, funds is the number of mutual funds that 
the worker can choose from, and risktol is some measure of risk tolerance (larger risktol 
means the person has a higher tolerance for risk). If funds and risktol are positively cor-
related, what is the inconsistency in �̃

1
, the slope coefficient in the simple regression of 

pctstck on funds?

5.3  The data set SMOKE.RAW contains information on smoking behavior and other vari-
ables for a random sample of single adults from the United States. The variable cigs is the 
(average) number of cigarettes smoked per day. Do you think cigs has a normal distribu-
tion in the U.S. adult population? Explain.

5.4  In the simple regression model (5.16), under the first four Gauss-Markov assumptions, 
we showed that estimators of the form (5.17) are consistent for the slope, �

1
. Given such 

an estimator, define an estimator of �
0
 by �̃

0
 �  - y  � �̃

1
x̄ . Show that plim �̃

0
 � �

0
.

C O M P U T E R  E X E R C I S E S

C5.1 Use the data in WAGE1.RAW for this exercise.
 (i) Estimate the equation

wage � �
0
 � �

1
educ � �

2
exper � �

3
tenure � u.

  Save the residuals and plot a histogram.
 (ii) Repeat part (i), but with log(wage) as the dependent variable.
 (iii)  Would you say that Assumption MLR.6 is closer to being satisfied for the level-

level model or the log-level model?

K E Y  T E R M S
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C5.2 Use the data in GPA2.RAW for this exercise.
 (i) Using all 4,137 observations, estimate the equation

colgpa � �
0
 � �

1
hsperc � �

2
sat � u

  and report the results in standard form.
 (ii) Reestimate the equation in part (i), using the first 2,070 observations.
 (iii)  Find the ratio of the standard errors on hsperc from parts (i) and (ii). Compare this 

with the result from (5.10).

C5.3  In equation (4.42) of Chapter 4, compute the LM statistic for testing whether motheduc 
and fatheduc are jointly significant. In obtaining the residuals for the restricted model, 
be sure that the restricted model is estimated using only those observations for which all 
variables in the unrestricted model are available (see Example 4.9).

C5.4  Several statistics are commonly used to detect nonnormality in underlying popula-
tion distributions. Here we will study one that measures the amount of skewness in a 
distribution. Recall that any normally distributed random variable is symmetric about 
its mean; therefore, if we standardize a symmetrically distributed random variable, say 
z � (y � 
y)/�y, where 
y � E(y) and �y � sd(y), then z has mean zero, variance one, 
and E(z3) � 0. Given a sample of data {y

i
 : i � 1, ..., n}, we can standardize y

i
 in the 

sample by using z
i
 � (y

i
 �  ̂  
 

y
)/ ̂  � 

y
, where  ̂  
 

y
 is the sample mean and  ̂  � 

y
 is the sample 

standard deviation. (We ignore the fact that these are estimates based on the sample.) 
A sample statistic that measures skewness is n−1 ∑ i�1  

n
    z

i
3, or where n is replaced with 

(n � 1) as a degrees-of-freedom adjustment. If y has a normal distribution in the popula-
tion, the skewness measure in the sample for the standardized values should not differ 
significantly from zero.

 (i)  First use the data set 401KSUBS.RAW, keeping only observations with fsize � 1. 
Find the skewness measure for inc. Do the same for log(inc). Which variable has 
more skewness and therefore seems less likely to be normally distributed?

 (ii)  Next use BWGHT2.RAW. Find the skewness measures for bwght and log(bwght). 
What do you conclude?

 (iii)  Evaluate the following statement: “The logarithmic transformation always makes 
a positive variable look more normally distributed.”

 (iv)  If we are interested in the normality assumption in the context of regression, should 
we be evaluating the unconditional distributions of y and log(y)? Explain.

Appendix 5A

Asymptotic Normality of OLS

We sketch a proof of the asymptotic normality of OLS [Theorem 5.2(i)] in the simple 
regression case. Write the simple regression model as in equation (5.16). Then, by the 
usual algebra of simple regression, we can write

 �
__

 n  ( ̂  � 
1
 � �

1
) � (1/s

x
2 )  n�1/  2   ∑ 

i�1

   
n

    (x
i
 �  - x )u

i
 � ,
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where we use sx
2 to denote the sample variance of {x

i
: i � 1, 2, ..., n}. By the law of 

large numbers (see Appendix C), sx
2 →p  

�x
2 � Var(x). Assumption MLR.3 rules out no per-

fect collinearity, which means that Var(x) � 0 (x
i
 varies in the sample, and therefore x 

is not constant in the population). Next, n�1/2 ∑ 
i�1

  
n
    (x

i
 �  - x )u

i
 � n�1/2  ∑ 

i�1
  

n
    (x

i
 � µ)u

i
 � 

(µ �  - x )[n�1/2 ∑ 
i�1

  
n
    u

i
], where µ � E(x) is the population mean of x. Now {u

i
} is a 

sequence of i.i.d. random variables with mean zero and variance �2, and so n�1/2 ∑ 
i�1

  
n
    u

i

converges to the Normal(0,�2) distribution as n → ; this is just the central limit theorem 
from Appendix C. By the law of large numbers, plim (µ � x - x ) � 0. A standard result in 
asymptotic theory is that if plim(w

n
) � 0 and z

n
 has an asymptotic normal distribution, 

then plim(w
n
z

n
) � 0. [See Wooldridge (2002, Chapter 3) for more discussion.] This 

implies that ( µ �  - x )[n�1/ 2  ∑ 
i�1

  
n
    u

i
] has zero plim. Next, {(x

i
 � µ)u

i
: i � 1, 2, ...} is an 

indefinite sequence of i.i.d. random variables with mean zero—because u and x are 
uncorrelated under Assumption MLR.4—and variance �2� 2x by the homoskedasticity 
Assumption MLR.5. Therefore, n�1/ 2  ∑ 

i�1
  

n
    (x

i
 � µ)u

i
 has an asymptotic Normal(0,�2�2

x) 
distribution. We just showed that the difference between n�1/2  ∑ 

i�1
  

n
    (x

i
 �  - x )u

i
 and 

n�1/2 ∑ 
i�1

  
n
    (x

i
 � µ)u

i
 has zero plim. A result in asymptotic theory is that if z

n
 has an 

asymptotic normal distribution and plim(v
n
 � z

n
) � 0, then v

n
 has the same asymptotic 

normal distribution as z
n
. It follows that n�1/2  ∑ 

i�1
  

n
    (x

i
 �  - x )u

i
 also has an asymptotic 

Normal(0,�2�2
x) distribution. Putting all of the pieces together gives

 �
__

 n  ( ̂  � 
1
 � �

1
) � (1/�x

2 )  n�1/2  ∑ 
i�1

   
n

    (xi �  - x )ui � 
 � [(1/sx

2) � (1/�x
2)]  n�1/2  ∑ 

i�1

   
n

    (xi �  - x )ui � ,
and since plim(1/sx

2) � 1/�
x
2, the second term has zero plim. Therefore, the asymptotic dis-

tribution of  �
__

 n  ( ̂  � 
1
 � �

1
) is Normal(0,{�2�2

x}/{�x
2}2) � Normal(0,�2/�2

x). This completes 
the proof in the simple regression case, as a

1
2 � �x

2 in this case. See Wooldridge (2002, 
Chapter 4) for the general case.
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Multiple Regression Analysis:  
Further Issues

C H A P T E R 6

This chapter brings together several issues in multiple regression analysis that we 
could not conveniently cover in earlier chapters. These topics are not as fundamental 
as the material in Chapters 3 and 4, but they are important for applying multiple 

regression to a broad range of empirical problems.

6.1 Effects of Data Scaling on OLS Statistics
In Chapter 2 on bivariate regression, we briefly discussed the effects of changing the units 
of measurement on the OLS intercept and slope estimates. We also showed that changing 
the units of measurement did not affect R-squared. We now return to the issue of data 
scaling and examine the effects of rescaling the dependent or independent variables on 
standard errors, t statistics, F statistics, and confidence intervals.
 We will discover that everything we expect to happen, does happen. When variables 
are rescaled, the coefficients, standard errors, confidence intervals, t statistics, and F sta-
tistics change in ways that preserve all measured effects and testing outcomes. Although 
this is no great surprise—in fact, we would be very worried if it were not the case—it is 
useful to see what occurs explicitly. Often, data scaling is used for cosmetic purposes, such 
as to reduce the number of zeros after a decimal point in an estimated coefficient. By judi-
ciously choosing units of measurement, we can improve the appearance of an estimated 
equation while changing nothing that is essential.
 We could treat this problem in a general way, but it is much better illustrated with 
examples. Likewise, there is little value here in introducing an abstract notation.
 We begin with an equation relating infant birth weight to cigarette smoking and family 
income:

1bwght �  ̂  � 
0
 �  ̂  � 

1
cigs �  ̂  � 

2 
 faminc, 6.1

where 

 bwght � child birth weight, in ounces.
 cigs � number of cigarettes smoked by the mother while pregnant, per day.
 faminc � annual family income, in thousands of dollars. 
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TABLE  6 . 1

Effects of Data Scaling

Dependent Variable (1) bwght (2) bwghtlbs (3) bwght

Independent Variables

cigs  �.4634
 (.0916)

 �.0289
 (.0057)

——

packs —— ——  �9.268 
 (1.832)

faminc  .0927
 (.0292)

.0058
(.0018)

 .0927 
 (.0292)

intercept  116.974
 (1.049)

7.3109
(.0656)

 116.974
 (1.049) 

Observations 1,388 1,388  1,388

R-Squared  .0298  .0298  .0298

SSR  557,485.51  2,177.6778  557,485.51

SER  20.063  1.2539  20.063

The estimates of this equation, obtained using the data in BWGHT.RAW, are given in 
the first column of Table 6.1. Standard errors are listed in parentheses. The estimate on 
cigs says that if a woman smoked 5 more cigarettes per day, birth weight is predicted to 
be about .4634(5) � 2.317 ounces less. The t statistic on cigs is �5.06, so the variable is 
very statistically significant.
 Now, suppose that we decide to measure birth weight in pounds, rather than in ounces. 
Let bwghtlbs � bwght/16 be birth weight in pounds. What happens to our OLS statistics 
if we use this as the dependent variable in our equation? It is easy to find the effect on the 
coefficient estimates by simple manipulation of equation (6.1). Divide this entire equation 
by 16:

1bwght/16 �  ̂  � 
0 
/16 � (  ̂  � 

1 
/16)cigs � (  ̂  � 

2 
/16)faminc.

Since the left-hand side is birth weight in pounds, it follows that each new coefficient 
will be the corresponding old coefficient divided by 16. To verify this, the regression of 
bwghtlbs on cigs, and faminc is reported in column (2) of Table 6.1. Up to four digits, the 
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intercept and slopes in column (2) are just those in column (1) divided by 16. For exam-
ple, the coefficient on cigs is now �.0289; this means that if cigs were higher by five, 
birth weight would be .0289(5) � .1445 pounds lower. In terms of ounces, we have 
.1445(16) � 2.312, which is slightly different from the 2.317 we obtained earlier due to 
rounding error. The point is, once the effects are transformed into the same units, we get 
exactly the same answer, regardless of how the dependent variable is measured.
 What about statistical significance? As we expect, changing the dependent variable 
from ounces to pounds has no effect on how statistically important the independent 
 variables are. The standard errors in column (2) are 16 times smaller than those in col-
umn (1). A few quick calculations show that the t statistics in column (2) are indeed 
identical to the t statistics in column (1). The endpoints for the confidence intervals 
in column (2) are just the endpoints in column (1) divided by 16. This is because the 
CIs change by the same factor as the standard errors. [Remember that the 95% CI here 
is  ̂  � 

j
 � 1.96 se( ̂  � 

j
).]

 In terms of goodness-of-fit, the R-squareds from the two regressions are identical, as 
should be the case. Notice that the sum of squared residuals, SSR, and the standard error 
of the regression, SER, do differ across equations. These differences are easily explained. 
Let  ̂  u 

i
 denote the residual for observation i in the original equation (6.1). Then the residual 

when bwghtlbs is the dependent variable is simply  ̂  u 
i 
/16. Thus, the squared residual in the 

second equation is ( ̂  u 
i 
/16)2 �  ̂  u  2   i  /256. This is why the sum of squared residuals in column (2) 

is equal to the SSR in column (1) divided by 256.
 Since SER �  ̂  �  �  �

________________
  SSR/(n � k � 1)    �  �

_________
 SSR/1,385  , the SER in column (2) is 

16 times smaller than that in column (1). Another way to think about this is that the error 
in the equation with bwghtlbs as the dependent variable has a standard deviation 16 times 
smaller than the standard deviation of the original error. This does not mean that we have 
reduced the error by changing how birth weight is measured; the smaller SER simply 
reflects a difference in units of measurement.
 Next, let us return the dependent variable to its original units: bwght is measured in 
ounces. Instead, let us change the unit of measurement of one of the independent variables, 
cigs. Define packs to be the number of packs of cigarettes smoked per day. Thus, packs � 
cigs/20. What happens to the coefficients and other OLS statistics now? Well, we can 
write

 1bwght �  ̂  � 
0
 � (20 ̂  � 

1
)(cigs/20) �  ̂  � 

2
 faminc �  ̂  � 

0
 � (20 ̂  � 

1
)packs �  ̂  � 

2
 faminc.

Thus, the intercept and slope coefficient on faminc are unchanged, but the coefficient on 
packs is 20 times that on cigs. This is intuitively appealing. The results from the regression 
of bwght on packs and faminc are in column (3) of Table 6.1. Incidentally, remember that 

it would make no sense to include both 
cigs and packs in the same equation; 
this would induce perfect multicolline-
arity and would have no interesting 
meaning.
  Other than the coefficient on packs, 
there is one other statistic in column (3) 
that differs from that in column (1): 
the standard error on packs is 20 times 
larger than that on cigs in column (1). 

Q u e s t i o n  6 . 1
In the original birth weight equation (6.1), suppose that faminc 
is measured in dollars rather than in thousands of dollars. Thus, 
define the variable fincdol � 1,000�faminc. How will the OLS 
statistics change when fincdol is substituted for faminc? For the 
purpose of presenting the regression results, do you think it is bet-
ter to measure income in dollars or in thousands of dollars?
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This means that the t statistic for testing the significance of cigarette smoking is the same 
whether we measure smoking in terms of cigarettes or packs. This is only  natural.
 The previous example spells out most of the possibilities that arise when the depen dent 
and independent variables are rescaled. Rescaling is often done with dollar amounts in 
economics, especially when the dollar amounts are very large.
 In Chapter 2, we argued that, if the dependent variable appears in logarithmic form, 
changing the unit of measurement does not affect the slope coefficient. The same is true 
here: changing the unit of measurement of the dependent variable, when it appears in 
 logarithmic form, does not affect any of the slope estimates. This follows from the simple 
fact that log(c

1
y

i
) � log(c

1
) � log(y

i
) for any constant c

1
 � 0. The new intercept will be 

log(c
1
) �  ̂  � 

0
. Similarly, changing the unit of measurement of any x

j
, where log(x

j
) appears 

in the regression, only affects the intercept. This corresponds to what we know about 
percentage changes and, in particular, elasticities: they are invariant to the units of mea-
surement of either y or the x

j
. For example, if we had specified the dependent variable in 

(6.1) to be log(bwght), estimated the equation, and then reestimated it with log(bwghtlbs) 
as the dependent variable, the coefficients on cigs and faminc would be the same in both 
regressions; only the intercept would be different.

Beta Coeffi cients

Sometimes, in econometric applications, a key variable is measured on a scale that is dif-
ficult to interpret. Labor economists often include test scores in wage equations, and the 
scale on which these tests are scored is often arbitrary and not easy to interpret (at least for 
economists!). In almost all cases, we are interested in how a particular individual’s score 
compares with the population. Thus, instead of asking about the effect on hourly wage if, 
say, a test score is 10 points higher, it makes more sense to ask what happens when the 
test score is one standard deviation higher.
 Nothing prevents us from seeing what happens to the dependent variable when an 
independent variable in an estimated model increases by a certain number of standard 
deviations, assuming that we have obtained the sample standard deviation (which is easy 
in most regression packages). This is often a good idea. So, for example, when we look 
at the effect of a standardized test score, such as the SAT score, on college GPA, we can 
find the standard deviation of SAT and see what happens when the SAT score increases 
by one or two standard deviations.
 Sometimes, it is useful to obtain regression results when all variables involved, the 
dependent as well as all the independent variables, have been standardized. A variable is 
standardized in the sample by subtracting off its mean and dividing by its standard devia-
tion (see Appendix C). This means that we compute the z-score for every variable in the 
sample. Then, we run a regression using the z-scores.
 Why is standardization useful? It is easiest to start with the original OLS equation, with 
the variables in their original forms:

 y
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 �  ̂  � 

2
x

i2
 � … �  ̂  � 

k
x

ik
 �  ̂  u 

i
. 6.2

We have included the observation subscript i to emphasize that our standardization is 
applied to all sample values. Now, if we average (6.2), use the fact that the  ̂  u 

i
 have a zero 

sample average, and subtract the result from (6.2), we get

  y
i
 �  - y  �  ̂  � 

1
(x

i1
 �  - x 

1
) �  ̂  � 

2
(x

i2
 �  - x 

2
) � … �  ̂  � 

k
(x

ik
 �  - x 

k
) �  ̂  u 

i
.
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Now, let  ̂  � y be the sample standard deviation for the dependent variable, let  ̂  � 
1
 be the 

sample sd for x
1
, let  ̂  � 

2
 be the sample sd for x

2
, and so on. Then, simple algebra gives the 

equation

 ( y
i
 �  - y )/ ̂  � 

y
 � ( ̂  � 

1
/ ̂  � 

y
) ̂  � 

1
[(x

i1
 �  - x 

1
)/ ̂  � 

1
] � …

 6.3
 � ( ̂  � 

k
/ ̂  � 

y
) ̂  � 

k
[(x

ik
 �  - x 

k
)/ ̂  � 

k
] � ( ̂  u 

i
/ ̂  � 

y
).

Each variable in (6.3) has been standardized by replacing it with its z-score, and this has 
resulted in new slope coefficients. For example, the slope coefficient on (x

i1
 �  - x 

1
)/ ̂  � 

1
 

is ( ̂  � 
1
/ ̂  � 

y
) ̂  � 

1
. This is simply the original coefficient,  ̂  � 

1
, multiplied by the ratio of the 

standard deviation of x
1
 to the standard deviation of y. The intercept has dropped out 

altogether.
 It is useful to rewrite (6.3), dropping the i subscript, as

 z
y
 �  ̂  b 

1
z

1
 �  ̂  b 

2
z

2
 � … �  ̂  b 

k
z

k
 � error, 6.4

where z
y
 denotes the z-score of y, z

1
 is the z-score of x

1
, and so on. The new coefficients 

are

  ̂  b 
j
 � ( ̂  � 

j 
/ ̂  � 

y
) ̂  � 

j
 for j � 1, …, k. 6.5

These  ̂  b 
j
 are traditionally called standardized coefficients or beta coefficients. (The lat-

ter name is more common, which is unfortunate because we have been using beta hat to 
denote the usual OLS estimates.)
 Beta coefficients receive their interesting meaning from equation (6.4): If x

1
 increases 

by one standard deviation, then  ̂  y  changes by  ̂  b 
1
 standard deviations. Thus, we are measur-

ing effects not in terms of the original units of y or the x
j
, but in standard deviation units. 

Because it makes the scale of the regressors irrelevant, this equation puts the explanatory 
variables on equal footing. In a standard OLS equation, it is not possible to simply look at 
the size of different coefficients and conclude that the explanatory variable with the largest 
coefficient is “the most important.” We just saw that the magnitudes of coefficients can 
be changed at will by changing the units of measurement of the x

j
. But, when each x

j
 has 

been standardized, comparing the magnitudes of the resulting beta coefficients is more 
compelling.
 Even in situations where the coefficients are easily interpretable—say, the dependent 
variable and independent variables of interest are in logarithmic form, so the OLS coef-
ficients of interest are estimated elasticities—there is still room for computing beta 
coefficients. Although elasticities are free of units of measurement, a change in a particular 
explanatory variable by, say, 10% may represent a larger or smaller change over a vari-
able’s range than changing another explanatory variable by 10%. For example, in a state 
with wide income variation but relatively little variation in spending per student, it might 
not make much sense to compare performance elasticities with respect to the income and 
spending. Comparing beta coefficient magnitudes can be helpful.
 To obtain the beta coefficients, we can always standardize y, x

1
, …, x

k
 and then run 

the OLS regression of the z-score of y on the z-scores of x
1
, …, x

k
—where it is not neces-

sary to include an intercept, as it will be zero. This can be tedious with many independent 
variables. Some regression packages provide beta coefficients via a simple command. The 
following example illustrates the use of beta coefficients.
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E x a m p l e  6 . 1

[Effects of Pollution on Housing Prices]

We use the data from Example 4.5 (in the file HPRICE2.RAW) to illustrate the use of beta coef-
ficients. Recall that the key independent variable is nox, a measure of the nitrogen oxide in the air 
over each community. One way to understand the size of the pollution effect—without getting into 
the science underlying nitrogen oxide’s effect on air quality—is to compute beta coefficients. (An 
alternative approach is contained in Example 4.5: we obtained a price elasticity with respect to nox 
by using price and nox in logarithmic form.)
 The population equation is the level-level model

 price � �
0
 � �

1
nox � �

2
crime � �

3
rooms � �

4
dist � �

5
stratio � u,

where all the variables except crime were defined in Example 4.5; crime is the number of reported 
crimes per capita. The beta coefficients are reported in the following equation (so each variable has 
been converted to its z-score):

 2zprice � �.340 znox � .143 zcrime � .514 zrooms � .235 zdist � .270 zstratio.

This equation shows that a one standard deviation increase in nox decreases price by .34 standard 
deviation; a one standard deviation increase in crime reduces price by .14 standard deviation. Thus, 
the same relative movement of pollution in the population has a larger effect on housing prices than 
crime does. Size of the house, as measured by number of rooms (rooms), has the largest standardized 
effect. If we want to know the effects of each independent variable on the dollar value of median 
house price, we should use the unstandardized variables.
 Whether we use standardized or unstandardized variables does not affect statistical significance: 
the t statistics are the same in both cases.

6.2 More on Functional Form
In several previous examples, we have encountered the most popular device in economet-
rics for allowing nonlinear relationships between the explained and explanatory variables: 
using logarithms for the dependent or independent variables. We have also seen models 
containing quadratics in some explanatory variables, but we have yet to provide a sys-
tematic treatment of them. In this section, we cover some variations and extensions on 
functional forms that often arise in applied work.

More on Using Logarithmic Functional Forms

We begin by reviewing how to interpret the parameters in the model

 log(price) � �
0
 � �

1
log(nox) � �

2
rooms � u, 6.6

where these variables are taken from Example 4.5. Recall that throughout the text log(x) 
is the natural log of x. The coefficient �

1
 is the elasticity of price with respect to nox (pol-

lution). The coefficient �
2
 is the change in log( price), when ∆rooms � 1; as we have seen 
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many times, when multiplied by 100, this is the approximate percentage change in price. 
Recall that 100��

2
 is sometimes called the semi-elasticity of price with respect to rooms.

 When estimated using the data in HPRICE2.RAW, we obtain

 2log(price) � 9.23 � .718 log(nox) � .306 rooms

 (0.19) (.066) (.019) 6.7

 n � 506, R2 � .514.

Thus, when nox increases by 1%, price falls by .718%, holding only rooms fixed. When 
rooms increases by one, price increases by approximately 100(.306) � 30.6%.
 The estimate that one more room increases price by about 30.6% turns out to be 
somewhat inaccurate for this application. The approximation error occurs because, as 
the change in log(y) becomes larger and larger, the approximation %∆y � 100�∆log(y) 
becomes more and more inaccurate. Fortunately, a simple calculation is available to com-
pute the exact percentage change.
 To describe the procedure, we consider the general estimated model

 1log(y) �  ̂  � 
0
 �  ̂  � 

1
log(x

1
) �  ̂  � 

2
x

2
.

(Adding additional independent variables does not change the procedure.) Now, fixing x
1
, 

we have ∆1log(y) �  ̂  � 
2
∆x

2
. Using simple algebraic properties of the exponential and loga-

rithmic functions gives the exact percentage change in the predicted y as

 %∆ ̂  y  � 100·[exp(  ̂  � 
2
∆x

2
) � 1], 6.8

where the multiplication by 100 turns the proportionate change into a percentage change. 
When ∆x

2
 � 1,

 %∆ ̂  y  � 100·[exp(  ̂  � 
2
) � 1]. 6.9

Applied to the housing price example with x
2
 � rooms and  ̂  � 

2
 � .306, %∆1price � 

100[exp(.306) � 1] � 35.8%, which is notably larger than the approximate percent-
age change, 30.6%, obtained directly from (6.7). {Incidentally, this is not an unbiased 
estimator because exp(�) is a nonlinear function; it is, however, a consistent estimator of 
100[exp(�

2
) � 1]. This is because the probability limit passes through continuous func-

tions, while the expected value operator does not. See Appendix C.}
 The adjustment in equation (6.8) is not as crucial for small percentage changes. For 
example, when we include the student-teacher ratio in equation (6.7), its estimated coef-
ficient is �.052, which means that if stratio increases by one, price decreases by approxi-
mately 5.2%. The exact proportionate change is exp(�.052) � 1 � �.051, or �5.1%. On 
the other hand, if we increase stratio by five, then the approximate percentage change in 
price is �26%, while the exact change obtained from equation (6.8) is 100[exp(�.26) � 
1] � �22.9%.
 The logarithmic approximation to percentage changes has an advantage that justifies 
its reporting even when the percentage change is large. To describe this advantage, con-
sider again the effect on price of changing the number of rooms by one. The logarithmic 
approximation is just the coefficient on rooms in equation (6.7) multiplied by 100, namely, 
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30.6%. We also computed an estimate of the exact percentage change for increasing 
the number of rooms by one as 35.8%. But what if we want to estimate the percentage 
change for decreasing the number of rooms by one? In equation (6.8) we take ∆ x

2
 � �1 

and  ̂  � 
2
 � .306, and so %∆1price � 100[exp(�.306) − 1] � �26.4, or a drop of 26.4%. 

Notice that the approximation based on using the coefficient on rooms is between 26.4 
and 35.8—an outcome that always occurs. In other words, simply using the coefficient 
(multiplied by 100) gives us an estimate that is always between the absolute value of the 
estimates for an increase and a decrease. If we are specifically interested in an increase or 
a decrease, we can use the calculation based on equation (6.8). 
 The point just made about computing percentage changes is essentially the one made 
in introductory economics when it comes to computing, say, price elasticities of demand 
based on large price changes: the result depends on whether we use the beginning or 
ending price and quantity in computing the percentage changes. Using the logarithmic 
approximation is similar in spirit to calculating an arc elasticity of demand, where the 
average of prices and quantities is used in the denominators in computing the percentage 
changes.
 We have seen that using natural logs leads to coefficients with appealing interpreta-
tions, and we can be ignorant about the units of measurement of variables appearing in 
logarithmic form because the slope coefficients are invariant to rescalings. There are 
several other reasons logs are used so much in applied work. First, when y � 0, models 
using log(y) as the dependent variable often satisfy the CLM assumptions more closely 
than models using the level of y. Strictly positive variables often have conditional distribu-
tions that are heteroskedastic or skewed; taking the log can mitigate, if not eliminate, both 
problems.
 Moreover, taking logs usually narrows the range of the variable, in some cases by a 
considerable amount. This makes estimates less sensitive to outlying (or extreme) obser-
vations on the dependent or independent variables. We take up the issue of outlying 
observations in Chapter 9.
 There are some standard rules of thumb for taking logs, although none is written in 
stone. When a variable is a positive dollar amount, the log is often taken. We have seen this 
for variables such as wages, salaries, firm sales, and firm market value. Variables such as 
population, total number of employees, and school enrollment often appear in logarithmic 
form; these have the common feature of being large integer values.
 Variables that are measured in years—such as education, experience, tenure, age, 
and so on—usually appear in their original form. A variable that is a proportion or a 
percent—such as the unemployment rate, the participation rate in a pension plan, the 
percentage of students passing a standardized exam, and the arrest rate on reported 
crimes—can appear in either original or logarithmic form, although there is a tendency to 
use them in level forms. This is because any regression coefficients involving the original 
variable— whether it is the dependent or independent variable—will have a percentage 
point change interpretation. (See Appendix A for a review of the distinction between a 
percentage change and a percentage point change.) If we use, say, log(unem) in a regres-
sion, where unem is the percentage of unemployed individuals, we must be very careful 
to distinguish between a percentage point change and a percentage change. Remember, if 
unem goes from 8 to 9, this is an increase of one percentage point, but a 12.5% increase 
from the initial unemployment level. Using the log means that we are looking at the per-
centage change in the unemployment rate: log(9) � log(8) � .118 or 11.8%, which is the 
logarithmic approximation to the actual 12.5% increase.
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 One limitation of the log is that it 
cannot be used if a variable takes on 
zero or negative values. In cases where 
a variable y is nonnegative but can take 
on the value 0, log(1�y) is sometimes 
used. The percentage change interpreta-
tions are often closely preserved, except 
for changes beginning at y � 0 (where 
the percentage change is not even 
defined). Generally, using log(1�y) 
and then interpreting the estimates as 
if the variable were log(y) is acceptable 
when the data on y contain relatively 

few zeros. An example might be where y is hours of training per employee for the popula-
tion of manufacturing firms, if a large fraction of firms provides training to at least one 
worker. Technically, however, log (1 � y) cannot be normally distributed (although it 
might be less heteroskedastic than y). Useful, albeit more advanced, alternatives are the 
Tobit and Poisson models in Chapter 17.
 One drawback to using a dependent variable in logarithmic form is that it is more 
difficult to predict the original variable. The original model allows us to predict log(y), 
not y. Nevertheless, it is fairly easy to turn a prediction for log(y) into a prediction for y 
(see Section 6.4). A related point is that it is not legitimate to compare R-squareds from 
models where y is the dependent variable in one case and log(y) is the dependent variable 
in the other. These measures explain variations in different variables. We discuss how to 
compute comparable goodness-of-fit measures in Section 6.4.

Models with Quadratics

Quadratic functions are also used quite often in applied economics to capture decreasing 
or increasing marginal effects. You may want to review properties of quadratic functions 
in Appendix A.
 In the simplest case, y depends on a single observed factor x, but it does so in a quad-
ratic fashion:

 y � �
0
 � �

1
x � �

2
x2 � u.

For example, take y � wage and x � exper. As we discussed in Chapter 3, this model falls 
outside of simple regression analysis but is easily handled with multiple regression.
 It is important to remember that �

1
 does not measure the change in y with respect to x; 

it makes no sense to hold x2 fixed while changing x. If we write the estimated equation as

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x �  ̂  � 

2
x2, 6.10

then we have the approximation

 ∆ ̂  y  � (  ̂  � 
1
 � 2 ̂  � 

2 
x)∆ x, so ∆ ̂  y /∆ x �  ̂  � 

1
 � 2 ̂  � 

2
x. 6.11

This says that the slope of the relationship between x and y depends on the value of x; the 
estimated slope is  ̂  � 

1
 � 2 ̂  � 

2
x. If we plug in x � 0, we see that  ̂  � 

1
 can be interpreted as the 

Q u e s t i o n  6 . 2
Suppose that the annual number of drunk driving arrests is deter-
mined by

log(arrests) �  �
0
 � �

1
log(pop) � �

2
age16_25

� other factors,

where age16_25 is the proportion of the population between 
16 and 25 years of age. Show that �2 has the following (ceteris 
paribus) interpretation: it is the percentage change in arrests when 
the percentage of the people aged 16 to 25 increases by one 
percentage point.
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approximate slope in going from x � 0 to x � 1. After that, the second term, 2 ̂  � 
2
x, must 

be accounted for.
 If we are only interested in computing the predicted change in y given a starting value 
for x and a change in x, we could use (6.10) directly: there is no reason to use the calculus 
approximation at all. However, we are usually more interested in quickly summarizing 
the effect of x on y, and the interpretation of  ̂  � 

1
 and  ̂  � 

2
 in equation (6.11) provides that 

summary. Typically, we might plug the average value of x in the sample, or some other 
interesting values, such as the median or the lower and upper quartile values.
 In many applications,  ̂  � 

1
 is positive and  ̂  � 

2
 is negative. For example, using the wage 

data in WAGE1.RAW, we obtain

 1wage � 3.73 � .298 exper � .0061 exper 2

 (.35) (.041) (.0009) 6.12

 n � 526, R2 � .093.

This estimated equation implies that exper has a diminishing effect on wage. The first 
year of experience is worth roughly 30¢ per hour ($.298). The second year of experience 
is worth less [about .298 � 2(.0061)(1) � .286, or 28.6¢, according to the approximation 
in (6.11) with x � 1]. In going from 10 to 11 years of experience, wage is predicted to 
increase by about .298 � 2(.0061)(10) � .176, or 17.6¢. And so on.
 When the coefficient on x is positive and the coefficient on x2 is negative, the quadratic 
has a parabolic shape. There is always a positive value of x where the effect of x on y is 
zero; before this point, x has a positive effect on y; after this point, x has a negative effect 
on y. In practice, it can be important to know where this turning point is.
 In the estimated equation (6.10) with  ̂  � 

1
 � 0 and  ̂  � 

2
 � 0, the turning point (or maxi-

mum of the function) is always achieved at the coefficient on x over twice the absolute 
value of the coefficient on x2:

 x* � �  ̂  � 
1
/(2  ̂  � 

2
)�. 6.13

In the wage example, x* � exper* is .298/[2(.0061)] � 24.4. (Note how we just drop the 
minus sign on �.0061 in doing this calculation.) This quadratic relationship is illustrated 
in Figure 6.1.
 In the wage equation (6.12), the return to experience becomes zero at about 24.4 years. 
What should we make of this? There are at least three possible explanations. First, it may 
be that few people in the sample have more than 24 years of experience, and so the part of 
the curve to the right of 24 can be ignored. The cost of using a quadratic to capture dimin-
ishing effects is that the quadratic must eventually turn around. If this point is beyond all 
but a small percentage of the people in the sample, then this is not of much concern. But 
in the data set WAGE1.RAW, about 28% of the people in the sample have more than 
24 years of experience; this is too high a percentage to ignore.
 It is possible that the return to exper really becomes negative at some point, but it 
is hard to believe that this happens at 24 years of experience. A more likely possibil-
ity is that the estimated effect of exper on wage is biased because we have controlled 
for no other factors, or because the functional relationship between wage and exper in 
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F I GURE  6 . 1

Quadratic relationship between 1wage and exper.

equation (6.12) is not entirely correct. Computer Exercise C6.2 asks you to explore this 
possibility by controlling for education, in addition to using log(wage) as the dependent 
variable.
 When a model has a dependent variable in logarthmic form and an explanatory vari-
able entering as a quadratic, some care is needed in reporting the partial effects. The fol-
lowing example also shows that the quadratic can have a U-shape, rather than a parabolic 
shape. A U-shape arises in equation (6.10) when  ̂  � 

1
 is negative and  ̂  � 

2
 is positive; this 

captures an increasing effect of x on y.

E x a m p l e  6 . 2

[Effects of Pollution on Housing Prices]

We modify the housing price model from Example 4.5 to include a quadratic term in rooms:

 log(price) � �
0
 � �

1
log(nox) � �

2
log(dist) � �

3
rooms 

 � �
4
rooms2 � �

5
stratio � u.

 6.14

3.73

7.37

exper

wage

24.4
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The model estimated using the data in HPRICE2.RAW is

 2log( price) � 13.39 � .902 log(nox) � .087 log(dist)

 (.57) (.115) (.043)

 � .545 rooms � .062 rooms2 � .048 stratio

 (.165) (.013) (.006)

 n � 506, R2 � .603.

The quadratic term rooms2 has a t statistic of about 4.77, and so it is very statistically significant. But 
what about interpreting the effect of rooms on log(price)? Initially, the effect appears to be strange. 
Because the coefficient on rooms is negative and the coefficient on rooms2 is positive, this equation 
literally implies that, at low values of rooms, an additional room has a negative effect on log(price). 
At some point, the effect becomes positive, and the quadratic shape means that the semi-elasticity of 
price with respect to rooms is increasing as rooms increases. This situation is shown in Figure 6.2.
 We obtain the turnaround value of rooms using equation (6.13) (even though  ̂  � 

1
 is negative and  

ˆ � 
2
 is positive). The absolute value of the coefficient on rooms, .545, divided by twice the coefficient 

on rooms2, .062, gives rooms* � .545/[2(.062)] � 4.4; this point is labeled in Figure 6.2.

F I GURE  6 . 2

2log(price) as a quadratic function of rooms.

rooms

log(price)

4.4
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 Do we really believe that starting at three rooms and increasing to four rooms actually reduces 
a house’s expected value? Probably not. It turns out that only five of the 506 communities in the 
sample have houses averaging 4.4 rooms or less, about 1% of the sample. This is so small that the 
quadratic to the left of 4.4 can, for practical purposes, be ignored. To the right of 4.4, we see that 
adding another room has an increasing effect on the percentage change in price:

 ∆2log(price) � {[�.545 � 2(.062)]rooms}∆rooms

and so

 %∆1price � 100{[�.545 � 2(.062)]rooms}∆rooms

   � (�54.5 � 12.4 rooms)∆rooms.

Thus, an increase in rooms from, say, five to six increases price by about �54.5 � 12.4(5) � 7.5%; 
the increase from six to seven increases price by roughly �54.5 � 12.4(6) � 19.9%. This is a very 
strong increasing effect.

 What happens generally if the coefficients on the level and squared terms have the same
sign (either both positive or both negative) and the explanatory variable is necessarily 
nonnegative (as in the case of rooms or exper)? In either case, there is no turning point for 
values x � 0. For example, if �

1
 and �

2
 are both positive, the smallest expected value of 

y is at x � 0, and increases in x always have a positive and increasing effect on y. (This 
is also true if �

1
 � 0 and �

2
 � 0, which means that the partial effect is zero at x � 0 and 

increasing as x increases.) Similarly, if �
1
 and �

2
 are both negative, the largest expected 

value of y is at x � 0, and increases in x have a negative effect on y, with the magnitude 
of the effect increasing as x gets larger.
 There are many other possibilities for using quadratics along with logarithms. 
For example, an extension of (6.14) that allows a nonconstant elasticity between price 
and nox is

 log(price) � �
0
 � �

1
log(nox) � �

2
[log(nox)]2

 � �
3
crime � �

4
rooms � �

5
rooms2 � �

6
stratio � u.

 6.15

If �
2
 � 0, then �

1
 is the elasticity of price with respect to nox. Otherwise, this elasticity 

depends on the level of nox. To see this, we can combine the arguments for the partial 
effects in the quadratic and logarithmic models to show that

 %∆price � [�
1
 � 2�

2
log(nox)]%∆nox; 6.16

therefore, the elasticity of price with respect to nox is �
1
 � 2�

2
log(nox), so that it depends 

on log(nox).
 Finally, other polynomial terms can be included in regression models. Certainly, the 
quadratic is seen most often, but a cubic and even a quartic term appear now and then. An 
often reasonable functional form for a total cost function is

 cost � �
0
 � �

1
quantity � �

2
quantity2 � �

3
quantity3 � u.
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Estimating such a model causes no complications. Interpreting the parameters is more 
involved (though straightforward using calculus); we do not study these models further.

Models with Interaction Terms

Sometimes, it is natural for the partial effect, elasticity, or semi-elasticity of the dependent 
variable with respect to an explanatory variable to depend on the magnitude of yet another 
explanatory variable. For example, in the model

 price � �
0
 � �

1
sqrft � �

2
bdrms � �

3
sqrft�bdrms � �

4
bthrms � u,

the partial effect of bdrms on price (holding all other variables fixed) is

   
∆price

 _______ 
∆bdrms

   � �
2
 � �

3
sqrft. 6.17

If �
3
 � 0, then (6.17) implies that an additional bedroom yields a higher increase in hous-

ing price for larger houses. In other words, there is an interaction effect between square 
footage and number of bedrooms. In summarizing the effect of bdrms on price, we must 
evaluate (6.17) at interesting values of sqrft, such as the mean value, or the lower and 
upper quartiles in the sample. Whether or not �

3
 is zero is something we can easily test.

 The parameters on the original variables can be tricky to interpret when we include 
an interaction term. For example, in the previous housing price equation, equation (6.17) 
shows that �

2
 is the effect of bdrms on price for a price with zero square feet! This effect 

is clearly not of much interest. Instead, we must be careful to put interesting values of 
sqrft, such as the mean or median values in the sample, into the estimated version of 
 equation (6.17).
 Often, it is useful to reparameterize a model so that the coefficients on the original 
variables have an interesting meaning. Consider a model with two explanatory variables 
and an interaction:

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

1
x

2
 � u.

 As just mentioned, �
2
 is the partial effect of x

2
 on y when x

1
 � 0. Often, this is not of 

interest. Instead, we can reparameterize the model as

 y � �
0
 � δ

1
x

1
 � δ

2
x

2
 � �

3
(x

1
 � µ

1
)(x

2
 � µ

2
) � u,

where µ
1
 is the population mean of x

1
 and µ

2
 is the population mean of x

2
. We can easily 

see that now the coefficient on x
2
, δ

2
, is the partial effect of x

2
 on y at the mean value of x

1
. 

(By multiplying out the interaction in the second equation and comparing the coefficients, 
we can easily show that δ

2
 � �

2
 � �

3
 µ

1
. The parameter δ

1
 has a similar interpretation.) 

Therefore, if we subtract the means of the variables—in practice, these would typically be 
the sample means—before creating the interaction term, the coefficients on the original 
variables have a useful interpretation. Plus, we immediately obtain standard errors for the 
partial effects at the mean values. Nothing prevents us from replacing µ

1
 or µ

2
 with other 

values of the explanatory variables that may be of interest. The following example illus-
trates how we can use interaction terms.
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E x a m p l e  6 . 3

[Effects of Attendance on Final Exam Performance]

A model to explain the standardized outcome on a final exam (stndfnl) in terms of percentage of 
classes attended, prior college grade point average, and ACT score is

 stndfnl � �
0
 � �

1
atndrte � �

2 
priGPA � �

3 
ACT � �

4 
priGPA2

 � �
5 
ACT 2 � �

6  
priGPA�atndrte � u.

 6.18

(We use the standardized exam score for the reasons discussed in Section 6.1: it is easier to interpret 
a student’s performance relative to the rest of the class.) In addition to quadratics in priGPA and 
ACT, this model includes an interaction between priGPA and the attendance rate. The idea is that 
class attendance might have a different effect for students who have performed differently in the 
past, as measured by priGPA. We are interested in the effects of attendance on final exam score: 
∆stndfnl/∆atndrte � �

1
 � �

6
 priGPA.

 Using the 680 observations in ATTEND.RAW, for students in microeconomic principles, the 
estimated equation is

 2stndfnl � 2.05 � .0067 atndrte � 1.63 priGPA � .128 ACT

 (1.36) (.0102) (.48) (.098)

 � .296 priGPA2 � .0045 ACT 2 � .0056 priGPA�atndrte 6.19

 (.101) (.0022) (.0043)

 n � 680, R2 � .229,  
-

 R 2 � .222.

We must interpret this equation with extreme care. If we simply look at the coefficient on atndrte, 
we will incorrectly conclude that attendance has a negative effect on final exam score. But this coef-
ficient supposedly measures the effect when priGPA � 0, which is not interesting (in this sample, 
the smallest prior GPA is about .86). We must also take care not to look separately at the estimates 
of �

1
 and �

6
 and conclude that, because each t statistic is insignificant, we cannot reject H

0
: �

1
 � 0, 

�
6
 � 0. In fact, the p-value for the F test of this joint hypothesis is .014, so we certainly reject H

0
 

at the 5% level. This is a good example of where looking at separate t statistics when testing a joint 
hypothesis can lead one far astray.
 How should we estimate the partial effect of atndrte on stndfnl? We must plug in interesting 
values of priGPA to obtain the partial effect. The mean value of priGPA in the  sample is 2.59, so at 
the mean priGPA, the effect of atndrte on stndfnl is �.0067 � .0056(2.59) � .0078. What does this 
mean? Because atndrte is measured as a percentage, it means that a 10 percentage point increase in 
atndrte increases 2stndfnl by .078 standard deviations from the mean final exam score.
 How can we tell whether the estimate .0078 is statistically different from zero? We need to 
rerun the regression, where we replace priGPA�atndrte with (priGPA � 2.59)�atndrte. This gives, 
as the new coefficient on atndrte, the estimated effect at priGPA � 2.59, along with its standard 
error; nothing else in the regression changes. (We described this device in Section 4.4.) Running this 

new regression gives the standard error of
 ̂  � 

1
 �  ̂  � 

6
(2.59) � .0078 as .0026, which yields

t � .0078/.0026 � 3. Therefore, at the aver-
age priGPA, we conclude that attendance 
has a statistically significant positive effect 
on final exam score.

Q u e s t i o n  6 . 3
If we add the term �7 ACT�atndrte to equation (6.18), what is the 
partial effect of atndrte on stndfnl?
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 Things are even more complicated for finding the effect of priGPA on stndfnl because of the qua-
dratic term priGPA2. To find the effect at the mean value of priGPA and the mean attendance rate, 82, 
we would replace priGPA2 with (priGPA � 2.59)2 and priGPA�atndrte with priGPA�(atndrte � 82). 
The coefficient on priGPA becomes the partial effect at the mean values, and we would have its 
standard error. (See Computer Exercise C6.7.)

6.3 More on Goodness-of-Fit 
and Selection of Regressors
Until now, we have not focused much on the size of R2 in evaluating our regression mod-
els, because beginning students tend to put too much weight on R-squared. As we will see 
shortly, choosing a set of explanatory variables based on the size of the R-squared can lead 
to nonsensical models. In Chapter 10, we will discover that R-squareds obtained from time 
series regressions can be artificially high and can result in misleading conclusions.
 Nothing about the classical linear model assumptions requires that R2 be above any 
particular value; R2 is simply an estimate of how much variation in y is explained by x

1
, 

x
2
, …, x

k
 in the population. We have seen several regressions that have had pretty small 

R-squareds. Although this means that we have not accounted for several factors that affect 
y, this does not mean that the factors in u are correlated with the independent variables. 
The zero conditional mean assumption MLR.4 is what determines whether we get unbi-
ased estimators of the ceteris paribus effects of the independent variables, and the size of 
the R-squared has no direct bearing on this. 
 A small R-squared does imply that the error variance is large relative to the variance 
of y, which means we may have a hard time precisely estimating the �

j
. But remember, 

we saw in Section 3.4 that a large error variance can be offset by a large sample size: if we 
have enough data, we may be able to precisely estimate the partial effects even though 
we have not controlled for many unobserved factors. Whether or not we can get precise 
enough estimates depends on the application. For example, suppose that some incoming 
students at a large university are randomly given grants to buy computer equipment. If 
the amount of the grant is truly randomly determined, we can estimate the ceteris paribus 
effect of the grant amount on subsequent college grade point average by using simple 
regression analysis. (Because of random assignment, all of the other factors that affect 
GPA would be uncorrelated with the amount of the grant.) It seems likely that the grant 
amount would explain little of the variation in GPA, so the R-squared from such a regres-
sion would probably be very small. But, if we have a large sample size, we still might get 
a reasonably precise estimate of the effect of the grant.
 Another good illustration of where poor explanatory power has nothing to do with 
unbiased estimation of the �

j
 is given by analyzing the data set in APPLE.RAW. Unlike 

the other data sets we have used, the key explanatory variables in APPLE.RAW were set 
experimentally—that is, without regard to other factors that might affect the depen dent 
variable. The variable we would like to explain, ecolbs, is the (hypothetical) pounds 
of “ecologically friendly” (“ecolabeled”) apples a family would demand. Each family 
(actually, family head) was presented with a description of ecolabeled apples, along with 
prices of regular apples (regprc) and prices of the hypothetical ecolabeled apples (ecoprc). 
Because the price pairs were randomly assigned to each family, they are unrelated to other 
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observed factors (such as family income) and unobserved factors (such as desire for a 
clean environment). Therefore, the regression of ecolbs on ecoprc, regprc (across all sam-
ples generated in this way) produces unbiased estimators of the price effects. Nevertheless, 
the R-squared from the regression is only .0364: the price variables explain only about 
3.6% of the total variation in ecolbs. So, here is a case where we explain very little of 
the variation in y, yet we are in the rare situation of knowing that the data have been 
generated so that unbiased estimation of the �

j
 is possible. (Incidentally, adding observed 

family characteristics has a very small effect on explanatory power. See Computer 
Exercise C6.11.)
 Remember, though, that the relative change in the R-squared when variables are added 
to an equation is very useful: the F statistic in (4.41) for testing the joint significance 
crucially depends on the difference in R-squareds between the unrestricted and restricted 
models.

Adjusted R-Squared

Most regression packages will report, along with the R-squared, a statistic called the 
adjusted R-squared. Because the adjusted R-squared is reported in much applied work, 
and because it has some useful features, we cover it in this subsection.
 To see how the usual R-squared might be adjusted, it is usefully written as

 R2 � 1 � (SSR /n)/(SST/n), 6.20

where SSR is the sum of squared residuals and SST is the total sum of squares; compared 
with equation (3.28), all we have done is divide both SSR and SST by n. This expression 
reveals what R2 is actually estimating. Define �  2   y   as the population variance of y and let �  2   u  
denote the population variance of the error term, u. (Until now, we have used � 2 to denote 
�  2   u , but it is helpful to be more specific here.) The population R-squared is defined as 
�2 � 1 � �  2   u  /�  2   y  ; this is the proportion of the variation in y in the population explained by 
the independent variables. This is what R2 is supposed to be estimating.
 R2 estimates � 2   u  by SSR/n, which we know to be biased. So why not replace SSR/n with 
SSR/(n � k � 1)? Also, we can use SST/(n � 1) in place of SST/n, as the former is the 
unbiased estimator of � 2   y  . Using these estimators, we arrive at the adjusted R-squared:

  
-

 R 2 � 1 � [SSR/(n � k � 1)]/[SST/(n � 1)]

 � 1 �  ̂  �  2/[SST/(n � 1)],
 6.21

because  ̂  �  2 � SSR/(n � k � 1). Because of the notation used to denote the adjusted 
R-squared, it is sometimes called R-bar squared.
 The adjusted R-squared is sometimes called the corrected R-squared, but this is not 
a good name because it implies that  

-
 R 2 is somehow better than R2 as an estimator of the 

population R-squared. Unfortunately,  
-

 R 2 is not generally known to be a better estimator. It 
is tempting to think that  

-
 R 2 corrects the bias in R2 for estimating the population R-squared, 

�2, but it does not: the ratio of two unbiased estimators is not an unbiased estimator.
 The primary attractiveness of  

-
 R 2 is that it imposes a penalty for adding additional 

independent variables to a model. We know that R2 can never fall when a new indepen-
dent variable is added to a regression equation: this is because SSR never goes up (and 
usually falls) as more independent variables are added. But the formula for  

-
 R 2 shows that 
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it depends explicitly on k, the number of independent variables. If an independent 
variable is added to a regression, SSR falls, but so does the df in the regression, n � k � 1. 
SSR/(n � k � 1) can go up or down when a new independent variable is added to a 
 regression.
 An interesting algebraic fact is the following: If we add a new independent variable 
to a regression equation,  

-
 R 2 increases if, and only if, the t statistic on the new variable is 

greater than one in absolute value. (An extension of this is that  
-

 R 2 increases when a group 
of variables is added to a regression if, and only if, the F statistic for joint significance of 
the new variables is greater than unity.) Thus, we see immediately that using  

-
 R 2 to decide 

whether a certain independent variable (or set of variables) belongs in a model gives us 
a different answer than standard t or F testing (because a t or F statistic of unity is not 
statistically significant at traditional significance levels).
 It is sometimes useful to have a formula for  

-
 R 2 in terms of R2. Simple algebra gives

  
-

 R 2 � 1 � (1 � R2)(n � 1)/(n � k � 1). 6.22

For example, if R2 � .30, n � 51, and k � 10, then  
-

 R 2 � 1 � .70(50)/40 � .125. Thus, 
for small n and large k,  

-
 R 2 can be substantially below R2. In fact, if the usual R-squared is 

small, and n � k � 1 is small,  
-

 R 2 can actually be negative! For example, you can plug in 
R2 � .10, n � 51, and k � 10 to verify that  

-
 R 2 � �.125. A negative  

-
 R 2 indicates a very 

poor model fit relative to the number of degrees of freedom.
 The adjusted R-squared is sometimes reported along with the usual R-squared in 
regressions, and sometimes  

-
 R 2 is reported in place of R2. It is important to remember 

that it is R2, not  
-

 R 2, that appears in the F statistic in (4.41). The same formula with  
-

 R  2   r   and  
-

 R  2   ur  is not valid.

Using Adjusted R-Squared to Choose

between Nonnested Models

In Section 4.5, we learned how to compute an F statistic for testing the joint significance 
of a group of variables; this allows us to decide, at a particular significance level, whether 
at least one variable in the group affects the dependent variable. This test does not allow us 
to decide which of the variables has an effect. In some cases, we want to choose a model 
without redundant independent variables, and the adjusted R-squared can help with this.
 In the major league baseball salary example in Section 4.5, we saw that neither hrunsyr 
nor rbisyr was individually significant. These two variables are highly correlated, so we 
might want to choose between the models

 log(salary) � �
0
 � �

1
years � �

2
gamesyr � �

3
bavg � �

4
hrunsyr � u

and

 log(salary) � �
0
 � �

1
years � �

2
gamesyr � �

3
bavg � �

4
rbisyr � u.

These two equations are nonnested models because neither equation is a special case of 
the other. The F statistics we studied in Chapter 4 only allow us to test nested models: one 
model (the restricted model) is a special case of the other model (the unrestricted model). 
See equations (4.32) and (4.28) for examples of restricted and unrestricted models. One 
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possibility is to create a composite model that contains all explanatory variables from the 
original models and then to test each model against the general model using the F test. 
The problem with this process is that either both models might be rejected, or neither 
model might be rejected (as happens with the major league baseball salary example in 
Section 4.5). Thus, it does not always provide a way to distinguish between models with 
nonnested regressors.
 In the baseball player salary regression,  

-
 R 2 for the regression containing hrunsyr is 

.6211, and  
-

 R 2 for the regression containing rbisyr is .6226. Thus, based on the adjusted 
R-squared, there is a very slight preference for the model with rbisyr. But the difference 
is practically very small, and we might obtain a different answer by controlling for some 
of the variables in Computer Exercise C4.5. (Because both nonnested models contain 
five parameters, the usual R-squared can be used to draw the same conclusion.)
 Comparing  

-
 R 2 to choose among different nonnested sets of independent variables can 

be valuable when these variables represent different functional forms. Consider two mod-
els relating R&D intensity to firm sales:

 rdintens � �
0
 � �

1
log(sales) � u. 6.23

 rdintens � �
0
 � �

1
sales � �

2
sales2 � u. 6.24

The first model captures a diminishing return by including sales in logarithmic form; the 
second model does this by using a quadratic. Thus, the second model contains one more 
parameter than the first.
 When equation (6.23) is estimated using the 32 observations on chemical firms in 
RDCHEM.RAW, R2 is .061, and R2 for equation (6.24) is .148. Therefore, it appears that 
the quadratic fits much better. But a comparison of the usual R-squareds is unfair to the 
first model because it contains one fewer parameter than (6.24). That is, (6.23) is a more 
parsimonious model than (6.24).
 Everything else being equal, simpler models are better. Since the usual R-squared does 
not penalize more complicated models, it is better to use  

-
 R 2.  
-

 R 2 for (6.23) is .030, while  
-

 R 2 for (6.24) is .090. Thus, even after adjusting for the difference in degrees of freedom, 
the quadratic model wins out. The quadratic model is also preferred when profit margin is 
added to each regression.
 There is an important limitation in using  

-
 R 2 to choose between nonnested models: we 

cannot use it to choose between different functional forms for the dependent variable. This 
is unfortunate, because we often want to decide on whether y or log(y) (or maybe some 
other transformation) should be used as the dependent variable based on goodness-of-fit. 
But neither R2 nor  

-
 R 2 can be used for this purpose. The reason is simple: these R-squareds 

measure the explained proportion of the total variation in whatever dependent variable 
we are using in the regression, and different functions of the dependent variable will 
have different amounts of variation to explain. For example, the total variations in y and 
log(y) are not the same, and are often very different. Comparing the adjusted R-squareds 

from regressions with these different 
forms of the dependent variables does 
not tell us anything about which model 
fits better; they are fitting two separate 
dependent variables.

Q u e s t i o n  6 . 4
Explain why choosing a model by maximizing  

-
 R 2 or minimizing  ̂  �  

(the standard error of the regression) is the same thing.
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E x a m p l e  6 . 4

[CEO Compensation and Firm Performance]

Consider two estimated models relating CEO compensation to firm performance:

 2salary � 830.63 � .0163 sales � 19.63 roe

 (223.90) (.0089) (11.08) 6.25

 n � 209, R2 � .029,  
-

 R 2 � .020

and 

 2lsalary � 4.36 � .275 lsales � .0179 roe

 (0.29) (.033) (.0040) 6.26

 n � 209, R2 � .282,  
-

 R 2 � .275,

where roe is the return on equity discussed in Chapter 2. For simplicity, lsalary and lsales denote the 
natural logs of salary and sales. We already know how to interpret these different estimated equa-
tions. But can we say that one model fits better than the other?
 The R-squared for equation (6.25) shows that sales and roe explain only about 2.9% of the vari-
ation in CEO salary in the sample. Both sales and roe have marginal statistical significance.
 Equation (6.26) shows that log(sales) and roe explain about 28.2% of the variation in log(salary). 
In terms of goodness-of-fit, this much higher R-squared would seem to imply that model (6.26) is 
much better, but this is not necessarily the case. The total sum of squares for salary in the sample is 
391,732,982, while the total sum of squares for log(salary) is only 66.72. Thus, there is much less 
variation in log(salary) that needs to be explained.
 At this point, we can use features other than R2 or  

-
 R 2 to decide between these models. For 

example, log(sales) and roe are much more statistically significant in (6.26) than are sales and roe 
in (6.25), and the coefficients in (6.26) are probably of more interest. To be sure, however, we will 
need to make a valid goodness-of-fit comparison.

 In Section 6.4, we will offer a goodness-of-fit measure that does allow us to compare 
models where y appears in both level and log form.

Controlling for Too Many Factors 

in Regression Analysis

In many of the examples we have covered, and certainly in our discussion of omitted vari-
ables bias in Chapter 3, we have worried about omitting important factors from a model 
that might be correlated with the independent variables. It is also possible to control for 
too many variables in a regression analysis.
 If we overemphasize goodness-of-fit, we open ourselves to controlling for factors in 
a regression model that should not be controlled for. To avoid this mistake, we need to 
remember the ceteris paribus interpretation of multiple regression models.
 To illustrate this issue, suppose we are doing a study to assess the impact of state beer 
taxes on traffic fatalities. The idea is that a higher tax on beer will reduce alcohol con-
sumption, and likewise drunk driving, resulting in fewer traffic fatalities. To measure the 
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ceteris paribus effect of taxes on fatalities, we can model fatalities as a function of several 
factors, including the beer tax:

 fatalities � �
0
 � �

1
tax � �

2
miles � �

3 
percmale � �

4 
perc16_21 � …,

where 

 miles � total miles driven. 
 percmale � percentage of the state population that is male. 
 perc16_21 � percentage of the population between ages 16 and 21, and so on. 

 Notice how we have not included a variable measuring per capita beer consumption. 
Are we committing an omitted variables error? The answer is no. If we control for beer 
consumption in this equation, then how would beer taxes affect traffic fatalities? In the 
equation

 fatalities � �
0
 � �

1
tax � �

2
beercons � …,

�
1
 measures the difference in fatalities due to a one percentage point increase in tax, hold-

ing beercons fixed. It is difficult to understand why this would be interesting. We should 
not be controlling for differences in beercons across states, unless we want to test for some 
sort of indirect effect of beer taxes. Other factors, such as gender and age distribution, 
should be controlled for.
 As a second example, suppose that, for a developing country, we want to estimate the 
effects of pesticide usage among farmers on family health expenditures. In addition to 
pesticide usage amounts, should we include the number of doctor visits as an explanatory 
variable? No. Health expenditures include doctor visits, and we would like to pick up all 
effects of pesticide use on health expenditures. If we include the number of doctor visits as 
an explanatory variable, then we are only measuring the effects of pesticide use on health 
expenditures other than doctor visits. It makes more sense to use number of doctor visits 
as a dependent variable in a separate regression on pesticide amounts.
 The previous examples are what can be called over controlling for factors in multiple 
regression. Often this results from nervousness about potential biases that might arise by 
leaving out an important explanatory variable. But it is important to remember the ceteris 
paribus nature of multiple regression. In some cases, it makes no sense to hold some factors 
fixed precisely because they should be allowed to change when a policy variable changes.
 Unfortunately, the issue of whether or not to control for certain factors is not always 
clear-cut. For example, Betts (1995) studies the effect of high school quality on subse-
quent earnings. He points out that, if better school quality results in more education, then 
controlling for education in the regression along with measures of quality will underesti-
mate the return to quality. Betts does the analysis with and without years of education in 
the equation to get a range of estimated effects for quality of schooling.
 To see explicitly how focusing on high R-squareds can lead to trouble, consider the 
housing price example from Section 4.5 that illustrates the testing of multiple hypotheses. 
In that case, we wanted to test the rationality of housing price assessments. We regressed 
log(price) on log(assess), log(lotsize), log(sqrft), and bdrms and tested whether the latter 
three variables had zero population coefficients while log(assess) had a coefficient of 
unity. But what if we change the purpose of the analysis and estimate a hedonic price 
model, which allows us to obtain the marginal values of various housing attributes? Should 
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we include log(assess) in the equation? The adjusted R-squared from the regression with 
log(assess) is .762, while the adjusted R-squared without it is .630. Based on goodness-of-
fit only, we should include log(assess). But this is incorrect if our goal is to determine the 
effects of lot size, square footage, and number of bedrooms on housing values. Including 
log(assess) in the equation amounts to holding one measure of value fixed and then asking 
how much an additional bedroom would change another measure of value. This makes no 
sense for valuing housing attributes.
 If we remember that different models serve different purposes, and we focus on the 
ceteris paribus interpretation of regression, then we will not include the wrong factors in a 
regression model.

Adding Regressors to Reduce the Error Variance

We have just seen some examples of where certain independent variables should not be 
included in a regression model, even though they are correlated with the dependent vari-
able. From Chapter 3, we know that adding a new independent variable to a regression 
can exacerbate the multicollinearity problem. On the other hand, since we are taking 
something out of the error term, adding a variable generally reduces the error variance. 
Generally, we cannot know which effect will dominate.
 However, there is one case that is clear: we should always include independent variables 
that affect y and are uncorrelated with all of the independent variables of interest. Why? 
Because adding such a variable does not induce multicollinearity in the population (and 
therefore multicollinearity in the sample should be negligible), but it will reduce the error 
variance. In large sample sizes, the standard errors of all OLS estimators will be reduced.
 As an example, consider estimating the individual demand for beer as a function of the 
average county beer price. It may be reasonable to assume that individual characteristics 
are uncorrelated with county-level prices, and so a simple regression of beer consumption 
on county price would suffice for estimating the effect of price on individual demand. But 
it is possible to get a more precise estimate of the price elasticity of beer demand by includ-
ing individual characteristics, such as age and amount of education. If these factors affect 
demand and are uncorrelated with price, then the standard error of the price coefficient will 
be smaller, at least in large samples.
 As a second example, consider the grants for computer equipment given at the begin-
ning of Section 6.3. If, in addition to the grant variable, we control for other factors that 
can explain college GPA, we can probably get a more precise estimate of the effect of 
the grant. Measures of high school grade point average and rank, SAT and ACT scores, 
and family background variables are good candidates. Because the grant amounts are ran-
domly assigned, all additional control variables are uncorrelated with the grant amount; in 
the sample, multicollinearity between the grant amount and other independent variables 
should be minimal. But adding the extra controls might significantly reduce the error 
variance, leading to a more precise estimate of the grant effect. Remember, the issue is 
not unbiasedness here: we obtain an unbiased and consistent estimator whether or not we 
add the high school performance and family background variables. The issue is getting an 
estimator with a smaller sampling variance.
 Unfortunately, cases where we have information on additional explanatory variables 
that are uncorrelated with the explanatory variables of interest are rare in the social sciences. 
But it is worth remembering that when these variables are available, they can be included 
in a model to reduce the error variance without inducing multicollinearity.
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6.4 Prediction and Residual Analysis
In Chapter 3, we defined the OLS predicted or fitted values and the OLS residuals. 
Predictions are certainly useful, but they are subject to sampling variation, because they 
are obtained using the OLS estimators. Thus, in this section, we show how to obtain con-
fidence intervals for a prediction from the OLS regression line.
 From Chapters 3 and 4, we know that the residuals are used to obtain the sum of 
squared residuals and the R-squared, so they are important for goodness-of-fit and test-
ing. Sometimes, economists study the residuals for particular observations to learn about 
individuals (or firms, houses, etc.) in the sample.

Confi dence Intervals for Predictions

Suppose we have estimated the equation

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
 � … �  ̂  � 

k
x

k
. 6.27

When we plug in particular values of the independent variables, we obtain a prediction 
for y, which is an estimate of the expected value of y given the particular values for the 
explanatory variables. For emphasis, let c

1
, c

2
, …, c

k
 denote particular values for each of 

the k independent variables; these may or may not correspond to an actual data point in 
our sample. The parameter we would like to estimate is

 �
0
 � �

0
 � �

1
c

1
 � �

2
c

2
 � … � �

k
c

k

 � E(y�x
1
 � c

1
,x

2
 � c

2
, …, x

k
 � c

k
).

 6.28

The estimator of �
0
 is

  ̂  � 
0
 �  ̂  � 

0
 �  ̂  � 

1
c

1
 �  ̂  � 

2
c

2
 � … �  ̂  � 

k
c

k
. 6.29

In practice, this is easy to compute. But what if we want some measure of the uncertainty 
in this predicted value? It is natural to construct a confidence interval for �

0
, which is 

centered at  ̂  � 
0
.

 To obtain a confidence interval for �
0
, we need a standard error for  ̂  � 

0
. Then, with a large 

df, we can construct a 95% confidence interval using the rule of thumb  ̂  � 
0
 � 2�se( ̂  � 

0
). (As 

always, we can use the exact percentiles in a t distribution.)
 How do we obtain the standard error of  ̂  � 

0
? This is the same problem we encountered 

in Section 4.4: we need to obtain a standard error for a linear combination of the OLS 
estimators. Here, the problem is even more complicated, because all of the OLS estima-
tors generally appear in  ̂  � 

0
 (unless some c

j
 are zero). Nevertheless, the same trick that we 

used in Section 4.4 will work here. Write �
0
 � �

0
 � �

1
c

1
 � … � �

k
c

k
 and plug this into 

the equation

 y � �
0
 � �

1
x

1
 � … � �

k
x

k
 � u
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to obtain

 y � �
0
 � �

1
(x

1
 � c

1
) � �

2
(x

2
 � c

2
) � … � �

k
(x

k
 � c

k
) � u. 6.30

In other words, we subtract the value c
j
 from each observation on x

j
, and then we run the 

regression of

 y
i
 on (x

i1
 � c

1
), …, (x

ik
 � c

k
), i � 1, 2, …, n. 6.31

The predicted value in (6.29) and, more importantly, its standard error, are obtained from 
the intercept (or constant) in regression (6.31).
 As an example, we obtain a confidence interval for a prediction from a college GPA 
regression, where we use high school information.

E x a m p l e  6 . 5

[Confidence Interval for Predicted College GPA]

Using the data in GPA2.RAW, we obtain the following equation for predicting college GPA:

 2colgpa � 1.493 � .00149 sat � .01386 hsperc

 (0.075) (.00007) (.00056)

 � .06088 hsize � .00546 hsize2 6.32

 (.01650) (.00227)

 n � 4,137, R2 � .278,  
-

 R 2 � .277,  ̂  �  � .560,

where we have reported estimates to several digits to reduce round-off error. What is predicted col-
lege GPA, when sat � 1,200, hsperc � 30, and hsize � 5 (which means 500)? This is easy to get by 
plugging these values into equation (6.32): 2colgpa � 2.70 (rounded to two digits). Unfortunately, we 
cannot use equation (6.32) directly to get a confidence interval for the expected colgpa at the given 
values of the independent variables. One simple way to obtain a confidence interval is to define a 
new set of independent variables: sat0 � sat � 1,200, hsperc0 � hsperc � 30, hsize0 � hsize � 5, 
and hsizesq0 � hsize2 � 25. When we regress colgpa on these new independent variables, we get

 2colgpa � 2.700 � .00149 sat0 � .01386 hsperc0

 (0.020) (.00007) (.00056)

 � .06088 hsize0 � .00546 hsizesq0

 (.01650)  (.00227)

 n � 4,137, R2 � .278,  
-

 R 2 � .277,  ̂  �  � .560.

The only difference between this regression and that in (6.32) is the intercept, which is the  prediction 
we want, along with its standard error, .020. It is not an accident that the slope coefficents, their 
standard errors, R-squared, and so on are the same as before; this provides a way to check that 
the proper transformations were done. We can easily construct a 95% confidence interval for the 
expected college GPA: 2.70 � 1.96(.020) or about 2.66 to 2.74. This confidence interval is rather 
narrow due to the very large sample size.
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 Because the variance of the intercept estimator is smallest when each explanatory vari-
able has zero sample mean (see Question 2.5 for the simple regression case), it follows 
from the regression in (6.31) that the variance of the prediction is smallest at the mean 
values of the x

j
. (That is, c

j
 �  - x 

j
 for all j.) This result is not too surprising, since we have 

the most faith in our regression line near the middle of the data. As the values of the c
j
 get 

farther away from the  - x 
j
, Var( ̂  y ) gets larger and larger.

 The previous method allows us to put a confidence interval around the OLS estimate 
of E(y�x

1
, …, x

k
), for any values of the explanatory variables. In other words, we obtain 

a confidence interval for the average value of y for the subpopulation with a given set 
of covariates. But a confidence interval for the average person in the subpopulation is 
not the same as a confidence interval for a particular unit (individual, family, firm, and 
so on) from the population. In forming a confidence interval for an unknown outcome 
on y, we must account for another very important source of variation: the variance in 
the unobserved error, which measures our ignorance of the unobserved factors that 
affect y.
 Let y0 denote the value for which we would like to construct a confidence interval, 
which we sometimes call a prediction interval. For example, y0 could represent a person 
or firm not in our original sample. Let x 0   

1
 , …, x 0   

k
   be the new values of the independent 

variables, which we assume we observe, and let u0 be the unobserved error. Therefore, 
we have

 y0 � �
0
 � �

1
x 0   

1
  � �

2
x 0   

2
  � … � �

k
x 0   

k
   � u0. 6.33

As before, our best prediction of y0 is the expected value of y0 given the explanatory vari-
ables, which we estimate from the OLS regression line:  ̂  y 0 �  ̂  � 

0
 �  ̂  � 

1
x 0   

1
  �  ̂  � 

2
x 0   

2
  � … � 

 ̂  � 
k
x 0   

k
  . The prediction error in using  ̂  y 0 to predict y0 is

  ̂  e 0 � y0 �  ̂  y 0 � (�
0
 � �

1
x 0   

1
  � … � �

k
x 0   

k
  ) � u0 �  ̂  y 0. 6.34

Now, E( ̂  y 0) � E( ̂  � 
0
) � E( ̂  � 

1
)x 0   

1
  � E( ̂  � 

2
)x 0   

2
  � … � E( ̂  � 

k
)x 0   

k
   � �

0
 � �

1
x 0   

1
  � … � �

k
x 0   

k
  , 

because the  ̂  � 
j
 are unbiased. (As before, these expectations are all conditional on the sam-

ple values of the independent variables.) Because u0 has zero mean, E( ̂  e 0) � 0. We have 
shown that the expected prediction error is zero.
 In finding the variance of  ̂  e 0, note that u0 is uncorrelated with each  ̂  � 

j
, because u0 is 

uncorrelated with the errors in the sample used to obtain the  ̂  � 
j
. By basic properties of 

covariance (see Appendix B), u0 and  ̂  y 0 are uncorrelated. Therefore, the variance of the 
prediction error (conditional on all in-sample values of the independent variables) is the 
sum of the variances:

 Var( ̂  e 0) � Var( ̂  y 0) � Var(u0) � Var( ̂  y 0) � � 2, 6.35

where �2 � Var(u0) is the error variance. There are two sources of variation in  ̂  e 0. The first 
is the sampling error in  ̂  y  0, which arises because we have estimated the �

j
. Because each 

 ̂  � 
j
 has a variance proportional to 1/n, where n is the sample size, Var( ̂  y 0) is proportional to 

1/n. This means that, for large samples, Var( ̂  y 0) can be very small. By contrast, �2 is the 
variance of the error in the population; it does not change with the sample size. In many 
examples, �2 will be the dominant term in (6.35).



 Chapter 6   Multiple Regression Analysis: Further Issues 209

 Under the classical linear model assumptions, the  ̂  � 
j
 and u0 are normally distributed, 

and so  ̂  e 0 is also normally distributed (conditional on all sample values of the explanatory 
variables). Earlier, we described how to obtain an unbiased estimator of Var( ̂  y 0), and we 
obtained our unbiased estimator of �2 in Chapter 3. By using these estimators, we can 
define the standard error of  ̂  e 0 as

 se( ̂  e 0) � {[se( ̂  y 0)]2 �  ̂  � 2}1/2. 6.36

Using the same reasoning for the t statistics of the  ̂  � 
j
,  ̂  e 0/se( ̂  e 0) has a t distribution with 

n � (k � 1) degrees of freedom. Therefore,

 P[�t
.025 


  ̂  e 0/se( ̂  e 0) 
 t
.025

] � .95,

where t
.025

 is the 97.5th percentile in the t
n�k�1

 distribution. For large n � k � 1, remember 
that t

.025
 � 1.96. Plugging in  ̂  e 0 � y0 �  ̂  y 0 and rearranging gives a 95% prediction interval 

for y0:

  ̂  y 0 � t
.025

�se( ̂  e 0); 6.37

as usual, except for small df, a good rule of thumb is  ̂  y 0 � 2se( ̂  e 0). This is wider than the 
confidence interval for  ̂  y 0 itself because of  ̂  � 2 in (6.36); it often is much wider to reflect the 
factors in u0 that we have not controlled for.

E x a m p l e  6 . 6

[Confidence Interval for Future College GPA]

Suppose we want a 95% CI for the future college GPA of a high school student with  sat � 1,200, 
hsperc � 30, and hsize � 5. In Example 6.5, we obtained a 95% confidence interval for the aver-
age college grade point average among all students with the particular characteristics sat � 1,200, 
hsperc � 30, and hsize � 5. Now, we want a 95% confidence interval for any particular student with 
these characteristics. The 95% prediction interval must account for the variation in the individual, 
unobserved characteristics that affect college performance. We have everything we need to obtain a 
CI for colgpa. se( ̂  y 0) � .020 and  ̂  �  � .560 and so, from (6.36), se( ̂  e 0) � [(.020)2 � (.560)2]1/2 � .560. 
Notice how small se( ̂  y 0) is relative to  ̂  � : virtually all of the variation in  ̂  e 0 comes from the variation 
in u0. The 95% CI is 2.70 � 1.96(.560) or about 1.60 to 3.80. This is a wide confidence interval, 
and shows that, based on the factors we included in the regression, we cannot accurately pin down 
an individual’s future college grade point average. (In one sense, this is good news, as it means 
that high school rank and performance on the SAT do not preordain one’s performance in college.) 
Evidently, the unobserved characteristics vary widely by individuals with the same observed SAT 
score and high school rank.

Residual Analysis

Sometimes, it is useful to examine individual observations to see whether the actual 
value of the dependent variable is above or below the predicted value; that is, to examine 
the residuals for the individual observations. This process is called residual analysis. 
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Economists have been known to examine the residuals from a regression in order to aid in 
the purchase of a home. The following housing price example illustrates residual analysis. 
Housing price is related to various observable characteristics of the house. We can list all 
of the characteristics that we find important, such as size, number of bedrooms, number of 
bathrooms, and so on. We can use a sample of houses to estimate a relationship between 
price and attributes, where we end up with a predicted value and an actual value for each 
house. Then, we can construct the residuals,  ̂  u 

i
 � y

i
 �  ̂  y 

i
. The house with the most negative 

residual is, at least based on the factors we have controlled for, the most underpriced one 
relative to its observed characteristics. Of course, a selling price substantially below its 
predicted price could indicate some undesirable feature of the house that we have failed 
to account for, and which is therefore contained in the unobserved error. In addition to 
obtaining the prediction and residual, it also makes sense to compute a confidence inter-
val for what the future selling price of the home could be, using the method described in 
equation (6.37).
 Using the data in HPRICE1.RAW, we run a regression of price on lotsize, sqrft, and 
bdrms. In the sample of 88 homes, the most negative residual is �120.206, for the 81st 
house. Therefore, the asking price for this house is $120,206 below its predicted price.
 There are many other uses of residual analysis. One way to rank law schools is to 
regress median starting salary on a variety of student characteristics (such as median LSAT 
scores of entering class, median college GPA of entering class, and so on) and to obtain a 
predicted value and residual for each law school. The law school with the largest residual 
has the highest predicted value added. (Of course, there is still much uncertainty about how 
an individual’s starting salary would compare with the median for a law school overall.) 
These residuals can be used along with the costs of attending each law school to determine 
the best value; this would require an appropriate discounting of future earnings.
 Residual analysis also plays a role in legal decisions. A New York Times article enti-
tled “Judge Says Pupil’s Poverty, Not Segregation, Hurts Scores” (6/28/95) describes an 
important legal case. The issue was whether the poor performance on standardized tests 
in the Hartford School District, relative to performance in surrounding suburbs, was due 
to poor school quality at the highly segregated schools. The judge concluded that “the 
disparity in test scores does not indicate that Hartford is doing an inadequate or poor job in 

educating its students or that its schools 
are failing, because the predicted scores 
based upon the relevant socioeconomic 
factors are about at the levels that 
one would expect.” This conclusion is 
based on a regression analysis of aver-
age or median scores on socioeconomic 

characteristics of various school districts in Connecticut. The judge’s conclusion sug-
gests that, given the poverty levels of students at Hartford schools, the actual test scores 
were similar to those predicted from a regression analysis: the residual for Hartford was 
not sufficiently negative to conclude that the schools themselves were the cause of low 
test scores.

Predicting y When log(y) Is the Dependent Variable

Because the natural log transformation is used so often for the dependent variable in 
empirical economics, we devote this subsection to the issue of predicting y when log(y) is 

Q u e s t i o n  6 . 5
How would you use residual analysis to determine which 
 professional athletes are overpaid or underpaid relative to their 
performance?
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the dependent variable. As a byproduct, we will obtain a goodness-of-fit measure for the 
log model that can be compared with the R-squared from the level model.
 To obtain a prediction, it is useful to define logy � log(y); this emphasizes that it is the 
log of y that is predicted in the model

 logy � �
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
 � u. 6.38

In this equation, the x
j
 might be transformations of other variables; for example, we could 

have x
1
 � log(sales), x

2
 � log(mktval), x

3
 � ceoten in the CEO salary example.

 Given the OLS estimators, we know how to predict logy for any value of the indepen-
dent variables:

 1logy �  ̂  � 
0
 �  ̂  � 

1
x

1
 �  ̂  � 

2
x

2
 � … �  ̂  � 

k
x

k
. 6.39

Now, since the exponential undoes the log, our first guess for predicting y is to simply 
exponentiate the predicted value for log(y):  ̂  y  � exp(1logy). This does not work; in fact, it 
will systematically underestimate the expected value of y. In fact, if model (6.38) follows 
the CLM assumptions MLR.1 through MLR.6, it can be shown that

 E(y�x) � exp(�2/2)�exp(�
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
),

where x denotes the independent variables and �2 is the variance of u. [If u ~ Normal(0,�2), 
then the expected value of exp(u) is exp(�2/2).] This equation shows that a simple adjust-
ment is needed to predict y:

  ̂  y  � exp( ̂  � 2/2)exp(1logy), 6.40

where  ̂  � 2 is simply the unbiased estimator of �2. Because  ̂  � , the standard error of the 
regression, is always reported, obtaining predicted values for y is easy. Because  ̂  � 2 � 0, 
exp( ̂  � 2/2) � 1. For large  ̂  � 2, this adjustment factor can be substantially larger than unity.
 The prediction in (6.40) is not unbiased, but it is consistent. There are no unbiased pre-
dictions of y, and in many cases, (6.40) works well. However, it does rely on the normality 
of the error term, u. In Chapter 5, we showed that OLS has desirable properties, even when 
u is not normally distributed. Therefore, it is useful to have a prediction that does not rely 
on normality. If we just assume that u is independent of the explanatory variables, then 
we have

 E(y�x) � �
0
exp(�

0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
), 6.41

where �
0
 is the expected value of exp(u), which must be greater than unity.

 Given an estimate  ̂  � 
0
, we can predict y as

  ̂  y  �  ̂  � 
0
exp(1logy), 6.42

which again simply requires exponentiating the predicted value from the log model and 
multiplying the result by  ̂  � 

0
.

 Two approaches suggest themselves for estimating �
0
 without the normality assump-

tion. The first is based on �
0
 � E[exp(u)]. To estimate �

0
 we replace the population 
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expectation with a sample average and then we replace the unobserved errors, u
i
, with the 

OLS residuals,  ̂  u 
i
 � log(y

i
) −  ̂  � 

0
 −  ̂  � 

1
x

i1
 − … −  ̂  � 

k
x

ik
. This leads to the method of moments 

estimator (see Appendix C)

  ̂  � 
0
 � n�1 ∑ 

i�1

   
n

    exp( ̂  u 
i
). 6.43

Not surprisingly,  ̂  � 
0
 is a consistent estimator of �

0
, but it is not unbiased because we have 

replaced u
i
 with  ̂  u 

i
 inside a nonlinear function. This version of  ̂  � 

0
 is a special case of what 

Duan (1983) called a smearing estimate. Because the OLS residuals have a zero sample 
average, it can be shown that, for any data set,  ̂  � 

0
 � 1. (Technically,  ̂  � 

0
 would equal one 

if all the OLS residuals were zero, but this never happens in any interesting application.) 
That  ̂  � 

0
 is necessarily greater than one is convenient because it must be that �

0
 � 1.

 A different estimate of �
0
 is based on a simple regression through the origin. To see 

how it works, define m
i
 � exp(�

0
 � �

1
x

i1
 � … � �

k
x

ik
), so that, from equation (6.41), 

E(y
i
|m

i
) � �

0
m

i
. If we could observe the m

i
, we could obtain an unbiased estimator of �

0 

from the regression y
i
 on m

i
 without an intercept. Instead, we replace the �

j
 with their 

OLS estimates and obtain  ̂  m 
i
 � exp(1logy

i
), where, of course, the 1logy

i
 are the fitted values 

from the regression logy
i
 on x

i1
, …, x

ik
 (with an intercept). Then  ̌  � 

0
 [to distinguish it from  

ˆ � 
0
 in equation (6.43)] is the OLS slope estimate from the simple regression y

i
 on  ̂  m 

i
 (no 

intercept):

  ̌  � 
0
 �  �  ∑ 

i�1

   
n

      ̂  m  2   i   � 
�1

  �  ∑ 
i�1

   
n

      ̂  m 
i
 y

i
 �  . 6.44

We will call  ̌  � 
0
 the regression estimate of �

0
. Like  ̂  � 

0
,  ̌  � 

0
 is consistent but not unbiased. 

Interestingly,  ̌  � 
0
 is not guaranteed to be greater than one, although it will be in most appli-

cations. If  ̌  � 
0
 is less than one, and especially if it is much less than one, it is likely that the 

assumption of independence between u and the x
j
 is violated. If  ̌  � 

0
 � 1, one possibility is 

to just use the estimate in (6.43), although this may simply be masking a problem with the 
linear model for log(y). We summarize the steps:

PREDICTING y WHEN THE DEPENDENT VARIABLE IS log(y):

 1.  Obtain the fitted values, 1logy
i
, and residuals,  ̂  u 

i
, from the regression logy on 

x
1
, …, x

k
.

 2. Obtain  ̂  � 
0
 as in equation (6.43) or   ̌  � 

0
 in equation (6.44).

 3. For given values of x
1
, …, x

k
, obtain 1logy from (6.42).

 4. Obtain the prediction  ̂  y  from (6.42) (with   ̂  � 
0
 or  ̌  � 

0
).

 We now show how to predict CEO salaries using this procedure.

E x a m p l e  6 . 7

[Predicting CEO Salaries]

The model of interest is

 log(salary) � �
0
 � �

1
log(sales) � �

2
log(mktval) � �

3
ceoten � u,
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so that �
1
 and �

2
 are elasticities and 100��

3
 is a semi-elasticity. The estimated equation using 

CEOSAL2.RAW is

 2lsalary � 4.504 � .163 lsales � .109 lmktval � .0117 ceoten

 (.257) (.039) (.050) (.0053) 6.45

 n � 177, R2 � .318,

where, for clarity, we let lsalary denote the log of salary, and similarly for lsales and  lmktval. Next, 
we obtain  ̂  m 

i
 � exp(2lsalary

i
) for each observation in the sample. 

 The Duan smearing estimate from (6.43) is about   ̂  � 
0
 � 1.136, and the regression estimate from 

(6.44) is  ̌  � 
0
 � 1.117. We can use either estimate to predict salary for any values of sales, mktval, 

and ceoten. Let us find the prediction for sales � 5,000 (which means $5 billion because sales is 
in millions), mktval � 10,000 (or $10 billion), and ceoten � 10. From (6.45), the prediction for 
lsalary is 4.504 � .163 � log(5,000) � .109 � log(10,000) � .0117(10) � 7.013, and exp(7.013) �
1,110.983. Using the estimate of �

0
 from (6.43), the predicted salary is about 1,262.077, or 

$1,262,077. Using the estimate from (6.44) gives an estimated salary of about $1,240,968. These 
differ from each other by much less than each differs from the naive prediction of $1,110,983.

 We can use the previous method of obtaining predictions to determine how well the 
model with log(y) as the dependent variable explains y. We already have measures for 
models when y is the dependent variable: the R-squared and the adjusted R-squared. The 
goal is to find a goodness-of-fit measure in the log(y) model that can be compared with an 
R-squared from a model where y is the dependent variable.
 There are different ways to define a goodness-of-fit measure after retransforming 
a model for log(y) to predict y. Here we present an approach that is easy to implement 
and that gives the same value whether we estimate �

0
 as in (6.40), (6.43), or (6.44). 

To motivate the measure, recall that in the linear regression equation estimated by 
OLS,

  ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 � … �  ̂  � 

k
x

k
, 6.46

the usual R-squared is simply the square of the correlation between y
i 
and  ̂  y 

i
 (see Section 3.2). 

Now, if instead we compute fitted values from (6.42)—that is,  ̂  y 
i 
�  ̂  � 

0
m

i
 for all observa-

tions i—then it makes sense to use the square of the correlation between y
i
 and these fitted 

values as an R-squared. Because correlation is unaffected if we multiply by a constant, it 
does not matter which estimate of �

0
 we use. In fact, this R-squared measure for y [not 

log(y)] is just the squared correlation between y
i
 and  ̂  m 

i
. We can compare this directly 

with the R-squared from equation (6.46). [Because the R-squared calculation does not 
depend on the estimate of �

0
, it does not allow us to choose among (6.40), (6.43), and 

(6.44). But we know that (6.44) minimizes the sum of squared residuals between y
i
 and

 ̂  m 
i
, without a constant. In other words, given the  ̂  m 

i
,  ̌  � 

0
 is chosen to produce the best fit 

based on sum of squared residuals. We are interested here in choosing between the linear 
model for y and log(y), and so an R-squared measure that does not depend on how we 
estimate �

0
 is suitable.]
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E x a m p l e  6 . 8

[Predicting CEO Salaries]

After we obtain the  ̂  m 
i
, we just obtain the correlation between salary

i
 and   ̂  m 

i
; it is .493. The square 

of it is about .243, and this is a measure of how well the log model explains the variation in salary, 
not log(salary). [The R2 from (6.45), .318, tells us that the log model explains about 31.8% of the 
variation in log(salary).]
 As a competing linear model, suppose we estimate a model with all variables in levels:

 salary � �
0
 � �

1
sales � �

2
mktval � �

3
ceoten � u. 6.47

The key is that the dependent variable is salary. We could use logs of sales or mktval on the right 
hand side, but it makes more sense to have all dollar values in levels if one (salary) appears as a 
level. The R-squared from estimating this equation using the same 177 observations is .201. Thus, 
the log model explains more of the variation in salary, and so we prefer it to (6.47) on goodness-of-
fit grounds. The log model is also preferred because it seems more realistic and its parameters are 
easier to interpret.
 If we maintain the full set of classical linear model assumptions in the model (6.38), we can 
easily obtain prediction intervals for y0 � exp(�

0
 � �

1
x 0   

1
  � … � �

k
x 0   

k
   � u0) when we have esti-

mated a linear model for log(y). Recall that x 0   1 , x 0   2 , ..., x 0   k   are known values and u0 is the unobserved 
error that partly determines y0. From equation (6.37), a 95% prediction interval for logy0 � log(y0) 
is simply 1logy

0  � t
.025

 � se( ̂  e 0), where se( ̂  e 0) is obtained from the regression of log(y) on x
1
, ..., x

k
 

using the original n observations. Let c
l
 � �t

.025
 � se( ̂  e 0) and c

u
 � t

.025
 � se( ̂  e 0) be the lower and upper 

bounds of the prediction interval for logy0. That is, P(c
l
 
 logy0 
 c

u
) � .95. Because the expo-

nential function is strictly increasing, it is also true that P[exp(c
l
) 
 exp(logy0) 
 exp(c

u
)] � .95,

that is, P[exp(c
l
) 
 y0 
 exp(c

u
)] � .95. Therefore, we can take exp(c

l
) and exp(c

u
) as the lower 

and upper bounds, respectively, for a 95% prediction interval for y0. For large n, t
.025

 � 1.96, and 
so a 95% prediction interval for y0 is exp[−1.96 � se(ê0)] exp( ̂  � 

0
 � x0 ̂   � ) to exp[−1.96 � se(ê0)] 

exp( ̂  � 
0
 � x0 ̂   � ), where x0 ̂   �  is shorthand for  ̂  � 

1
x 0   

1
  � … �  ̂  � 

k
x 0   

k
  . Remember, the  ̂  � 

j
 and se(ê0) are 

obtained from the regression with log(y) as the dependent variable. Because we assume normality 
of u in (6.38), we probably would use (6.40) to obtain a point prediction for y0. Unlike in equa-
tion (6.37), this point prediction will not lie halfway between the upper and lower bounds exp(c

l
) 

and exp(c
u
). One can obtain different 95% prediction intervalues by choosing different quantiles 

in the t
n−k−1

 distribution. If q
�1

 and q
�2

 are quantiles with �
2
 � �

1
 � .95, then we can choose c

l
 � 

q
�1

se(ê0) and c
u
 � q

�2
se(ê0).

 As an example, consider the CEO salary regression, where we make the prediction at the 
same values of sales, mktval, and ceoten as in Example 6.7. The standard error of the regression 
for (6.43) is about .505, and the standard error of 1logy

0  is about .075. Therefore, using equation 
(6.36), se(ê0) � .511; as in the GPA example, the error variance swamps the estimation error in 
the parameters, even though here the sample size is only 177. A 95% prediction interval for salary0 
is exp[−1.96 � (.511)] exp(7.013) to exp[1.96 � (.511)] exp(7.013), or about 408.071 to 3,024.678, 
that is, $408,071 to $3,024,678. This very wide 95% prediction interval for CEO salary at the given 
sales, market value, and tenure values shows that there is much else that we have not included in 
the regression that determines salary. Incidentally, the point prediction for salary, using (6.40), is 
about $1,262,075—higher than the predictions using the other estimates of �

0
 and closer to the lower 

bound than the upper bound of the 95% prediction interval.
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S U M M A R Y

In this chapter, we have covered some important multiple regression analysis topics.
 Section 6.1 showed that a change in the units of measurement of an independent variable 
changes the OLS coefficient in the expected manner: if x

j 
is multiplied by c, its coefficient is 

divided by c. If the dependent variable is multiplied by c, all OLS coefficients are multiplied by 
c. Neither t nor F statistics are affected by changing the units of measurement of any variables.
 We discussed beta coefficients, which measure the effects of the independent variables on 
the dependent variable in standard deviation units. The beta coefficients are obtained from a 
standard OLS regression after the dependent and independent variables have been transformed 
into z-scores.
 As we have seen in several examples, the logarithmic functional form provides coefficients 
with percentage effect interpretations. We discussed its additional advantages in Section 6.2. 
We also saw how to compute the exact percentage effect when a coefficient in a log-level 
model is large. Models with quadratics allow for either diminishing or increasing marginal 
effects. Models with interactions allow the marginal effect of one explanatory variable to 
depend upon the level of another explanatory variable.
 We introduced the adjusted R-squared,  

-
 R 2, as an alternative to the usual R-squared for 

 measuring goodness-of-fit. Whereas R2 can never fall when another variable is added to a 
regression,  

-
 R 2 penalizes the number of regressors and can drop when an independent variable 

is added. This makes  
-

 R 2 preferable for choosing between nonnested models with different 
numbers of explanatory variables. Neither R2 nor  

-
 R 2 can be used to compare models with differ-

ent dependent variables. Nevertheless, it is fairly easy to obtain goodness-of-fit measures for 
choosing between y and log(y) as the dependent variable, as shown in Section 6.4.
 In Section 6.3, we discussed the somewhat subtle problem of relying too much on R2 or  

-
 R 2 

in arriving at a final model: it is possible to control for too many factors in a regression model. 
For this reason, it is important to think ahead about model specification, particularly the ceteris 
paribus nature of the multiple regression equation. Explanatory variables that affect y and are 
uncorrelated with all the other explanatory variables can be used to reduce the error variance 
without inducing multicollinearity.
 In Section 6.4, we demonstrated how to obtain a confidence interval for a prediction made 
from an OLS regression line. We also showed how a confidence interval can be constructed for 
a future, unknown value of y.
 Occasionally, we want to predict y when log(y) is used as the dependent variable in a 
regression model. Section 6.4 explains this simple method. Finally, we are sometimes inter-
ested in knowing about the sign and magnitude of the residuals for particular observations. 
Residual analysis can be used to determine whether particular members of the sample have 
predicted values that are well above or well below the actual outcomes.

K E Y  T E R M S

Adjusted R-Squared
Beta Coefficients
Bootstrap
Bootstrap Standard Error
Interaction Effect
Nonnested Models

Over Controlling
Population R-Squared
Prediction Error
Prediction Interval
Predictions
Quadratic Functions

Resampling Method
Residual Analysis
Smearing Estimate
Standardized Coefficients
Variance of the Prediction 

Error
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P R O B L E M S

6.1 The following equation was estimated using the data in CEOSAL1.RAW:

 2log(salary) � 4.322 � .276 log(sales) � .0215 roe � .00008 roe2

 (.324) (.033) (.0129) (.00026)

 n � 209, R2 � .282.

  This equation allows roe to have a diminishing effect on log(salary). Is this generality 
necessary? Explain why or why not.

6.2  Let  ̂  � 
0
,  ̂  � 

1
, …,  ̂  � 

k 
be the OLS estimates from the regression of y

i 
on x

i1
, …, x

ik
, i�1, 2, …, n. 

For nonzero constants c
1
, …, c

k
, argue that the OLS intercept and slopes from the regres-

sion of c
0 
y

i 
on c

1
x

i1
, …, c

k
x

ik
, i � 1, 2, …, n, are given by �̃

0 
� c

0
  ̂  � 

0
, �̃

1 
� (c

0
/c

1
) ̂  � 

1
, …, �̃

k 
�

(c
0
/c

k
) ̂  � 

k
. [Hint: Use the fact that the  ̂  � 

j 
solve the first order conditions in (3.13), and the

�̃
j
 must solve the first order conditions involving the rescaled dependent and independent 

variables.]

6.3 Using the data in RDCHEM.RAW, the following equation was obtained by OLS:

 2rdintens � 2.613 � .00030 sales � .0000000070 sales2

 (.429) (.00014) (.0000000037)

 n � 32, R2 � .1484.

 (i) At what point does the marginal effect of sales on rdintens become negative?
 (ii) Would you keep the quadratic term in the model? Explain.
 (iii)  Define salesbil as sales measured in billions of dollars: salesbil � sales/1,000. 

Rewrite the estimated equation with salesbil and salesbil2 as the independent 
variables. Be sure to report standard errors and the R-squared. [Hint: Note that 
salesbil2 � sales2/(1,000)2.]

 (iv) For the purpose of reporting the results, which equation do you prefer?

6.4  The following model allows the return to education to depend upon the total amount of 
both parents’ education, called pareduc:

 log(wage) � �
0 
� �

1
educ � �

2
educ�pareduc � �

3
exper � �

4
tenure � u.

 (i)  Show that, in decimal form, the return to another year of education in this 
model is

 ∆log(wage)/∆educ � �
1 
� �

2
pareduc.

  What sign do you expect for �
2
? Why?
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 (ii) Using the data in WAGE2.RAW, the estimated equation is

 2log(wage) � 5.65 � .047 educ � .00078 educ�pareduc �

 (.13) (.010) (.00021)

 .019 exper � .010 tenure

 (.004)   (.003) 

  n � 722, R2 � .169.

   (Only 722 observations contain full information on parents’ education.) Interpret 
the coefficient on the interaction term. It might help to choose two specific values 
for pareduc—for example, pareduc � 32 if both parents have a college education, 
or pareduc � 24 if both parents have a high school education—and to compare the 
estimated return to educ.

 (iii) When pareduc is added as a separate variable to the equation, we get:

 2log(wage) � 4.94 � .097 educ � .033 pareduc � .0016 educ�pareduc 

 (.38) (.027) (.017) (.0012)

 � .020 exper � .010 tenure

 (.004) (.003)

 n � 722, R2 � .174.

   Does the estimated return to education now depend positively on parent educa-
tion? Test the null hypothesis that the return to education does not depend on 
parent education.

6.5  In Example 4.2, where the percentage of students receiving a passing score on a tenth-grade 
math exam (math10) is the dependent variable, does it make sense to include sci11—the per-
centage of eleventh graders passing a science exam—as an additional explanatory variable?

6.6  When atndrte2 and ACT�atndrte are added to the equation estimated in (6.19), the 
R-squared becomes .232. Are these additional terms jointly significant at the 10% level? 
Would you include them in the model?

6.7  The following three equations were estimated using the 1,534 observations in 401K.RAW:

 1prate � 80.29 � 5.44 mrate � .269 age � .00013 totemp

 (.78)  (.52)  (.045)  (.00004)

 R2 � .100,  
-

 R 2 � .098.

 1prate � 97.32 � 5.02 mrate � .314 age � 2.66 log(totemp)

 (1.95) (0.51) (.044) (.28) 

 R2 � .144,  
-

 R 2 � .142.

 1prate � 80.62 � 5.34 mrate � .290 age � .00043 totemp

 (.78) (.52) (.045) (.00009)

 � .0000000039 totemp2

 (.0000000010)

 R2 � .108,  
-

 R 2 � .106.

 Which of these three models do you prefer? Why?
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6.8  Suppose we want to estimate the effects of alcohol consumption (alcohol) on college 
grade point average (colGPA). In addition to collecting information on grade point aver-
ages and alcohol usage, we also obtain attendance information (say, percentage of lec-
tures attended, called attend). A standardized test score (say, SAT) and high school GPA 
(hsGPA) are also available.

 (i)  Should we include attend along with alcohol as explanatory variables in a multiple 
regression model? (Think about how you would interpret �

alcohol
.) 

 (ii) Should SAT and hsGPA be included as explanatory variables? Explain.

6.9  If we start with (6.38) under the CLM assumptions, assume large n, and ignore the esti-
mation error in the  ̂  � 

j
, a 95% prediction interval for y0 is [exp(�1.96 ̂  � ) exp(1logy0), 

exp (1.96 ̂  � ) exp(1logy0)]. The point prediction for y0 is  ̂  y 0 � exp( ̂  � 2/2) exp(1logy0).
 (i)  For what values of  ̂  �  will the point prediction be in the 95% prediction interval? 

Does this condition seem likely to hold in most applications?
 (ii) Verify that the condition from part (i) is satisfied in the CEO salary example.

C O M P U T E R  E X E R C I S E S

C6.1  Use the data in KIELMC.RAW, only for the year 1981, to answer the following ques-
tions. The data are for houses that sold during 1981 in North Andover, Massachusetts; 
1981 was the year construction began on a local garbage incinerator.

 (i)  To study the effects of the incinerator location on housing price, consider the sim-
ple regression model

 log(price) � �
0 
� �

1
log(dist) � u,

   where price is housing price in dollars and dist is distance from the house to the 
incinerator measured in feet. Interpreting this equation causally, what sign do you 
expect for �

1 
if the presence of the incinerator depresses housing prices? Estimate 

this equation and interpret the results.
 (ii)  To the simple regression model in part (i), add the variables log(intst), log(area), 

log(land), rooms, baths, and age, where intst is distance from the home to the 
interstate, area is square footage of the house, land is the lot size in square feet, 
rooms is total number of rooms, baths is number of bathrooms, and age is age of 
the house in years. Now, what do you conclude about the effects of the incinera-
tor? Explain why (i) and (ii) give conflicting results.

 (iii)  Add [log(intst)]2 to the model from part (ii). Now what happens? What do you 
conclude about the importance of functional form?

 (iv) Is the square of log(dist) significant when you add it to the model from part (iii)?

C6.2 Use the data in WAGE1.RAW for this exercise.
 (i) Use OLS to estimate the equation

 log(wage) � �
0 
� �

1
educ � �

2
exper � �

3
exper 2 � u

  and report the results using the usual format.
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 (ii) Is exper2 statistically significant at the 1% level?
 (iii) Using the approximation

%∆1wage � 100( ̂  � 
2 
� 2 ̂  � 

3
exper)∆exper,

   find the approximate return to the fifth year of experience. What is the approxi-
mate return to the twentieth year of experience?

 (iv)  At what value of exper does additional experience actually lower predicted 
log(wage)? How many people have more experience in this sample?

C6.3  Consider a model where the return to education depends upon the amount of work expe-
rience (and vice versa):

 log(wage) � �
0 
� �

1
educ � �

2
exper � �

3
educ�exper � u.

 (i)  Show that the return to another year of education (in decimal form), holding exper 
fixed, is �

1 
� �

3
exper.

 (ii)  State the null hypothesis that the return to education does not depend on the level 
of exper. What do you think is the appropriate alternative?

 (iii)  Use the data in WAGE2.RAW to test the null hypothesis in (ii) against your stated 
alternative.

 (iv)  Let �
1 

denote the return to education (in decimal form), when exper � 10: 
�

1 
� �

1 
� 10�

3
. Obtain  ̂  � 

1 
and a 95% confidence interval for �

1
. (Hint: Write 

�
1 

� �
1 

� 10�
3 

and plug this into the equation; then rearrange. This gives the 
regression for obtaining the confidence interval for �

1
.)

C6.4 Use the data in GPA2.RAW for this exercise.
 (i) Estimate the model

 sat � �
0 
� �

1
hsize � �

2
hsize2 � u,

   where hsize is the size of the graduating class (in hundreds), and write the results 
in the usual form. Is the quadratic term statistically significant?

 (ii)  Using the estimated equation from part (i), what is the “optimal” high school size? 
Justify your answer.

 (iii)  Is this analysis representative of the academic performance of all high school 
seniors? Explain.

 (iv)  Find the estimated optimal high school size, using log(sat) as the dependent vari-
able. Is it much different from what you obtained in part (ii)?

C6.5 Use the housing price data in HPRICE1.RAW for this exercise.
 (i) Estimate the model

 log(price) � �
0 
� �

1
log(lotsize) � �

2
log(sqrft) � �

3
bdrms � u

  and report the results in the usual OLS format.
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 (ii)  Find the predicted value of log(price), when lotsize � 20,000, sqrft � 2,500, and 
bdrms � 4. Using the methods in Section 6.4, find the predicted value of price at 
the same values of the explanatory variables.

 (iii)  For explaining variation in price, decide whether you prefer the model from part 
(i) or the model

price � �
0 
� �

1
lotsize � �

2
sqrft � �

3
bdrms � u.

C6.6 Use the data in VOTE1.RAW for this exercise.
 (i) Consider a model with an interaction between expenditures:

voteA � �
0
 � �

1
prtystrA � �

2
expendA � �

3
expendB � �

4
expendA�expendB � u.

   What is the partial effect of expendB on voteA, holding prtystrA and expendA 
fixed? What is the partial effect of expendA on voteA? Is the expected sign for �

4
 

obvious?
 (ii)  Estimate the equation in part (i) and report the results in the usual form. Is the 

interaction term statistically significant?
 (iii)  Find the average of expendA in the sample. Fix expendA at 300 (for $300,000). 

What is the estimated effect of another $100,000 spent by Candidate B on voteA? 
Is this a large effect?

 (iv)  Now fix expendB at 100. What is the estimated effect of ∆expendA � 100 on 
voteA? Does this make sense?

 (v)  Now, estimate a model that replaces the interaction with shareA, Candidate A’s 
percentage share of total campaign expenditures. Does it make sense to hold both 
expendA and expendB fixed, while changing shareA?

 (vi)  (Requires calculus) In the model from part (v), find the partial effect of expendB 
on voteA, holding prtystrA and expendA fixed. Evaluate this at expendA � 300 and 
expendB � 0 and comment on the results.

C6.7 Use the data in ATTEND.RAW for this exercise.
 (i) In the model of Example 6.3, argue that

∆stndfnl/∆priGPA � �
2 
� 2�

4
priGPA � �

6
atndrte.

   Use equation (6.19) to estimate the partial effect when priGPA � 2.59 and 
atndrte � 82. Interpret your estimate.

 (ii) Show that the equation can be written as

 stndfnl � �
0 
� �

1
atndrte � �

2
priGPA � �

3
ACT � �

4
(priGPA � 2.59)2

 � �
5 
ACT 2 � �

6
 priGPA(atndrte � 82) � u,

   where �
2 
� �

2 
� 2�

4
(2.59) � �

6
(82). (Note that the intercept has changed, but this 

is unimportant.) Use this to obtain the standard error of  ̂  � 
2 
from part (i).

 (iii)  Suppose that, in place of priGPA(atndrte � 82), you put (priGPA � 2.59)� 
(atndrte � 82). Now how do you interpret the coefficients on atndrte and 
priGPA?
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C6.8 Use the data in HPRICE1.RAW for this exercise.
 (i) Estimate the model

price � �
0 
� �

1
lotsize � �

2
sqrft � �

3
bdrms � u

   and report the results in the usual form, including the standard error of the regres-
sion. Obtain predicted price, when we plug in lotsize � 10,000, sqrft � 2,300, and 
bdrms � 4; round this price to the nearest dollar.

 (ii)  Run a regression that allows you to put a 95% confidence interval around the 
predicted value in part (i). Note that your prediction will differ somewhat due to 
rounding error.

 (iii)  Let price0 be the unknown future selling price of the house with the characteristics 
used in parts (i) and (ii). Find a 95% CI for price0 and comment on the width of 
this confidence interval.

C6.9  The data set NBASAL.RAW contains salary information and career statistics for 
269 players in the National Basketball Association (NBA).

 (i)  Estimate a model relating points-per-game (points) to years in the league (exper), 
age, and years played in college (coll). Include a quadratic in exper; the other vari-
ables should appear in level form. Report the results in the usual way.

 (ii)  Holding college years and age fixed, at what value of experience does the next 
year of experience actually reduce points-per-game? Does this make sense?

 (iii)  Why do you think coll has a negative and statistically significant coefficient? 
(Hint: NBA players can be drafted before finishing their college careers and even 
directly out of high school.)

 (iv)  Add a quadratic in age to the equation. Is it needed? What does this appear 
to imply about the effects of age, once experience and education are controlled 
for?

 (v)  Now regress log(wage) on points, exper, exper2, age, and coll. Report the results 
in the usual format.

 (vi)  Test whether age and coll are jointly significant in the regression from part (v). 
What does this imply about whether age and education have separate effects on 
wage, once productivity and seniority are accounted for?

C6.10 Use the data in BWGHT2.RAW for this exercise.
 (i) Estimate the equation

log(bwght) � �
0
 � �

1
npvis � �

2
npvis2 � u

  by OLS, and report the results in the usual way. Is the quadratic term significant?
 (ii)  Show that, based on the equation from part (i), the number of prenatal visits that 

maximizes log(bwght) is estimated to be about 22. How many women had at least 
22 prenatal visits in the sample?

 (iii)  Does it make sense that birth weight is actually predicted to decline after 22 pre-
natal visits? Explain.

 (iv)  Add mother’s age to the equation, using a quadratic functional form. Holding 
npvis fixed, at what mother’s age is the birth weight of the child maximized? What 
fraction of women in the sample are older than the “optimal” age?
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 (v)  Would you say that mother’s age and number of prenatal visits explain a lot of the 
variation in log(bwght)?

 (vi)  Using quadratics for both npvis and age, decide whether using the natural log or 
the level of bwght is better for predicting bwght.

C6.11 Use APPLE.RAW to verify some of the claims made in Section 6.3.
 (i)  Run the regression ecolbs on ecoprc, regprc and report the results in the usual 

form, including the R-squared and adjusted R-squared. Interpret the coefficients 
on the price variables and comment on their signs and magnitudes.

 (ii)  Are the price variables statistically significant? Report the p-values for the indi-
vidual t tests.

 (iii)  What is the range of fitted values for ecolbs? What fraction of the sample reports 
ecolbs � 0? Comment.

 (iv)  Do you think the price variables together do a good job of explaining variation in 
ecolbs? Explain.

 (v)  Add the variables faminc, hhsize (household size), educ, and age to the regres-
sion from part (i). Find the p-value for their joint significance. What do you 
 conclude?

C6.12  Use the subset of 401KSUBS.RAW with fsize � 1; this restricts the analysis to single 
person households; see also Computer Exercise C4.8.

 (i)  What is the youngest age of people in this sample? How many people are at that 
age?

 (ii) In the model

nettfa � �
0 
� �

1
inc � �

2
age � �

3
age2 � u,

  what is the literal interpretation of �
2
? By itself, is it of much interest?

 (iii)  Estimate the model from part (ii) and report the results in standard form. Are you 
concerned that the coefficient on age is negative? Explain.

 (iv)  Because the youngest people in the sample are 25, it makes sense to think that, for 
a given level of income, the lowest average amount of net total financial assets is 
at age 25. Recall that the partial effect of age on nettfa is �

2 
� 2�

3
age, so the par-

tial effect at age 25 is �
2 
� 2�

3
(25) � �

2 
� 50�

3
; call this �

2
. Find  ̂  � 

2 
and obtain the 

two-sided p-value for testing H
0
: �

2 
� 0. You should conclude that  ̂  � 

2 
is small and 

very statistically insignificant. [Hint: One way to do this is to estimate the model 
nettfa � �

0 
� �

1
inc � �

2
age � �

3
(age � 25)2 � u, where the intercept, �

0
, is dif-

ferent from �
0
. There are other ways, too.]

 (v)  Because the evidence against H
0
: �

2 
� 0 is very weak, set it to zero and estimate 

the model

nettfa � �
0 
� �

1
inc � �

3
(age � 25)2 � u.

  In terms of goodness-of-fit, does this model fit better than that in part (ii)?
 (vi)  For the estimated equation in part (v), set inc � 30 (roughly, the average value) 

and graph the relationship between nettfa and age, but only for age � 25. Describe 
what you see.

 (vii) Check to see whether including a quadratic in inc is necessary.
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C6.13 Use the data in MEAP00_01 to answer this question.
 (i) Estimate the model

math4 � �
0
 � �

2
lexppp � �

2
lenroll � �

3
lunch � u

   by OLS, and report the results in the usual form. Is each explanatory variable 
statistically significant at the 5% level?

 (ii)  Obtain the fitted values from the regression in part (i). What is the range of fit-
ted values? How does it compare with the range of the actual data on math4?

 (iii)  Obtain the residuals from the regression in part (i). What is the building code 
of the school that has the largest (positive) residual? Provide an interpretation 
of this residual.

 (iv)  Add quadratics of all explanatory variables to the equation, and test them for 
joint significance. Would you leave them in the model?

 (v)  Returning to the model in part (i), divide the dependent variable and each 
explanatory variable by its sample standard deviation, and rerun the regres-
sion. (Include an intercept unless you also first subtract the mean from each 
variable.) In terms of standard deviation units, which explanatory variable has 
the largest effect on the math pass rate?

Appendix 6A

6A. A Brief Introduction to Bootstrapping

In many cases where formulas for standard errors are hard to obtain mathematically, 
or where they are thought not to be very good approximations to the true sampling vari-
ation of an estimator, we can rely on a resampling method. The general idea is to treat 
the observed data as a population that we can draw samples from. The most common 
resampling method is the bootstrap. (There are actually several versions of the  bootstrap, 
but the most general, and most easily applied, is called the nonparametric bootstrap, and 
that is what we describe here.) 
 Suppose we have an estimate,  ̂  � , of a population parameter, �. We obtained this esti-
mate, which could be a function of OLS estimates (or estimates that we cover in later 
chapters), from a random sample of size n. We would like to obtain a standard error for  ̂  �  
that can be used for constructing t statistics or confidence intervals. Remarkably, we can 
obtain a valid standard error by computing the estimate from different random samples 
drawn from the original data.
 Implementation is easy. If we list our observations from 1 through n, we draw 
n numbers randomly, with replacement, from this list. This produces a new data set (of 
size n) that consists of the original data, but with many observations appearing multiple 
times (except in the rather unusual case that we resample the original data). Each time 
we randomly sample from the original data, we can estimate � using the same procedure 
that we used on the original data. Let  ̂  � (b) denote the estimate from bootstrap sample b. 
Now, if we repeat the resampling and estimation m times, we have m new estimates, { ̂  � (b): 
b � 1, 2, …, m}. The bootstrap standard error of  ̂  �  is just the sample standard devia-
tion of the   ̂  � (b), namely,
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 bse( ̂  � ) �   � (m � 1)�1  ∑ 
b�1

   
m

    ( ̂  � (b)  �   
-
  ̂  �  )2 � 1/2

, 6.48

where   
-
  ̂  �   is the average of the bootstrap estimates.

 If obtaining an estimate of � on a sample of size n requires little computational time, 
as in the case of OLS and all the other estimators we encounter in this text, we can 
afford to choose m—the number of bootstrap replications—to be large. A typical value is 
m � 1,000, but even m � 500 or a somewhat smaller value can produce a reliable 
standard error. Note that the size of m—the number of times we resample the original 
data—has nothing to do with the sample size, n. (For certain estimation problems beyond 
the scope of this text, a large n can force one to do fewer bootstrap replications.) Many 
statistics and econometrics packages have built-in bootstrap commands, and this makes 
the calculation of bootstrap standard errors simple, especially compared with the work 
often required to obtain an analytical formula for an asymptotic standard error.
 One can actually do better in most cases by using the bootstrap sample to compute 
p-values for t statistics (and F statistics), or for obtaining confidence intervals, rather 
than obtaining a bootstrap standard error to be used in the construction of t statistics or 
confidence intervals. See Horowitz (2001) for a comprehensive treatment.
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In previous chapters, the dependent and independent variables in our multiple regression 
models have had quantitative meaning. Just a few examples include hourly wage rate, 
years of education, college grade point average, amount of air pollution, level of firm 

sales, and number of arrests. In each case, the magnitude of the variable conveys useful 
information. In empirical work, we must also incorporate qualitative factors into regres-
sion models. The gender or race of an individual, the industry of a firm (manufacturing, 
retail, and so on), and the region in the United States where a city is located (south, north, 
west, and so on) are all considered to be qualitative factors.
 Most of this chapter is dedicated to qualitative independent variables. After we dis-
cuss the appropriate ways to describe qualitative information in Section 7.1, we show 
how qualitative explanatory variables can be easily incorporated into multiple regression 
models in Sections 7.2, 7.3, and 7.4. These sections cover almost all of the popular ways 
that qualitative independent variables are used in cross-sectional regression analysis.
 In Section 7.5, we discuss a binary dependent variable, which is a particular kind of 
qualitative dependent variable. The multiple regression model has an interesting inter-
pretation in this case and is called the linear probability model. While much maligned by 
some econometricians, the simplicity of the linear probability model makes it useful in 
many empirical contexts. We will describe its drawbacks in Section 7.5, but they are often 
secondary in empirical work.

7.1 Describing Qualitative Information
Qualitative factors often come in the form of binary information: a person is female or 
male; a person does or does not own a personal computer; a firm offers a certain kind of 
employee pension plan or it does not; a state administers capital punishment or it does not. 
In all of these examples, the relevant information can be captured by defining a binary 
variable or a zero-one variable. In econometrics, binary variables are most commonly 
called dummy variables, although this name is not especially descriptive.
 In defining a dummy variable, we must decide which event is assigned the value one and 
which is assigned the value zero. For example, in a study of individual wage determination, 
we might define female to be a binary variable taking on the value one for females and the 
value zero for males. The name in this case indicates the event with the value one. The same 
information is captured by defining male to be one if the person is male and zero if the person 

7
Multiple Regression Analysis 
with Qualitative Information: 
Binary (or Dummy) Variables
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is female. Either of these is better than using gender because this name does not make it clear 
when the dummy variable is one: does gender � 1 correspond to male or female? What we 

call our variables is unimportant for get-
ting regression results, but it always helps 
to choose names that clarify equations 
and expositions.
 Suppose in the wage example that 
we have chosen the name female to indi-
cate gender. Further, we define a binary 

variable married to equal one if a person is married and zero if otherwise. Table 7.1 gives 
a partial listing of a wage data set that might result. We see that Person 1 is female and not 
married, Person 2 is female and married, Person 3 is male and not married, and so on.
 Why do we use the values zero and one to describe qualitative information? In a sense, 
these values are arbitrary: any two different values would do. The real benefit of capturing 
qualitative information using zero-one variables is that it leads to regression models where 
the parameters have very natural interpretations, as we will see now.

7.2 A Single Dummy Independent Variable
How do we incorporate binary information into regression models? In the simplest case, with 
only a single dummy explanatory variable, we just add it as an independent variable in the 
equation. For example, consider the following simple model of hourly wage determination:

 wage � �
0
 � �

0   
female � �

1
educ � u. 7.1

Q u e s t i o n  7 . 1
Suppose that, in a study comparing election outcomes between 
Democratic and Republican candidates, you wish to indicate the 
party of each candidate. Is a name such as party a wise choice for 
a binary variable in this case? What would be a better name?

TABLE  7 . 1

A Partial Listing of the Data in WAGE1.RAW

person wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

� � � � � �
� � � � � �
� � � � � �

525 11.56 16 5 0 1

526 3.50 14 5 1 0
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We use �
0
 as the parameter on female in order to highlight the interpretation of the 

parameters multiplying dummy variables; later, we will use whatever notation is most 
convenient.
 In model (7.1), only two observed factors affect wage: gender and education. Because 
female � 1 when the person is female, and female � 0 when the person is male, the 
parameter �

0
 has the following interpretation: �

0
 is the difference in hourly wage between 

females and males, given the same amount of education (and the same error term u). Thus, 
the coefficient �

0
 determines whether there is discrimination against women: if �

0
 � 0, 

then, for the same level of other factors, women earn less than men on average.
 In terms of expectations, if we assume the zero conditional mean assumption 
E(u� female,educ) � 0, then

�
0
 � E(wage� female � 1,educ) � E(wage� female � 0,educ).

Because female � 1 corresponds to females and female � 0 corresponds to males, we can 
write this more simply as

 �
0
 � E(wage� female,educ) � E(wage�male,educ). 7.2

The key here is that the level of education is the same in both expectations; the difference, 
�

0
, is due to gender only.

 The situation can be depicted graphically as an intercept shift between males and 
females. In Figure 7.1, the case �

0
 � 0 is shown, so that men earn a fixed amount more 

per hour than women. The difference does not depend on the amount of education, and 
this explains why the wage-education profiles for women and men are parallel.
 At this point, you may wonder why we do not also include in (7.1) a dummy variable, 
say male, which is one for males and zero for females. This would be redundant. In (7.1), 
the intercept for males is �

0
, and the intercept for females is �

0
 � �

0
. Because there are 

just two groups, we only need two different intercepts. This means that, in addition to �
0
, 

we need to use only one dummy variable; we have chosen to include the dummy variable 
for females. Using two dummy variables would introduce perfect collinearity because 
female � male � 1, which means that male is a perfect linear function of female. Including 
dummy variables for both genders is the simplest example of the so-called dummy 
variable trap, which arises when too many dummy variables describe a given number of 
groups. We will discuss this problem later.
 In (7.1), we have chosen males to be the base group or benchmark group, that is, the 
group against which comparisons are made. This is why �

0
 is the intercept for males, and 

�
0
 is the difference in intercepts between females and males. We could choose females as 

the base group by writing the model as

wage � �
0
 � �

0
male � �

1
educ � u,

where the intercept for females is �
0
 and the intercept for males is �

0
 � �

0
; this implies 

that �
0
 � �

0
 � �

0
 and �

0
 � �

0
 � �

0
. In any application, it does not matter how we choose 

the base group, but it is important to keep track of which group is the base group.
 Some researchers prefer to drop the overall intercept in the model and to include dummy 
variables for each group. The equation would then be wage � �

0
male � �

0   
female � 

�
1
educ � u, where the intercept for men is �

0
 and the intercept for women is �

0
. There is 

no dummy variable trap in this case because we do not have an overall intercept. However, 
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this formulation has little to offer, since testing for a difference in the intercepts is more 
difficult, and there is no generally agreed upon way to compute R-squared in regressions 
without an intercept. Therefore, we will always include an overall intercept for the base 
group.
 Nothing much changes when more explanatory variables are involved. Taking males as 
the base group, a model that controls for experience and tenure in addition to education is

 wage � �
0
 � �

0
  female � �

1
educ � �

2
exper � �

3
tenure � u. 7.3

If educ, exper, and tenure are all relevant productivity characteristics, the null hypothesis 
of no difference between men and women is H

0
: �

0
 � 0. The alternative that there is dis-

crimination against women is H
1
: �

0
 � 0.

 How can we actually test for wage discrimination? The answer is simple: just estimate 
the model by OLS, exactly as before, and use the usual t statistic. Nothing changes about 
the mechanics of OLS or the statistical theory when some of the independent variables are 
defined as dummy variables. The only difference with what we have done up until now is 
in the interpretation of the coefficient on the dummy variable.

F I GURE  7 . 1

Graph of wage � �
0
 � �

0 
female � �

1 
educ for �

0
 � 0.

educ

slope = b1

wage

b0 � d0

men: wage = b0 � b1educ

women:
wage = (b0 � d0) + b1 educ

b0

0
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E x a m p l e  7 . 1

[Hourly Wage Equation]

Using the data in WAGE1.RAW, we estimate model (7.3). For now, we use wage, rather than 
log(wage), as the dependent variable:

 1wage � �1.57 � 1.81 female � .572 educ

 (.72) (.26) (.049)

 � .025 exper � .141 tenure 7.4

 (.012) (.021)

 n � 526, R2 � .364.

The negative intercept—the intercept for men, in this case—is not very meaningful because no one 
has zero values for all of educ, exper, and tenure in the sample. The coefficient on female is interest-
ing because it measures the average difference in hourly wage between a woman and a man, given 
the same levels of educ, exper, and tenure. If we take a woman and a man with the same levels of 
education, experience, and tenure, the woman earns, on average, $1.81 less per hour than the man. 
(Recall that these are 1976 wages.)
 It is important to remember that, because we have performed multiple regression and controlled 
for educ, exper, and tenure, the $1.81 wage differential cannot be explained by different average 
levels of education, experience, or tenure between men and women. We can conclude that the dif-
ferential of $1.81 is due to gender or factors associated with gender that we have not controlled for 
in the regression. [In 2003 dollars, the wage differential is about 3.23(1.81) � 5.85.]
 It is informative to compare the coefficient on female in equation (7.4) to the estimate we get 
when all other explanatory variables are dropped from the equation:

 1wage � 7.10 � 2.51 female

 (.21) (.30) 7.5

 n � 526, R2 � .116.

The coefficients in (7.5) have a simple interpretation. The intercept is the average wage for men in 
the sample (let female � 0), so men earn $7.10 per hour on average. The coefficient on female is 
the difference in the average wage between women and men. Thus, the average wage for women 
in the sample is 7.10 � 2.51 � 4.59, or $4.59 per hour. (Incidentally, there are 274 men and 
252 women in the sample.)
 Equation (7.5) provides a simple way to carry out a comparison-of-means test between the two 
groups, which in this case are men and women. The estimated difference, �2.51, has a t statistic of 
�8.37, which is very statistically significant (and, of course, $2.51 is economically large as well). 
Generally, simple regression on a constant and a dummy variable is a straightforward way to com-
pare the means of two groups. For the usual t test to be valid, we must assume that the homoskedas-
ticity assumption holds, which means that the population variance in wages for men is the same as 
that for women.
 The estimated wage differential between men and women is larger in (7.5) than in (7.4) because 
(7.5) does not control for differences in education, experience, and tenure, and these are lower, on 
average, for women than for men in this sample. Equation (7.4) gives a more reliable estimate of the 
ceteris paribus gender wage gap; it still indicates a very large differential.
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 In many cases, dummy independent variables reflect choices of individuals or other 
economic units (as opposed to something predetermined, such as gender). In such situations, 
the matter of causality is again a central issue. In the following example, we would like to 
know whether personal computer ownership causes a higher college grade point average.

E x a m p l e  7 . 2

[Effects of Computer Ownership on College GPA]

In order to determine the effects of computer ownership on college grade point average, we estimate 
the model

colGPA � �
0
 � �

0
 PC � �

1
hsGPA � �

2
 ACT � u,

where the dummy variable PC equals one if a student owns a personal computer and zero otherwise. 
There are various reasons PC ownership might have an effect on colGPA. A student’s work might be 
of higher quality if it is done on a computer, and time can be saved by not having to wait at a com-
puter lab. Of course, a student might be more inclined to play computer games or surf the Internet 
if he or she owns a PC, so it is not obvious that �

0
 is positive. The variables hsGPA (high school 

GPA) and ACT (achievement test score) are used as controls: it could be that stronger students, as 
measured by high school GPA and ACT scores, are more likely to own computers. We control for 
these factors because we would like to know the average effect on colGPA if a student is picked at 
random and given a personal computer.
 Using the data in GPA1.RAW, we obtain

 2colGPA � 1.26 � .157 PC � .447 hsGPA � .0087 ACT

 (.33) (.057) (.094) (.0105) 7.6

n � 141, R2 � .219.

This equation implies that a student who owns a PC has a predicted GPA about .16 points higher than 
a comparable student without a PC (remember, both colGPA and hsGPA are on a four-point scale). 
The effect is also very statistically significant, with t

PC 
� .157/.057 � 2.75.

 What happens if we drop hsGPA and ACT from the equation? Clearly, dropping the latter vari-
able should have very little effect, as its coefficient and t statistic are very small. But hsGPA is very 
significant, and so dropping it could affect the estimate of �

PC
. Regressing colGPA on PC gives an 

estimate on PC equal to about .170, with a standard error of .063; in this case,  ̂  � 
PC

 and its t statistic 
do not change by much.
 In the exercises at the end of the chapter, you will be asked to control for other factors in the 
equation to see if the computer ownership effect disappears, or if it at least gets notably smaller.

 
 Each of the previous examples can be viewed as having relevance for policy analysis. In 
the first example, we were interested in gender discrimination in the workforce. In the second 
example, we were concerned with the effect of computer ownership on college performance. A 
special case of policy analysis is program evaluation, where we would like to know the effect 
of economic or social programs on individuals, firms, neighborhoods, cities, and so on.
 In the simplest case, there are two groups of subjects. The control group does not 
participate in the program. The experimental group or treatment group does take part 
in the program. These names come from literature in the experimental sciences, and they 
should not be taken literally. Except in rare cases, the choice of the control and treatment 
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groups is not random. However, in some cases, multiple regression analysis can be used 
to control for enough other factors in order to estimate the causal effect of the program.

E x a m p l e  7 . 3

[Effects of Training Grants on Hours of Training]

Using the 1988 data for Michigan manufacturing firms in JTRAIN.RAW, we obtain the following 
estimated equation:

2hrsemp � 46.67 � 26.25 grant � .98 log(sales)

 (43.41) (5.59) (3.54)

 � 6.07 log(employ) 7.7

 (3.88)

n � 105, R2 � .237.

The dependent variable is hours of training per employee, at the firm level. The variable grant is a dummy 

variable equal to one if the firm received a job training grant for 1988 and zero otherwise. The variables 

sales and employ represent annual sales and number of employees, respectively. We cannot enter hrsemp 

in logarithmic form, because hrsemp is zero for 29 of the 105 firms used in the regression.
 The variable grant is very statistically significant, with t

grant
 � 4.70. Controlling for sales and 

employment, firms that received a grant trained each worker, on average, 26.25 hours more. Because 
the average number of hours of per worker training in the sample is about 17, with a maximum value 
of 164, grant has a large effect on training, as is expected.
 The coefficient on log(sales) is small and very insignificant. The coefficient on log(employ) 
means that, if a firm is 10% larger, it trains its workers about .61 hour less. Its t statistic is �1.56, 
which is only marginally statistically significant.

 
 As with any other independent variable, we should ask whether the measured effect 
of a qualitative variable is causal. In equation (7.7), is the difference in training between 
firms that receive grants and those that do not due to the grant, or is grant receipt simply 
an indicator of something else? It might be that the firms receiving grants would have, on 
average, trained their workers more even in the absence of a grant. Nothing in this analysis 
tells us whether we have estimated a causal effect; we must know how the firms receiving 
grants were determined. We can only hope we have controlled for as many factors as pos-
sible that might be related to whether a firm received a grant and to its levels of training.
 We will return to policy analysis with dummy variables in Section 7.6, as well as in 
later chapters.

Interpreting Coeffi cients on Dummy Explanatory Variables 

When the Dependent Variable Is log(y)

A common specification in applied work has the dependent variable appearing in logarith-
mic form, with one or more dummy variables appearing as independent variables. How 
do we interpret the dummy variable coefficients in this case? Not surprisingly, the coef-
ficients have a percentage interpretation.
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E x a m p l e  7 . 4

[Housing Price Regression]

Using the data in HPRICE1.RAW, we obtain the equation

 2log(  price) � �1.35 � .168 log(lotsize) � .707 log(sqrft)

 (.65) (.038) (.093)

� .027 bdrms � .054 colonial 7.8

 (.029) (.045)

n � 88, R2 � .649.

All the variables are self-explanatory except colonial, which is a binary variable equal to one if 
the house is of the colonial style. What does the coefficient on colonial mean? For given levels of 
lotsize, sqrft, and bdrms, the difference in 2log(price) between a house of colonial style and that of 
another style is .054. This means that a colonial-style house is predicted to sell for about 5.4% more, 
holding other factors fixed.

 
 This example shows that, when log(y) is the dependent variable in a model, the coef-
ficient on a dummy variable, when multiplied by 100, is interpreted as the percentage 
difference in y, holding all other factors fixed. When the coefficient on a dummy variable 
suggests a large proportionate change in y, the exact percentage difference can be obtained 
exactly as with the semi-elasticity calculation in Section 6.2.

E x a m p l e  7 . 5

[Log Hourly Wage Equation]

Let us reestimate the wage equation from Example 7.1, using log(wage) as the dependent variable 
and adding quadratics in exper and tenure:

2log(wage) � .417 � .297 female � .080 educ � .029 exper

 (.099) (.036) (.007) (.005)

� .00058 exper2 � .032 tenure � .00059 tenure2 7.9

 (.00010) (.007) (.00023)

n � 526, R2 � .441.

Using the same approximation as in Example 7.4, the coefficient on female implies that, for the same 
levels of educ, exper, and tenure, women earn about 100(.297) � 29.7% less than men. We can do 
better than this by computing the exact percentage difference in predicted wages. What we want 
is the proportionate difference in wages between females and males, holding other factors fixed: 
( 1wage

F
 � 1wage

M
 )/ 1wage

M
 . What we have from (7.9) is

2log(wage
F
) � 2log(wage

M
) � �.297.

Exponentiating and subtracting one gives

( 1wage
F
 � 1wage

M
 )/ 1wage

M
 � exp(�.297) � 1 � �.257.
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This more accurate estimate implies that a woman’s wage is, on average, 25.7% below a comparable 
man’s wage.

 
 If we had made the same correction in Example 7.4, we would have obtained 
exp(.054) � 1 � .0555, or about 5.6%. The correction has a smaller effect in Example 7.4 
than in the wage example, because the magnitude of the coefficient on the dummy variable 
is much smaller in (7.8) than in (7.9).
 Generally, if  ̂  � 

1
 is the coefficient on a dummy variable, say x

1
, when log(y) is the 

dependent variable, the exact percentage difference in the predicted y when x
1
 � 1 versus 

when x
1
 � 0 is

 100 � [exp( ̂  � 
1
) � 1]. 7.10

The estimate  ̂  � 
1
 can be positive or negative, and it is important to preserve its sign in 

computing (7.10).
 The logarithmic approximation has the advantage of providing an estimate between 
the magnitudes obtained by using each group as the base group. In particular, although 
equation (7.10) gives us a better estimate than 100 �  ̂  � 

1
 of the percentage by which y for 

x
1
 � 1 is greater than y for x

1
 � 0, (7.10) is not a good estimate if we switch the base 

group. In Example 7.5, we can estimate the percentage by which a man’s wage exceeds a 
comparable woman’s wage, and this estimate is 100 � [exp(� ̂  � 

1
) �1] � 100 � [exp(.297) 

�1] � 34.6. The approximation, based on 100 �  ̂  � 
1
, 29.7, is between 25.7 and 34.6 (and 

close to the middle). Therefore, it makes sense to report that “the difference in predicted 
wages between men and women is about 29.7%,” without having to take a stand on which is 
the base group.

7.3 Using Dummy Variables 
for Multiple Categories
We can use several dummy independent variables in the same equation. For example, we 
could add the dummy variable married to equation (7.9). The coefficient on married gives 
the (approximate) proportional differential in wages between those who are and are not 
married, holding gender, educ, exper, and tenure fixed. When we estimate this model, the 
coefficient on married (with standard error in parentheses) is .053 (.041), and the coef-
ficient on female becomes �.290 (.036). Thus, the “marriage premium” is estimated to be 
about 5.3%, but it is not statistically different from zero (t � 1.29). An important limitation 
of this model is that the marriage premium is assumed to be the same for men and women; 
this is relaxed in the following example.

E x a m p l e  7 . 6

[Log Hourly Wage Equation]

Let us estimate a model that allows for wage differences among four groups: married men, married 
women, single men, and single women. To do this, we must select a base group; we choose single 
men. Then, we must define dummy variables for each of the remaining groups. Call these marrmale, 
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marrfem, and singfem. Putting these three variables into (7.9) (and, of course, dropping female, since 
it is now redundant) gives

2log(wage) � .321 � .213 marrmale � .198 marrfem

 (.100) (.055) (.058)

� .110 singfem � .079 educ � .027 exper � .00054 exper 2

 (.056) (.007) (.005) (.00011)

� .029 tenure � .00053 tenure2 
7.11

 (.007) (.00023)

n � 526, R2 � .461.

All of the coefficients, with the exception of singfem, have t statistics well above two in absolute 
value. The t statistic for singfem is about �1.96, which is just significant at the 5% level against a 
two-sided alternative.
 To interpret the coefficients on the dummy variables, we must remember that the base group is 
single males. Thus, the estimates on the three dummy variables measure the proportionate differ-
ence in wage relative to single males. For example, married men are estimated to earn about 21.3% 
more than single men, holding levels of education, experience, and tenure fixed. [The more precise 
estimate from (7.10) is about 23.7%.] A married woman, on the other hand, earns a predicted 19.8% 
less than a single man with the same levels of the other variables.
 Because the base group is represented by the intercept in (7.11), we have included dummy 
variables for only three of the four groups. If we were to add a dummy variable for single males to 
(7.11), we would fall into the dummy variable trap by introducing perfect collinearity. Some regres-
sion packages will automatically correct this mistake for you, while others will just tell you there is 
perfect collinearity. It is best to carefully specify the dummy variables because then we are forced 
to properly interpret the final model.
 Even though single men is the base group in (7.11), we can use this equation to obtain the esti-
mated difference between any two groups. Because the overall intercept is common to all groups, 
we can ignore that in finding differences. Thus, the estimated proportionate difference between 
single and married women is �.110 � (�.198) � .088, which means that single women earn about 
8.8% more than married women. Unfortunately, we cannot use equation (7.11) for testing whether 
the estimated difference between single and married women is statistically significant. Knowing the 
standard errors on marrfem and singfem is not enough to carry out the test (see Section 4.4). The 
easiest thing to do is to choose one of these groups to be the base group and to reestimate the equa-
tion. Nothing substantive changes, but we get the needed estimate and its standard error directly. 
When we use married women as the base group, we obtain

2log(wage) � .123 � .411 marrmale � .198 singmale � .088 singfem � …,

 (.106) (.056) (.058) (.052)

where, of course, none of the unreported coefficients or standard errors have changed. The estimate 
on singfem is, as expected, .088. Now, we have a standard error to go along with this estimate. The t 
statistic for the null that there is no difference in the population between married and single women is 
t
singfem

 � .088/.052 � 1.69. This is marginal evidence against the null hypothesis. We also see that 
the estimated difference between married men and married women is very statistically significant 
(t

marrmale 
� 7.34).
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 The previous example illustrates a general principle for including dummy variables to 
indicate different groups: if the regression model is to have different intercepts for, say, g 
groups or categories, we need to include g � 1 dummy variables in the model along with 
an intercept. The intercept for the base group is the overall intercept in the model, and the 
dummy variable coefficient for a par-
ticular group represents the estimated 
difference in intercepts between that 
group and the base group. Including g 
dummy variables along with an inter-
cept will result in the dummy vari-
able trap. An alternative is to include 
g dummy variables and to exclude an 
overall intercept. Including g dummies without an overall intercepts is sometimes useful, 
but it has two practical drawbacks. First, it makes it more cumbersome to test for differ-
ences relative to a base group. Second, regression packages usually change the way R-
squared is computed when an overall intercept is not included. In particular, in the formula 
R2 � 1 � SSR/SST, the total sum of squares, SST, is replaced with a total sum of squares 
that does not center y

i
 about its mean, say, SST

0
 �  ∑ 

i�1
  

n
    y 2   i  . The resulting R-squared, say 

R 2   0  � 1 � SSR/SST
0
, is sometimes called the uncentered R-squared. Unfortunately, R 2   0  is 

rarely suitable as a goodness of fit measure. It is always true that SST
0
 � SST with equal-

ity only if  - y  � 0. Often, SST
0
 is much larger that SST, which means that R 2   0  is much larger 

than R2. For example, if in the previous example we regress log(wage) on marrmale, sing-
male, marrfem, singfem, and the other explanatory variables—without an intercept—the 
reported R-squared from Stata, which is R 2   0 , is .948. This high R-squared is an artifact of 
not centering the total sum of squares in the calculation. The correct R-squared is given 
in equation (7.11) as .461. Some regression packages, including Stata, have an option to 
force calculation of the centered R-squared even though an overall intercept has not been 
included, and using this option is generally a good idea. In the vast majority of cases, any 
R-squared based on comparing an SSR and SST should have SST computed by centering 
the y

i
 about  - y . We can think of this SST as the sum of squared residuals obtained if we just 

use the sample average,  - y , to predict each y
i
. Surely we are setting the bar pretty low for any 

model if all we measure is its fit relative to using a constant predictor. For a model without 
an intercept that fits poorly, it is possible that SSR � SST, which means R2 would be nega-
tive. The uncentered R-squared will always be between zero and one, which likely explains 
why it is usually the default when an intercept is not estimated in regression models.

Incorporating Ordinal Information

by Using Dummy Variables

Suppose that we would like to estimate the effect of city credit ratings on the munici-
pal bond interest rate (MBR). Several financial companies, such as Moody’s Investors 
Service and Standard and Poor’s, rate the quality of debt for local governments, where 
the ratings depend on things like probability of default. (Local governments prefer lower 
interest rates in order to reduce their costs of borrowing.) For simplicity, suppose that 
rankings range from zero to four, with zero being the worst credit rating and four being 
the best. This is an example of an ordinal variable. Call this variable CR for concrete-
ness. The question we need to address is: How do we incorporate the variable CR into a 
model to explain MBR?

Q u e s t i o n  7 . 2
In the baseball salary data found in MLB1.RAW, players are given 
one of six positions: frstbase, scndbase, thrdbase, shrtstop, out-
field, or catcher. To allow for salary differentials across position, 
with outfielders as the base group, which dummy variables would 
you include as independent variables?



236 Part 1   Regression Analysis with Cross-Sectional Data

 One possibility is to just include CR as we would include any other explanatory 
variable:

MBR � �
0
 � �

1
CR � other factors,

where we do not explicitly show what other factors are in the model. Then �
1
 is the 

percentage point change in MBR when CR increases by one unit, holding other factors 
fixed. Unfortunately, it is rather hard to interpret a one-unit increase in CR. We know the 
quantitative meaning of another year of education, or another dollar spent per student, but 
things like credit ratings typically have only ordinal meaning. We know that a CR of four 
is better than a CR of three, but is the difference between four and three the same as the 
difference between one and zero? If not, then it might not make sense to assume that a 
one-unit increase in CR has a constant effect on MBR.
 A better approach, which we can implement because CR takes on relatively few values, 
is to define dummy variables for each value of CR. Thus, let CR

1
 � 1 if CR � 1, and CR

1
 � 0 

otherwise; CR
2
 � 1 if CR � 2, and CR

2
 � 0 otherwise; and so on. Effectively, we take the 

single credit rating and turn it into five categories. Then, we can estimate the model

 MBR � �
0
 � �

1
CR

1
 � �

2
CR

2
 � �

3
CR

3
 � �

4
CR

4
 � other factors. 7.12

Following our rule for including dummy variables in a model, we include four dummy 
variables because we have five categories. The omitted category here is a credit rating of 
zero, and so it is the base group. (This is why we do not need to define a dummy variable 
for this category.) The coefficients are easy to interpret: �

1
 is the difference in MBR (other 

factors fixed) between a municipality 
with a credit rating of one and a munici-
pality with a credit rating of zero; �

2
 

is the difference in MBR between a 
municipality with a credit rating of two 
and a municipality with a credit rating 

of zero; and so on. The movement between each credit rating is allowed to have a different 
effect, so using (7.12) is much more flexible than simply putting CR in as a single variable. 
Once the dummy variables are defined, estimating (7.12) is straightforward.
 Equation (7.12) contains the model with a constant partial effect as a special case. One 
way to write the three restrictions that imply a constant partial effect is �

2
 � 2�

1
, �

3
 � 3�

1
, 

and �
4
 � 4  �

1
. When we plug these into equation (7.12) and rearrange, we get MBR � �

0
 � 

�
1
(CR

1
 � 2CR

2
 � 3CR

3
 � 4CR

4
) � other factors. Now, the term multiplying �

1
 is simply 

the original credit rating variable, CR. To obtain the F statistic for testing the constant par-
tial effect restrictions, we obtain the unrestricted R-squared from (7.12) and the restricted 
R-squared from the regression of MBR on CR and the other factors we have controlled for. 
The F statistic is obtained as in equation (4.41) with q � 3.

E x a m p l e  7 . 7

[Effects of Physical Attractiveness on Wage]

Hamermesh and Biddle (1994) used measures of physical attractiveness in a wage equation. (The 
file BEAUTY.RAW contains fewer variables but more observations than used by Hamermesh 

Q u e s t i o n  7 . 3
In model (7.12), how would you test the null hypothesis that credit 
rating has no effect on MBR?
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and Biddle.) Each person in the sample was ranked by an interviewer for physical attractiveness, 
using five categories (homely, quite plain, average, good looking, and strikingly beautiful or 
handsome). Because there are so few people at the two extremes, the authors put people into one 
of three groups for the regression analysis: average, below average, and above average, where 
the base group is average. Using data from the 1977 Quality of Employment Survey, after con-
trolling for the usual productivity characteristics, Hamermesh and Biddle estimated an equation 
for men:

2log(wage) �  ̂  � 
0
 � .164 belavg � .016 abvavg � other factors

  (.046) (.033)

 n � 700,  
-

 R 2 � .403

and an equation for women:

2log(wage) �  ̂  � 
0
 � .124 belavg � .035 abvavg � other factors

  (.066) (.049)

 n � 409,  
-

 R 2 � .330.

The other factors controlled for in the regressions include education, experience, tenure, marital 
status, and race; see Table 3 in Hamermesh and Biddle’s paper for a more complete list. In order 
to save space, the coefficients on the other variables are not reported in the paper and neither is the 
intercept.
 For men, those with below average looks are estimated to earn about 16.4% less than an 
average-looking man who is the same in other respects (including education, experience, tenure, 
marital status, and race). The effect is statistically different from zero, with t � �3.57. Similarly, 
men with above average looks earn an estimated 1.6% more, although the effect is not statistically 
significant (t � .5).
 A woman with below average looks earns about 12.4% less than an otherwise comparable 
average-looking woman, with t � �1.88. As was the case for men, the estimate on abvavg is not 
statistically different from zero.

 

 In some cases, the ordinal variable takes on too many values so that a dummy vari-
able cannot be included for each value. For example, the file LAWSCH85.RAW contains 
data on median starting salaries for law school graduates. One of the key explanatory 
variables is the rank of the law school. Because each law school has a different rank, we 
clearly cannot include a dummy variable for each rank. If we do not wish to put the rank 
directly in the equation, we can break it down into categories. The following example 
shows how this is done.

E x a m p l e  7 . 8

[Effects of Law School Rankings on Starting Salaries]

Define the dummy variables top10, r11_25, r26_40, r41_60, r61_100 to take on the value unity 
when the variable rank falls into the appropriate range. We let schools ranked below 100 be the base 
group. The estimated equation is
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2log(salary) � 9.17 � .700 top10 � .594 r11_25 � .375 r26_40

 (.41) (.053) (.039) (.034)

 � .263 r41_60 � .132 r61_100 � .0057 LSAT

 (.028) (.021) (.0031) 7.13

 � .014 GPA � .036 log(libvol) � .0008 log(cost)

 (.074) (.026) (.0251)

 n � 136, R2 � .911,  
-

 R 2 � .905.

We see immediately that all of the dummy variables defining the different ranks are very statisti-
cally significant. The estimate on r61_100 means that, holding LSAT, GPA, libvol, and cost fixed, 
the median salary at a law school ranked between 61 and 100 is about 13.2% higher than that at a 
law school ranked below 100. The difference between a top 10 school and a below 100 school is 
quite large. Using the exact calculation given in equation (7.10) gives exp(.700) � 1 � 1.014, and 
so the predicted median salary is more than 100% higher at a top 10 school than it is at a below 
100 school.
 As an indication of whether breaking the rank into different groups is an improvement, we can 
compare the adjusted R-squared in (7.13) with the adjusted R-squared from including rank as a single 
variable: the former is .905 and the latter is .836, so the additional flexibility of (7.13) is warranted.
 Interestingly, once the rank is put into the (admittedly somewhat arbitrary) given categories, 
all of the other variables become insignificant. In fact, a test for joint significance of LSAT, GPA, 
log(libvol), and log(cost) gives a p-value of .055, which is borderline significant. When rank is 
included in its original form, the p-value for joint significance is zero to four decimal places.
 One final comment about this example. In deriving the properties of ordinary least squares, we 
assumed that we had a random sample. The current application violates that assumption because of 
the way rank is defined: a school’s rank necessarily depends on the rank of the other schools in the 
sample, and so the data cannot represent independent draws from the population of all law schools. 
This does not cause any serious problems provided the error term is uncorrelated with the explana-
tory variables.

 

7.4 Interactions Involving Dummy Variables
Interactions among Dummy Variables

Just as variables with quantitative meaning can be interacted in regression models, so can 
dummy variables. We have effectively seen an example of this in Example 7.6, where 
we defined four categories based on marital status and gender. In fact, we can recast that 
model by adding an interaction term between female and married to the model where 
female and married appear separately. This allows the marriage premium to depend on 
gender, just as it did in equation (7.11). For purposes of comparison, the estimated model 
with the female-married interaction term is

2log(wage) � .321 � .110 female � .213 married

 (.100) (.056) (.055)

 � .301 female�married � …, 7.14

 (.072)
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where the rest of the regression is necessarily identical to (7.11). Equation (7.14) shows 
explicitly that there is a statistically significant interaction between gender and marital 
status. This model also allows us to obtain the estimated wage differential among all four 
groups, but here we must be careful to plug in the correct combination of zeros and ones.
 Setting female � 0 and married � 0 corresponds to the group single men, which is the 
base group, since this eliminates female, married, and female�married. We can find the 
intercept for married men by setting female � 0 and married � 1 in (7.14); this gives an 
intercept of .321 � .213 � .534, and so on.
 Equation (7.14) is just a different way of finding wage differentials across all gender� 
marital status combinations. It allows us to easily test the null hypothesis that the gender dif-
ferential does not depend on marital status (equivalently, that the marriage differential does 
not depend on gender). Equation (7.11) is more convenient for testing for wage differentials 
between any group and the base group of single men.

E x a m p l e  7 . 9

[Effects of Computer Usage on Wages]

Krueger (1993) estimates the effects of computer usage on wages. He defines a dummy variable, 
which we call compwork, equal to one if an individual uses a computer at work. Another dummy 
variable, comphome, equals one if the person uses a computer at home. Using 13,379 people from 
the 1989 Current Population Survey, Krueger (1993, Table 4) obtains

2log(wage) �  ̂  � 
0
 � .177 compwork � .070 comphome

 (.009) (.019)

� .017 compwork�comphome � other factors. 
7.15

 (.023)

(The other factors are the standard ones for wage regressions, including education, experience, gen-
der, and marital status; see Krueger’s paper for the exact list.) Krueger does not report the intercept 
because it is not of any importance; all we need to know is that the base group consists of people 
who do not use a computer at home or at work. It is worth noticing that the estimated return to 
using a computer at work (but not at home) is about 17.7%. (The more precise estimate is 19.4%.) 
Similarly, people who use computers at home but not at work have about a 7% wage premium over 
those who do not use a computer at all. The differential between those who use a computer at both 
places, relative to those who use a computer in neither place, is about 26.4% (obtained by adding 
all three coefficients and multiplying by 100), or the more precise estimate 30.2% obtained from 
equation (7.10).
 The interaction term in (7.15) is not statistically significant, nor is it very big economically. But 
it is causing little harm by being in the equation.

 

Allowing for Different Slopes

We have now seen several examples of how to allow different intercepts for any number 
of groups in a multiple regression model. There are also occasions for interacting 
dummy variables with explanatory variables that are not dummy variables to allow for a 
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difference in slopes. Continuing with the wage example, suppose that we wish to test 
whether the return to education is the same for men and women, allowing for a constant 
wage differential between men and women (a differential for which we have already found 
evidence). For simplicity, we include only education and gender in the model. What kind 
of model allows for different returns to education? Consider the model

 log(wage) � (�
0
 � �

0
  female) � (�

1
 � �

1
 female)educ � u. 7.16

If we plug female � 0 into (7.16), then we find that the intercept for males is �
0
, and the 

slope on education for males is �
1
. For females, we plug in female � 1; thus, the intercept 

for females is �
0
 � �

0
, and the slope is �

1
 � �

1
. Therefore, �

0
 measures the difference 

in intercepts between women and men, and �
1
 measures the difference in the return to 

education between women and men. Two of the four cases for the signs of �
0
 and �

1
 are 

presented in Figure 7.2.
 Graph (a) shows the case where the intercept for women is below that for men, and 
the slope of the line is smaller for women than for men. This means that women earn 
less than men at all levels of education, and the gap increases as educ gets larger. In 
graph (b), the intercept for women is below that for men, but the slope on education is 
larger for women. This means that women earn less than men at low levels of educa-
tion, but the gap narrows as education increases. At some point, a woman earns more 

F I GURE  7 . 2

Graphs of equation (7.16): (a) �
0
 � 0, �

1
 � 0; (b) �

0
 � 0, �

1
 � 0. 

wage

(a) educ

men

women

wage

(b) educ

men

women
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than a man, given the same levels of education (and this point is easily found given the 
estimated equation).
 How can we estimate model (7.16)? To apply OLS, we must write the model with an 
interaction between female and educ:

log(wage) � �
0
 � �

0
  female � �

1
educ � �

1
 female�educ � u. 7.17

The parameters can now be estimated from the regression of log(wage) on female, educ, 
and female�educ. Obtaining the interaction term is easy in any regression package. Do not 
be daunted by the odd nature of female�educ, which is zero for any man in the sample and 
equal to the level of education for any woman in the sample.
 An important hypothesis is that the return to education is the same for women and 
men. In terms of model (7.17), this is stated as H

0
: �

1
 � 0, which means that the slope of 

log(wage) with respect to educ is the same for men and women. Note that this hypothesis 
puts no restrictions on the difference in intercepts, �

0
. A wage differential between men 

and women is allowed under this null, but it must be the same at all levels of education. 
This situation is described by Figure 7.1.
 We are also interested in the hypothesis that average wages are identical for men and 
women who have the same levels of education. This means that �

0
 and �

1
 must both be 

zero under the null hypothesis. In equation (7.17), we must use an F test to test H
0
: �

0
� 

0, �
1
 � 0. In the model with just an intercept difference, we reject this hypothesis because 

H
0
: �

0
 � 0 is soundly rejected against H

1
: �

0
 � 0.

E x a m p l e  7 . 1 0

[Log Hourly Wage Equation]

We add quadratics in experience and tenure to (7.17):

2log(wage) � .389 � .227 female � .082 educ

 (.119) (.168) (.008)

� .0056 female�educ � .029 exper � .00058 exper2

 (.0131) (.005) (.00011) 7.18

� .032 tenure � .00059 tenure2

  (.007) (.00024)

n � 526, R2 � .441.

The estimated return to education for men in this equation is .082, or 8.2%. For women, it is 
.082 � .0056 � .0764, or about 7.6%. The difference, �.56%, or just over one-half a percent-
age point less for women, is not economically large nor statistically significant: the t statistic is 
�.0056/.0131 � �.43. Thus, we conclude that there is no evidence against the hypothesis that the 
return to education is the same for men and women.
 The coefficient on female, while remaining economically large, is no longer significant at con-
ventional levels (t � �1.35). Its coefficient and t statistic in the equation without the interaction 
were �.297 and �8.25, respectively [see equation (7.9)]. Should we now conclude that there is 
no statistically significant evidence of lower pay for women at the same levels of educ, exper, and 
tenure? This would be a serious error. Because we have added the interaction female�educ to the 
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 equation, the coefficient on female is now estimated much less precisely than it was in equation (7.9): 
the standard error has increased by almost fivefold (.168/.036 � 4.67). This occurs because female 
and female�educ are highly correlated in the sample. In this example, there is a useful way to think 
about the multicollinearity: in equation (7.17) and the more general equation estimated in (7.18), �

0
 

measures the wage differential between women and men when educ � 0. Very few people in the 
sample have very low levels of education, so it is not surprising that we have a difficult time estimat-
ing the differential at educ � 0 (nor is the differential at zero years of education very informative). 
More interesting would be to estimate the gender differential at, say, the average education level 
in the sample (about 12.5). To do this, we would replace female�educ with female�(educ � 12.5) 
and rerun the regression; this only changes the coefficient on female and its standard error. (See 
Computer Exercise C7.7.)
 If we compute the F statistic for H

0
: �

0
 � 0, �

1
 � 0, we obtain F � 34.33, which is a huge value 

for an F random variable with numerator df � 2 and denominator df � 518: the p-value is zero to 
four decimal places. In the end, we prefer model (7.9), which allows for a constant wage differential 
between women and men.

 

As a more complicated example involv-
ing interactions, we now look at the 
effects of race and city racial composi-
tion on major league baseball player 
salaries.

E x a m p l e  7 . 1 1

[Effects of Race on Baseball Player Salaries]

Using MLB1.RAW, the following equation is estimated for the 330 major league baseball players 
for which city racial composition statistics are available. The variables black and hispan are binary 
indicators for the individual players. (The base group is white players.) The variable percblck is the 
percentage of the team’s city that is black, and perchisp is the percentage of Hispanics. The other 
variables measure aspects of player productivity and longevity. Here, we are interested in race 
effects after controlling for these other factors.
 In addition to including black and hispan in the equation, we add the interactions black�percblck 
and hispan�perchisp. The estimated equation is

2log(salary) � 10.34 � .0673 years � .0089 gamesyr

 (2.18) (.0129) (.0034)

� .00095 bavg � .0146 hrunsyr � .0045 rbisyr

 (.00151) (.0164) (.0076)

� .0072 runsyr � .0011 fldperc � .0075 allstar

 (.0046) (.0021) (.0029) 7.19

� .198 black � .190 hispan � .0125 black�percblck

 (.125) (.153) (.0050)

� .0201 hispan�perchisp

 (.0098)

n � 330, R2 � .638.

Q u e s t i o n  7 . 4
How would you augment the model estimated in (7.18) to allow 
the return to tenure to differ by gender?
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First, we should test whether the four race variables, black, hispan, black�percblck, and 
hispan�perchisp, are jointly significant. Using the same 330 players, the R-squared when the four 
race variables are dropped is .626. Since there are four restrictions and df � 330 � 13 in the unre-
stricted model, the F statistic is about 2.63, which yields a p-value of .034. Thus, these variables are 
jointly significant at the 5% level (though not at the 1% level).
 How do we interpret the coefficients on the race variables? In the following discussion, all 
productivity factors are held fixed. First, consider what happens for black players, holding perchisp 
fixed. The coefficient �.198 on black literally means that, if a black player is in a city with no blacks 
(percblck � 0), then the black player earns about 19.8% less than a comparable white player. As 
percblck increases—which means the white population decreases, since perchisp is held fixed—the 
salary of blacks increases relative to that for whites. In a city with 10% blacks, log(salary) for blacks 
compared to that for whites is �.198 � .0125(10) � �.073, so salary is about 7.3% less for blacks 
than for whites in such a city. When percblck � 20, blacks earn about 5.2% more than whites. The 
largest percentage of blacks in a city is about 74% (Detroit).
 Similarly, Hispanics earn less than whites in cities with a low percentage of Hispanics. But we 
can easily find the value of perchisp that makes the differential between whites and Hispanics equal 
zero: it must make �.190 � .0201 perchisp � 0, which gives perchisp � 9.45. For cities in which 
the percentage of Hispanics is less than 9.45%, Hispanics are predicted to earn less than whites (for 
a given black population), and the opposite is true if the percentage of Hispanics is above 9.45%. 
Twelve of the 22 cities represented in the sample have Hispanic populations that are less than 9.45% 
of the total population. The largest percentage of Hispanics is about 31%.
 How do we interpret these findings? We cannot simply claim discrimination exists against 
blacks and Hispanics, because the estimates imply that whites earn less than blacks and Hispanics 
in cities heavily populated by minorities. The importance of city composition on salaries might be 
due to player preferences: perhaps the best black players live disproportionately in cities with more 
blacks and the best Hispanic players tend to be in cities with more Hispanics. The estimates in (7.19) 
allow us to determine that some relationship is present, but we cannot distinguish between these two 
hypotheses.

 

Testing for Differences in Regression 

Functions across Groups

The previous examples illustrate that interacting dummy variables with other independent 
variables can be a powerful tool. Sometimes, we wish to test the null hypothesis that two 
populations or groups follow the same regression function, against the alternative that one or 
more of the slopes differ across the groups. We will also see examples of this in Chapter 13, 
when we discuss pooling different cross sections over time.
 Suppose we want to test whether the same regression model describes college grade 
point averages for male and female college athletes. The equation is

cumgpa � �
0
 � �

1
sat � �

2
hsperc � �

3
tothrs � u,

where sat is SAT score, hsperc is high school rank percentile, and tothrs is total hours 
of college courses. We know that, to allow for an intercept difference, we can include a 
dummy variable for either males or females. If we want any of the slopes to depend on 
gender, we simply interact the appropriate variable with, say, female, and include it in the 
equation.
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 If we are interested in testing whether there is any difference between men and women, 
then we must allow a model where the intercept and all slopes can be different across the 
two groups:

 cumgpa � �
0
 � �

0
  female � �

1
sat � �

1
  female�sat � �

2
hsperc

� �
2
  female�hsperc � �

3
tothrs � �

3
  female�tothrs � u. 

7.20

The parameter �
0
 is the difference in the intercept between women and men, �

1
 is the slope 

difference with respect to sat between women and men, and so on. The null hypothesis that 
cumgpa follows the same model for males and females is stated as

 H
0
: �

0
 � 0, �

1
 � 0, �

2
 � 0, �

3
 � 0. 7.21

If one of the �
j
 is different from zero, then the model is different for men and women.

 Using the spring semester data from the file GPA3.RAW, the full model is esti-
mated as

2cumgpa � 1.48 � .353 female � .0011 sat � .00075 female�sat

 (0.21) (.411) (.0002) (.00039)

�.0085 hsperc � .00055 female�hsperc � .0023 tothrs

 (.0014) (.00316) (.0009) 7.22

�.00012 female�tothrs

 (.00163)

n � 366, R2 � .406,  
-

 R 2 � .394.

None of the four terms involving the female dummy variable is very statistically significant; 
only the female�sat interaction has a t statistic close to two. But we know better than to rely 
on the individual t statistics for testing a joint hypothesis such as (7.21). To compute the 
F statistic, we must estimate the restricted model, which results from dropping female and 
all of the interactions; this gives an R2 (the restricted R2) of about .352, so the F statistic is 
about 8.14; the p-value is zero to five decimal places, which causes us to soundly reject 
(7.21). Thus, men and women athletes do follow different GPA models, even though each 
term in (7.22) that allows women and men to be different is individually insignificant at the 
5% level.
 The large standard errors on female and the interaction terms make it difficult to tell 
exactly how men and women differ. We must be very careful in interpreting equation (7.22) 
because, in obtaining differences between women and men, the interaction terms must be 
taken into account. If we look only at the female variable, we would wrongly conclude 
that cumgpa is about .353 less for women than for men, holding other factors fixed. This 
is the estimated difference only when sat, hsperc, and tothrs are all set to zero, which is 
not close to being a possible scenario. At sat � 1,100, hsperc � 10, and tothrs � 50, the 
predicted difference between a woman and a man is �.353 � .00075(1,100) � .00055(10) 
�.00012(50) � .461. That is, the female athlete is predicted to have a GPA that is almost 
one-half a point higher than the comparable male athlete.
 In a model with three variables, sat, hsperc, and tothrs, it is pretty simple to add all 
of the interactions to test for group differences. In some cases, many more explanatory 
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variables are involved, and then it is convenient to have a different way to compute the 
statistic. It turns out that the sum of squared residuals form of the F statistic can be com-
puted easily even when many independent variables are involved.
 In the general model with k explanatory variables and an intercept, suppose we have 
two groups; call them g � 1 and g � 2. We would like to test whether the intercept and 
all slopes are the same across the two groups. Write the model as

y � �
g,0

 � �
g,1

x
1
 � �

g,2
x

2
 � … � �

g,k
x

k
 � u, 7.23

for g � 1 and g � 2. The hypothesis that each beta in (7.23) is the same across the two 
groups involves k � 1 restrictions (in the GPA example, k � 1 � 4). The unrestricted 
model, which we can think of as having a group dummy variable and k interaction terms 
in addition to the intercept and variables themselves, has n � 2(k � 1) degrees of free-
dom. [In the GPA example, n � 2(k � 1) � 366 � 2(4) � 358.] So far, there is nothing 
new. The key insight is that the sum of squared residuals from the unrestricted model can 
be obtained from two separate regressions, one for each group. Let SSR

1
 be the sum of 

squared residuals obtained estimating (7.23) for the first group; this involves n
1
 observa-

tions. Let SSR
2
 be the sum of squared residuals obtained from estimating the model using 

the second group (n
2
 observations). In the previous example, if group 1 is females, then 

n
1
 � 90 and n

2
 � 276. Now, the sum of squared residuals for the unrestricted model is 

simply SSR
ur

 � SSR
1
 � SSR

2
. The restricted sum of squared residuals is just the SSR from 

pooling the groups and estimating a single equation, say SSR
P
. Once we have these, we 

compute the F statistic as usual:

 F �   
[SSR

P
 � (SSR

1
 � SSR

2
)]
  _____________________  

SSR
1
 � SSR

2
 
   �   

 [n � 2(k � 1)]
  _____________ 

k � 1
  , 7.24

where n is the total number of observations. This particular F statistic is usually called the 
Chow statistic in econometrics. Because the Chow test is just an F test, it is only valid 
under homoskedasticity. In particular, under the null hypothesis, the error variances for the 
two groups must be equal. As usual, normality is not needed for asymptotic analysis.
 To apply the Chow statistic to the GPA example, we need the SSR from the regres-
sion that pooled the groups together: this is SSR

P
 � 85.515. The SSR for the 90 women in 

the sample is SSR
1
 � 19.603, and the SSR for the men is SSR

2
 � 58.752. Thus, SSR

ur
 � 

19.603 � 58.752 � 78.355. The F statistic is [(85.515 � 78.355)/78.355](358/4) � 8.18; 
of course, subject to rounding error, this is what we get using the R-squared form of the 
test in the models with and without the interaction terms. (A word of caution: there is no 
simple R-squared form of the test if separate regressions have been estimated for each 
group; the R-squared form of the test can be used only if interactions have been included 
to create the unrestricted model.)
 One important limitation of the Chow test, regardless of the method used to imple-
ment it, is that the null hypothesis allows for no differences at all between the groups. In 
many cases, it is more interesting to allow for an intercept difference between the groups 
and then to test for slope differences; we saw one example of this in the wage equation in 
Example 7.10. There are two ways to allow the intercepts to differ under the null hypoth-
esis. One is to include the group dummy and all interaction terms, as in equation (7.22), 
but then test joint significance of the interaction terms only. The second is to form an 
F statistic as in equation (7.24), but where the restricted sum of squares, called “SSR

P
” in 

equation (7.24), is obtained by the regression that allows an intercept shift only. In other 
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words, we run a pooled regression and just include the dummy variable that distinguishes 
the two groups. In the grade point average example, we regress cumgpa on female, sat, 
hsperc, and tothrs using the data for male and female student-athletes. In the GPA exam-
ple, we use the first method, and so the null is H

0
: �

1
 � 0, �

2
 � 0, �

3
 � 0 in equation (7.20). 

(�
0
 is not restricted under the null.) The F statistic for these three restrictions is about 1.53, 

which gives a p-value equal to .205. Thus, we do not reject the null hypothesis.
 Failure to reject the hypothesis that the parameters multiplying the interaction terms 
are all zero suggests that the best model allows for an intercept difference only:

2cumgpa � 1.39 � .310 female � .0012 sat � .0084 hsperc

 (.18) (.059) (.0002) (.0012)

� .0025 tothrs 7.25

 (.0007)

n � 366, R2 � .398,  
-

 R 2 � .392.

The slope coefficients in (7.25) are close to those for the base group (males) in (7.22); 
dropping the interactions changes very little. However, female in (7.25) is highly signifi-
cant: its t statistic is over 5, and the estimate implies that, at given levels of sat, hsperc, 
and tothrs, a female athlete has a predicted GPA that is .31 point higher than that of a male 
athlete. This is a practically important difference.

7.5 A Binary Dependent Variable: 
The Linear Probability Model
By now, we have learned much about the properties and applicability of the multiple linear 
regression model. In the last several sections, we studied how, through the use of binary 
independent variables, we can incorporate qualitative information as explanatory variables 
in a multiple regression model. In all of the models up until now, the dependent variable y 
has had quantitative meaning (for example, y is a dollar amount, a test score, a percent-
age, or the logs of these). What happens if we want to use multiple regression to explain 
a qualitative event?
 In the simplest case, and one that often arises in practice, the event we would like to 
explain is a binary outcome. In other words, our dependent variable, y, takes on only two 
values: zero and one. For example, y can be defined to indicate whether an adult has a 
high school education; y can indicate whether a college student used illegal drugs during a 
given school year; or y can indicate whether a firm was taken over by another firm during 
a given year. In each of these examples, we can let y � 1 denote one of the outcomes and 
y � 0 the other outcome.
 What does it mean to write down a multiple regression model, such as

 y � �
0
 � �

1
x

1
 � … � �

k
 x

k
 � u, 7.26

when y is a binary variable? Because y can take on only two values, �
j
 cannot be inter-

preted as the change in y given a one-unit increase in x
j
, holding all other factors fixed: y 

either changes from zero to one or from one to zero (or does not change). Nevertheless, the 
�

j
 still have useful interpretations. If we assume that the zero conditional mean assumption 

MLR.4 holds, that is, E(u�x
1
, …, x

k
) � 0, then we have, as always,
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E(y�x) � �
0
 � �

1
x

1
 � … � �

k
 x

k
,

where x is shorthand for all of the explanatory variables.
 The key point is that when y is a binary variable taking on the values zero and one, it is 
always true that P(y � 1�x) � E(y�x): the probability of “success”—that is, the probability 
that y � 1—is the same as the expected value of y. Thus, we have the important equation

 P(y � 1�x) � �
0
 � �

1
x

1
 � … � �

k
x

k
, 7.27

which says that the probability of success, say, p(x) � P(y � 1�x), is a linear function of the 
x

j
. Equation (7.27) is an example of a binary response model, and P(y � 1�x) is also called 

the response probability. (We will cover other binary response models in Chapter 17.) 
Because probabilities must sum to one, P( y � 0�x) � 1 � P( y � 1�x) is also a linear func-
tion of the x

j
.

 The multiple linear regression model with a binary dependent variable is called the 
linear probability model (LPM) because the response probability is linear in the param-
eters �

j
. In the LPM, �

j
 measures the change in the probability of success when x

j
 changes, 

holding other factors fixed:

 �P(y � 1�x) � �
j
 � x

j
. 7.28

With this in mind, the multiple regression model can allow us to estimate the effect of various 
explanatory variables on qualitative events. The mechanics of OLS are the same as before.
 If we write the estimated equation as

 ̂  y  �  ̂  � 
0
 �  ̂  � 

1
x

1
 � … �  ̂  � 

k
 x

k
,

we must now remember that  ̂  y  is the predicted probability of success. Therefore,  ̂  � 
0
 is 

the predicted probability of success when each x
j
 is set to zero, which may or may not be 

interesting. The slope coefficient  ̂  � 
1
 measures the predicted change in the probability of 

success when x
1
 increases by one unit.

 To correctly interpret a linear probability model, we must know what constitutes a “suc-
cess.” Thus, it is a good idea to give the dependent variable a name that describes the event 
y � 1. As an example, let inlf (“in the labor force”) be a binary variable indicating labor force 
participation by a married woman during 1975: inlf � 1 if the woman reports working for a 
wage outside the home at some point during the year, and zero otherwise. We assume that 
labor force participation depends on other sources of income, including husband’s earnings 
(nwifeinc, measured in thousands of dollars), years of education (educ), past years of labor 
market experience (exper), age, number of children less than six years old (kidslt6), and 
number of kids between 6 and 18 years of age (kidsge6). Using the data in MROZ.RAW 
from Mroz (1987), we estimate the following linear probability model, where 428 of the 
753 women in the sample report being in the labor force at some point during 1975:

1inlf � .586 � .0034 nwifeinc � .038 educ � .039 exper

 (.154) (.0014) (.007) (.006)

�.00060 exper2 � .016 age � .262 kidslt6 � .0130 kidsge6 7.29

 (.00018) (.002) (.034) (.0132)

n � 753, R2 � .264.
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Using the usual t statistics, all variables in (7.29) except kidsge6 are statistically signifi-
cant, and all of the significant variables have the effects we would expect based on eco-
nomic theory (or common sense).
 To interpret the estimates, we must remember that a change in the independent vari-
able changes the probability that inlf � 1. For example, the coefficient on educ means that, 
everything else in (7.29) held fixed, another year of education increases the probability 
of labor force participation by .038. If we take this equation literally, 10 more years of 
education increases the probability of being in the labor force by .038(10) � .38, which is 
a pretty large increase in a probability. The relationship between the probability of labor 
force participation and educ is plotted in Figure 7.3. The other independent variables 
are fixed at the values nwifeinc � 50, exper � 5, age � 30, kidslt6 � 1, and kidsge6 � 
0 for illustration purposes. The predicted probability is negative until education equals 
3.84 years. This should not cause too much concern because, in this sample, no woman 
has less than five years of education. The largest reported education is 17 years, and 
this leads to a predicted probability of .5. If we set the other independent variables at 
different values, the range of predicted probabilities would change. But the marginal 
effect of another year of education on the probability of labor force participation is 
always .038.
 The coefficient on nwifeinc implies that, if �nwifeinc � 10 (which means an increase 
of $10,000), the probability that a woman is in the labor force falls by .034. This is not 
an especially large effect given that an increase in income of $10,000 is substantial in 

F I GURE  7 . 3

Estimated relationship between the probability of being in the labor force and 
years of education, with other explanatory variables fixed.

educ

probability
of labor

force
participation

3.84

.5

0

–.146

slope = .038
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terms of 1975 dollars. Experience has been entered as a quadratic to allow the effect of 
past experience to have a diminishing effect on the labor force participation probability. 
Holding other factors fixed, the estimated change in the probability is approximated as 
.039 � 2(.0006)exper � .039 � .0012 exper. The point at which past experience has no 
effect on the probability of labor force participation is .039/.0012 � 32.5, which is a high 
level of experience: only 13 of the 753 women in the sample have more than 32 years of 
experience.
 Unlike the number of older children, the number of young children has a huge impact 
on labor force participation. Having one additional child less than six years old reduces the 
probability of participation by �.262, at given levels of the other variables. In the sample, 
just under 20% of the women have at least one young child.
 This example illustrates how easy linear probability models are to estimate and interpret, 
but it also highlights some shortcomings of the LPM. First, it is easy to see that, if we plug 
certain combinations of values for the independent variables into (7.29), we can get predic-
tions either less than zero or greater than one. Since these are predicted probabilities, and 
probabilities must be between zero and one, this can be a little embarassing. For example, 
what would it mean to predict that a woman is in the labor force with a probability of 
�.10? In fact, of the 753 women in the sample, 16 of the fitted values from (7.29) are less 
than zero, and 17 of the fitted values are greater than one.
 A related problem is that a probability cannot be linearly related to the independent 
variables for all their possible values. For example, (7.29) predicts that the effect of going 
from zero children to one young child reduces the probability of working by .262. This is 
also the predicted drop if the woman goes from having one young child to two. It seems 
more realistic that the first small child would reduce the probability by a large amount, 
but subsequent children would have a smaller marginal effect. In fact, when taken to the 
extreme, (7.29) implies that going from zero to four young children reduces the probability 
of working by �1inlf  � .262(�kidslt6) � .262(4) � 1.048, which is impossible.
 Even with these problems, the linear probability model is useful and often applied in 
economics. It usually works well for values of the independent variables that are near the 
averages in the sample. In the labor force participation example, no women in the sample 
have four young children; in fact, only three women have three young children. Over 96% 
of the women have either no young children or one small child, and so we should probably 
restrict attention to this case when interpreting the estimated equation.
 Predicted probabilities outside the unit interval are a little troubling when we want 
to make predictions. Still, there are ways to use the estimated probabilities (even if some 
are negative or greater than one) to predict a zero-one outcome. As before, let  ̂  y 

i
 denote 

the fitted values—which may not be bounded between zero and one. Define a predicted 
value as  ̃  y 

i
 � 1 if  ̂  y 

i
 � .5 and  ̃  y 

i
 � 0 if  ̂  y 

i
 � .5. Now we have a set of predicted values,  ̃  y 

i
, i � 

1, …, n, that, like the y
i
, are either zero or one. We can use the data on y

I
 and  ̃  y 

i
 to obtain the 

frequencies with which we correctly predict y
i
 � 1 and y

i
 � 0, as well as the proportion of 

overall correct predictions. The latter measure, when turned into a percentage, is a widely 
used goodness-of-fit measure for binary dependent variables: the percent correctly pre-
dicted. An example is given in Computer Exercise C7.9(v), and further discussion, in the 
context of more advanced models, can be found in Section 17.1.
 Due to the binary nature of y, the linear probability model does violate one of the 
Gauss-Markov assumptions. When y is a binary variable, its variance, conditional on x, is

 Var(y�x) � p(x)[1 � p(x)], 7.30
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where p(x) is shorthand for the probability of success: p(x) � �
0
 � �

1
x

1
 � … � �

k
 x

k
. This 

means that, except in the case where the probability does not depend on any of the inde-
pendent variables, there must be heteroskedasticity in a linear probability model. We know 
from Chapter 3 that this does not cause bias in the OLS estimators of the �

j
. But we also 

know from Chapters 4 and 5 that homoskedasticity is crucial for justifying the usual t and 
F statistics, even in large samples. Because the standard errors in (7.29) are not generally 
valid, we should use them with caution. We will show how to correct the standard errors 
for heteroskedasticity in Chapter 8. It turns out that, in many applications, the usual OLS 
statistics are not far off, and it is still acceptable in applied work to present a standard OLS 
analysis of a linear probability model.

E x a m p l e  7 . 1 2

[A Linear Probability Model of Arrests]

Let arr86 be a binary variable equal to unity if a man was arrested during 1986, and zero otherwise. 
The population is a group of young men in California born in 1960 or 1961 who have at least one 
arrest prior to 1986. A linear probability model for describing arr86 is

arr86 � �
0
 � �

1
 pcnv � �

2
 avgsen � �

3
 tottime � �

4
 ptime86 � �

5
 qemp86 � u,

where 

 pcnv � the proportion of prior arrests that led to a conviction. 
 avgsen � the average sentence served from prior convictions (in months). 
 tottime � months spent in prison since age 18 prior to 1986. 
 ptime86 � months spent in prison in 1986. 
 qemp86 � the number of quarters (0 to 4) that the man was legally employed in 1986.

 The data we use are in CRIME1.RAW, the same data set used for Example 3.5. Here, we use 
a binary dependent variable because only 7.2% of the men in the sample were arrested more than 
once. About 27.7% of the men were arrested at least once during 1986. The estimated equation is

1arr86 � .441 � .162 pcnv � .0061 avgsen � .0023 tottime

 (.017) (.021) (.0065) (.0050)

� .022 ptime86 � .043 qemp86 7.31

 (.005) (.005)

n � 2,725, R2 � .0474.

The intercept, .441, is the predicted probability of arrest for someone who has not been convicted 
(and so pcnv and avgsen are both zero), has spent no time in prison since age 18, spent no time in 
prison in 1986, and was unemployed during the entire year. The variables avgsen and tottime are 
insignificant both individually and jointly (the F test gives p-value � .347), and avgsen has a coun-
terintuitive sign if longer sentences are supposed to deter crime. Grogger (1991), using a superset of 
these data and different econometric methods, found that tottime has a statistically significant posi-
tive effect on arrests and concluded that tottime is a measure of human capital built up in criminal 
activity.
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 Increasing the probability of conviction does lower the probability of arrest, but we must be 
careful when interpreting the magnitude of the coefficient. The variable pcnv is a proportion between 
zero and one; thus, changing pcnv from zero to one essentially means a change from no chance of 
being convicted to being convicted with certainty. Even this large change reduces the probability of 
arrest only by .162; increasing pcnv by .5 decreases the probability of arrest by .081.
 The incarcerative effect is given by the coefficient on ptime86. If a man is in prison, he cannot 
be arrested. Since ptime86 is measured in months, six more months in prison reduces the probability 
of arrest by .022(6) � .132. Equation (7.31) gives another example of where the linear probability 
model cannot be true over all ranges of the independent variables. If a man is in prison all 12 months 
of 1986, he cannot be arrested in 1986. Setting all other variables equal to zero, the predicted prob-
ability of arrest when ptime86 � 12 is .441 � .022(12) � .177, which is not zero. Nevertheless, if we 
start from the unconditional probability of arrest, .277, 12 months in prison reduces the probability 
to essentially zero: .277 � .022(12) � .013.
 Finally, employment reduces the probability of arrest in a significant way. All other factors 
fixed, a man employed in all four quarters is .172 less likely to be arrested than a man who was not 
employed at all.

 
 We can also include dummy independent variables in models with dummy depen dent 
variables. The coefficient measures the predicted difference in probability relative to the 
base group. For example, if we add two race dummies, black and hispan, to the arrest 
equation, we obtain

1arr86 � .380 � .152 pcnv � .0046 avgsen � .0026 tottime

 (.019) (.021) (.0064) (.0049)

� .024 ptime86 � .038 qemp86 � .170 black � .096 hispan

 (.005) (.005) (.024) (.021) 

7.32

n � 2,725, R2 � .0682.

The coefficient on black means that, all other factors being equal, a black man has a .17 
higher chance of being arrested than a white man (the base group). Another way to say 
this is that the probability of arrest is 17 
percentage points higher for blacks than 
for whites. The difference is statistically 
significant as well. Similarly, Hispanic 
men have a .096 higher chance of being 
arrested than white men.

7.6 More on Policy Analysis 
and Program Evaluation
We have seen some examples of models containing dummy variables that can be useful 
for evaluating policy. Example 7.3 gave an example of program evaluation, where some 
firms received job training grants and others did not.

Q u e s t i o n  7 . 5
What is the predicted probability of arrest for a black man with 
no prior convictions—so that pcnv, avgsen, tottime, and ptime86 
are all zero—who was employed all four quarters in 1986? Does 
this seem reasonable?
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 As we mentioned earlier, we must be careful when evaluating programs because in 
most examples in the social sciences the control and treatment groups are not randomly 
assigned. Consider again the Holzer et al. (1993) study, where we are now interested in 
the effect of the job training grants on worker productivity (as opposed to amount of job 
training). The equation of interest is

log(scrap) � �
0
 � �

1
grant � �

2
log(sales) � �

3
log(employ) � u,

where scrap is the firm’s scrap rate, and the latter two variables are included as controls. 
The binary variable grant indicates whether the firm received a grant in 1988 for job 
training.
 Before we look at the estimates, we might be worried that the unobserved factors 
affecting worker productivity—such as average levels of education, ability, experience, 
and tenure—might be correlated with whether the firm receives a grant. Holzer et al. point 
out that grants were given on a first-come, first-served basis. But this is not the same as 
giving out grants randomly. It might be that firms with less productive workers saw an 
opportunity to improve productivity and therefore were more diligent in applying for the 
grants.
 Using the data in JTRAIN.RAW for 1988—when firms actually were eligible to 
receive the grants—we obtain

 2log(scrap) � 4.99 � .052 grant � .455 log(sales)

 (4.66) (.431) (.373)

� .639 log(employ) 7.33

 (.365)

n � 50, R2 � .072.

(Seventeen out of the 50 firms received a training grant, and the average scrap rate is 
3.47 across all firms.) The point estimate of �.052 on grant means that, for given sales 
and employ, firms receiving a grant have scrap rates about 5.2% lower than firms without 
grants. This is the direction of the expected effect if the training grants are effective, but the 
t statistic is very small. Thus, from this cross-sectional analysis, we must conclude that the 
grants had no effect on firm productivity. We will return to this example in Chapter 9 and 
show how adding information from a prior year leads to a much different conclusion.
 Even in cases where the policy analysis does not involve assigning units to a control 
group and a treatment group, we must be careful to include factors that might be systemati-
cally related to the binary independent variable of interest. A good example of this is test-
ing for racial discrimination. Race is something that is not determined by an individual or 
by government administrators. In fact, race would appear to be the perfect example of an 
exogenous explanatory variable, given that it is determined at birth. However, for histori-
cal reasons, race is often related to other relevant factors: there are systematic differences 
in backgrounds across race, and these differences can be important in testing for current 
discrimination.
 As an example, consider testing for discrimination in loan approvals. If we can collect data 
on, say, individual mortgage applications, then we can define the dummy dependent variable 
approved as equal to one if a mortgage application was approved, and zero otherwise. A sys-
tematic difference in approval rates across races is an indication of discrimination. However, 
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since approval depends on many other factors, including income, wealth, credit ratings, and 
a general ability to pay back the loan, we must control for them if there are systematic differ-
ences in these factors across race. A linear probability model to test for discrimination might 
look like the following:

approved � �
0
 � �

1
nonwhite � �

2
income � �

3
wealth � �

4
credrate � other factors.

Discrimination against minorities is indicated by a rejection of H
0
: �

1
 � 0 in favor of 

H
0
: �

1
 � 0, because �

1
 is the amount by which the probability of a nonwhite getting an 

approval differs from the probability of a white getting an approval, given the same levels 
of other variables in the equation. If income, wealth, and so on, are systematically different 
across races, then it is important to control for these factors in a multiple regression analysis.
 Another problem that often arises in policy and program evaluation is that individuals 
(or firms or cities) choose whether or not to participate in certain behaviors or programs. 
For example, individuals choose to use illegal drugs or drink alcohol. If we want to exam-
ine the effects of such behaviors on unemployment status, earnings, or criminal behavior, 
we should be concerned that drug usage might be correlated with other factors that can 
affect employment and criminal outcomes. Children eligible for programs such as Head 
Start participate based on parental decisions. Since family background plays a role in 
Head Start decisions and affects student outcomes, we should control for these factors 
when examining the effects of Head Start [see, for example, Currie and Thomas (1995)]. 
Individuals selected by employers or government agencies to participate in job training 
programs can participate or not, and this decision is unlikely to be random [see, for exam-
ple, Lynch (1992)]. Cities and states choose whether to implement certain gun control 
laws, and it is likely that this decision is systematically related to other factors that affect 
violent crime [see, for example, Kleck and Patterson (1993)].
 The previous paragraph gives examples of what are generally known as self-selection 
problems in economics. Literally, the term comes from the fact that individuals self-select 
into certain behaviors or programs: participation is not randomly determined. The term is 
used generally when a binary indicator of participation might be systematically related to 
unobserved factors. Thus, if we write the simple model

 y � �
0
 � �

1
partic � u, 7.34

where y is an outcome variable and partic is a binary variable equal to unity if the indi-
vidual, firm, or city participates in a behavior or a program or has a certain kind of law, 
then we are worried that the average value of u depends on participation: E(u�partic � 1) 	 
E(u�partic � 0). As we know, this causes the simple regression estimator of �

1
 to be biased, 

and so we will not uncover the true effect of participation. Thus, the self-selection problem 
is another way that an explanatory variable (partic in this case) can be endogenous.
 By now, we know that multiple regression analysis can, to some degree, alleviate the 
self-selection problem. Factors in the error term in (7.34) that are correlated with partic 
can be included in a multiple regression equation, assuming, of course, that we can collect 
data on these factors. Unfortunately, in many cases, we are worried that unobserved factors 
are related to participation, in which case multiple regression produces biased estimators.
 With standard multiple regression analysis using cross-sectional data, we must be 
aware of finding spurious effects of programs on outcome variables due to the self- 
selection problem. A good example of this is contained in Currie and Cole (1993). These 
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authors examine the effect of AFDC (Aid to Families with Dependent Children) participa-
tion on the birth weight of a child. Even after controlling for a variety of family and back-
ground characteristics, the authors obtain OLS estimates that imply participation in AFDC 
lowers birth weight. As the authors point out, it is hard to believe that AFDC participation 
itself causes lower birth weight. [See Currie (1995) for additional examples.] Using a 
different econometric method that we will discuss in Chapter 15, Currie and Cole find 
evidence for either no effect or a positive effect of AFDC participation on birth weight.
 When the self-selection problem causes standard multiple regression analysis to be 
biased due to a lack of sufficient control variables, the more advanced methods covered in 
Chapters 13, 14, and 15 can be used instead.

S U M M A R Y

In this chapter, we have learned how to use qualitative information in regression analysis. In 
the simplest case, a dummy variable is defined to distinguish between two groups, and the 
coefficient estimate on the dummy variable estimates the ceteris paribus difference between the 
two groups. Allowing for more than two groups is accomplished by defining a set of dummy 
variables: if there are g groups, then g � 1 dummy variables are included in the model. All 
estimates on the dummy variables are interpreted relative to the base or benchmark group (the 
group for which no dummy variable is included in the model).
 Dummy variables are also useful for incorporating ordinal information, such as a credit or 
a beauty rating, in regression models. We simply define a set of dummy variables represent-
ing different outcomes of the ordinal variable, allowing one of the categories to be the base 
group.
 Dummy variables can be interacted with quantitative variables to allow slope differences 
across different groups. In the extreme case, we can allow each group to have its own slope 
on every variable, as well as its own intercept. The Chow test can be used to detect whether 
there are any differences across groups. In many cases, it is more interesting to test whether, 
after allowing for an intercept difference, the slopes for two different groups are the same. A 
standard F test can be used for this purpose in an unrestricted model that includes interactions 
between the group dummy and all variables.
 The linear probability model, which is simply estimated by OLS, allows us to explain a 
binary response using regression analysis. The OLS estimates are now interpreted as changes in 
the probability of “success” (y � 1), given a one-unit increase in the corresponding explanatory 
variable. The LPM does have some drawbacks: it can produce predicted probabilities that are 
less than zero or greater than one, it implies a constant marginal effect of each explanatory vari-
able that appears in its original form, and it contains heteroskedasticity. The first two problems 
are often not serious when we are obtaining estimates of the partial effects of the explanatory 
variables for the middle ranges of the data. Heteroskedasticity does invalidate the usual OLS 
standard errors and test statistics, but, as we will see in the next chapter, this is easily fixed in 
large enough samples.
 We ended this chapter with a discussion of how binary variables are used to evaluate poli-
cies and programs. As in all regression analysis, we must remember that program participation, 
or some other binary regressor with policy implications, might be correlated with unobserved 
factors that affect the dependent variable, resulting in the usual omitted variables bias.
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K E Y  T E R M S

Base Group
Benchmark Group
Binary Variable
Chow Statistic
Control Group
Difference in Slopes
Dummy Variable Trap

Dummy Variables
Experimental Group
Interaction Term
Intercept Shift
Linear Probability Model 

(LPM)
Ordinal Variable

Percent Correctly Predicted
Policy Analysis
Program Evaluation
Response Probability
Self-Selection
Treatment Group
Uncentered R-Squared

P R O B L E M S

7.1  Using the data in SLEEP75.RAW (see also Problem 3.3), we obtain the estimated 
equation

1sleep � 3,840.83 � .163 totwrk � 11.71 educ � 8.70 age

 (235.11) (.018) (5.86) (11.21)

� .128 age2 � 87.75 male

 (.134) (34.33)

n � 706, R2 � .123,  
-

 R 2 � .117.

  The variable sleep is total minutes per week spent sleeping at night, totwrk is total weekly 
minutes spent working, educ and age are measured in years, and male is a gender dummy.

 (i)  All other factors being equal, is there evidence that men sleep more than women? 
How strong is the evidence?

 (ii)  Is there a statistically significant tradeoff between working and sleeping? What is 
the estimated tradeoff?

 (iii)  What other regression do you need to run to test the null hypothesis that, holding 
other factors fixed, age has no effect on sleeping?

7.2 The following equations were estimated using the data in BWGHT.RAW:

2log(bwght) � 4.66 � .0044 cigs � .0093 log(  faminc) � .016 parity

 (.22) (.0009) (.0059) (.006)

� .027 male � .055 white

 (.010) (.013)

n � 1,388, R2 � .0472

 and

2log(bwght) � 4.65 � .0052 cigs � .0110 log(  faminc) � .017 parity

 (.38) (.0010) (.0085) (.006)

� .034 male � .045 white � .0030 motheduc � .0032 fatheduc

 (.011) (.015) (.0030) (.0026)

n � 1,191, R2 � .0493.
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   The variables are defined as in Example 4.9, but we have added a dummy variable for 
whether the child is male and a dummy variable indicating whether the child is classified 
as white.

 (i)  In the first equation, interpret the coefficient on the variable cigs. In particular, what 
is the effect on birth weight from smoking 10 more cigarettes per day?

 (ii)  How much more is a white child predicted to weigh than a nonwhite child, holding 
the other factors in the first equation fixed? Is the difference statistically significant?

 (iii) Comment on the estimated effect and statistical significance of motheduc.
 (iv)  From the given information, why are you unable to compute the F statistic for joint 

significance of motheduc and fatheduc? What would you have to do to compute the 
F statistic?

7.3 Using the data in GPA2.RAW, the following equation was estimated:

1sat � 1,028.10 � 19.30 hsize � 2.19 hsize2 � 45.09 female

 (6.29) (3.83) (.53) (4.29)

� 169.81 black � 62.31 female�black

 (12.71) (18.15)

n � 4,137, R2 � .0858.

  The variable sat is the combined SAT score, hsize is size of the student’s high school 
graduating class, in hundreds, female is a gender dummy variable, and black is a race 
dummy variable equal to one for blacks and zero otherwise.

 (i)  Is there strong evidence that hsize2 should be included in the model? From this equa-
tion, what is the optimal high school size?

 (ii)  Holding hsize fixed, what is the estimated difference in SAT score between nonblack 
females and nonblack males? How statistically significant is this estimated difference?

 (iii)  What is the estimated difference in SAT score between nonblack males and black 
males? Test the null hypothesis that there is no difference between their scores, 
against the alternative that there is a difference.

 (iv)  What is the estimated difference in SAT score between black females and nonblack 
females? What would you need to do to test whether the difference is statistically 
significant?

7.4 An equation explaining chief executive officer salary is

2log(salary) � 4.59 � .257 log(sales) � .011 roe � .158 finance

 (.30) (.032) (.004) (.089)

� .181 consprod � .283 utility

 (.085) (.099)

n � 209, R2 � .357.

  The data used are in CEOSAL1.RAW, where finance, consprod, and utility are binary 
variables indicating the financial, consumer products, and utilities industries. The omitted 
industry is transportation.

 (i)  Compute the approximate percentage difference in estimated salary between the 
utility and transportation industries, holding sales and roe fixed. Is the difference 
statistically significant at the 1% level?
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 (ii)  Use equation (7.10) to obtain the exact percentage difference in estimated salary 
between the utility and transportation industries and compare this with the answer 
obtained in part (i).

 (iii)  What is the approximate percentage difference in estimated salary between the con-
sumer products and finance industries? Write an equation that would allow you to 
test whether the difference is statistically significant.

7.5  In Example 7.2, let noPC be a dummy variable equal to one if the student does not own 
a PC, and zero otherwise.

 (i)  If noPC is used in place of PC in equation (7.6), what happens to the intercept in the 
estimated equation? What will be the coefficient on noPC? (Hint: Write PC � 1 � 
noPC and plug this into the equation 2colGPA �  ̂  � 

0
 �  ̂  � 

0
PC �  ̂  � 

1
hsGPA �  ̂  � 

2
 ACT.)

 (ii)  What will happen to the R-squared if noPC is used in place of PC?
 (iii)  Should PC and noPC both be included as independent variables in the model? 

Explain.

7.6  To test the effectiveness of a job training program on the subsequent wages of workers, 
we specify the model

log(wage) � �
0
 � �

1
train � �

2
educ � �

3
exper � u,

  where train is a binary variable equal to unity if a worker participated in the program. 
Think of the error term u as containing unobserved worker ability. If less able workers 
have a greater chance of being selected for the program, and you use an OLS analysis, 
what can you say about the likely bias in the OLS estimator of �

1
? (Hint: Refer back to 

Chapter 3.)

7.7  In the example in equation (7.29), suppose that we define outlf to be one if the woman is 
out of the labor force, and zero otherwise.

 (i)  If we regress outlf on all of the independent variables in equation (7.29), what will 
happen to the intercept and slope estimates? (Hint: inlf � 1 � outlf. Plug this into 
the population equation inlf � �

0
 � �

1
nwifeinc � �

2
educ � … and rearrange.)

 (ii) What will happen to the standard errors on the intercept and slope estimates?
 (iii) What will happen to the R-squared?

7.8  Suppose you collect data from a survey on wages, education, experience, and gender. In 
addition, you ask for information about marijuana usage. The original question is: “On 
how many separate occasions last month did you smoke marijuana?”

 (i)  Write an equation that would allow you to estimate the effects of marijuana usage on 
wage, while controlling for other factors. You should be able to make statements such as, 
“Smoking marijuana five more times per month is estimated to change wage by x%.”

 (ii)  Write a model that would allow you to test whether drug usage has different effects 
on wages for men and women. How would you test that there are no differences in 
the effects of drug usage for men and women?

 (iii)  Suppose you think it is better to measure marijuana usage by putting people into one 
of four categories: nonuser, light user (1 to 5 times per month), moderate user (6 to 
10 times per month), and heavy user (more than 10 times per month). Now, write a 
model that allows you to estimate the effects of marijuana usage on wage.

 (iv)  Using the model in part (iii), explain in detail how to test the null hypothesis that 
marijuana usage has no effect on wage. Be very specific and include a careful listing 
of degrees of freedom.



258 Part 1   Regression Analysis with Cross-Sectional Data

 (v)  What are some potential problems with drawing causal inference using the survey 
data that you collected?

7.9 Let d be a dummy (binary) variable and let z be a quantitative variable. Consider the model

y � �
0
 � �

0
d � �

1
z � �

1
d � z � u;

  this is a general version of a model with an interaction between a dummy variable and a 
quantitative variable. [An example is in equation (7.17).]

 (i)  Since it changes nothing important, set the error to zero, u � 0. Then, when d � 0 
we can write the relationship between y and z as the function f

0
(z) � �

0
 � �

1
z. Write 

the same relationship when d � 1, where you should use f
1
(z) on the left-hand side 

to denote the linear function of z.
 (ii)  Assuming that �

1
	 0 (which means the two lines are not parallel), show that the 

value of z* such that f
0
(z*) � f

1
(z*) is z* � ��

0
/�

1
. This is the point at which the 

two lines intersect [as in Figure 7.2(b)]. Argue that z* is positive if and only if �
0
 

and �
1
 have opposite signs.

 (iii) Using the data in TWOYEAR.RAW, the following equation can be estimated:

2log(wage) � 2.289 � .357 female � .50 totcoll � .030 female � totcoll 

 (0.011) (.015) (.003) (.005)

n � 6,763, R2 � .202,

   where all coefficients and standard errors have been rounded to three decimal 
places. Using this equation, find the value of totcoll such that the predicted values 
of log(wage) are the same for men and women.

 (iv)  Based on the equation in part (iii), can women realistically get enough years of col-
lege so that their earnings catch up to those of men? Explain.

7.10  For a child i living in a particular a school district, let voucher
i
 be a dummy variable equal 

to one if a child is selected to participate in a school voucher program, and let score
i
 be 

that child’s score on a subsequent standardized exam. Suppose that the participation 
variable, voucher

i
, is completely randomized in the sense that it is independent of both 

observed and unobserved factors that can affect the test score.
 (i)  If you run a simple regression score

i
 on voucher

i
 using a random sample of size n, does 

the OLS estimator provide an unbiased estimator of the effect of the voucher program?
 (ii)  Suppose you can collect additional background information, such as family income, 

family structure (e.g., whether the child lives with both parents), and parents’ educa-
tion levels. Do you need to control for these factors to obtain an unbiased estimator 
of the effects of the voucher program? Explain.

 (iii)  Why should you include the family background variables in the regression? Is there 
a situation in which you would not include the background variables?

C O M P U T E R  E X E R C I S E S

C7.1 Use the data in GPA1.RAW for this exercise.
 (i)  Add the variables mothcoll and fathcoll to the equation estimated in (7.6) and 

report the results in the usual form. What happens to the estimated effect of PC 
ownership? Is PC still statistically significant?
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 (ii)  Test for joint significance of mothcoll and fathcoll in the equation from part (i) and 
be sure to report the p-value.

 (iii)  Add hsGPA2 to the model from part (i) and decide whether this generalization is 
needed.

C7.2 Use the data in WAGE2.RAW for this exercise.
 (i) Estimate the model

log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
tenure � �

4
married 

� �
5
black � �

6
south � �

7
urban � u

   and report the results in the usual form. Holding other factors fixed, what is the 
approximate difference in monthly salary between blacks and nonblacks? Is this 
difference statistically significant?

 (ii)  Add the variables exper  2 and tenure2 to the equation and show that they are jointly 
insignificant at even the 20% level.

 (iii)  Extend the original model to allow the return to education to depend on race and 
test whether the return to education does depend on race.

 (iv)  Again, start with the original model, but now allow wages to differ across four 
groups of people: married and black, married and nonblack, single and black, and 
single and nonblack. What is the estimated wage differential between married 
blacks and married nonblacks?

C7.3 A model that allows major league baseball player salary to differ by position is

log(salary) � �
0
 � �

1
years � �

2
gamesyr � �

3
bavg � �

4
hrunsyr

 � �
5
rbisyr � �

6
runsyr � �

7 
 fldperc � �

8
allstar

 � �
9
  frstbase � �

10
scndbase � �

11
thrdbase � �

12
shrtstop

 
� �

13
catcher � u,

 where outfield is the base group.
 (i)  State the null hypothesis that, controlling for other factors, catchers and outfielders 

earn, on average, the same amount. Test this hypothesis using the data in MLB1.RAW 
and comment on the size of the estimated salary differential.

 (ii)  State and test the null hypothesis that there is no difference in average salary across 
positions, once other factors have been controlled for.

 (iii) Are the results from parts (i) and (ii) consistent? If not, explain what is happening.

C7.4 Use the data in GPA2.RAW for this exercise.
 (i) Consider the equation

colgpa � �
0
 � �

1
hsize � �

2
hsize2 � �

3
hsperc

 
� �

4
sat

      � �
5 
 female � �

6
athlete � u,

   where colgpa is cumulative college grade point average, hsize is size of high 
school graduating class, in hundreds, hsperc is academic percentile in graduating 
class, sat is combined SAT score, female is a binary gender variable, and athlete 
is a binary variable, which is one for student-athletes. What are your expectations 
for the coefficients in this equation? Which ones are you unsure about?

 (ii)  Estimate the equation in part (i) and report the results in the usual form. What is 
the estimated GPA differential between athletes and nonathletes? Is it statistically 
significant?
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 (iii)  Drop sat from the model and reestimate the equation. Now, what is the estimated 
effect of being an athlete? Discuss why the estimate is different than that obtained 
in part (ii).

 (iv)  In the model from part (i), allow the effect of being an athlete to differ by gender 
and test the null hypothesis that there is no ceteris paribus difference between 
women athletes and women nonathletes.

 (v) Does the effect of sat on colgpa differ by gender? Justify your answer.

C7.5  In Problem 4.2, we added the return on the firm’s stock, ros, to a model explaining CEO 
salary; ros turned out to be insignificant. Now, define a dummy variable, rosneg, which 
is equal to one if ros � 0 and equal to zero if ros � 0. Use CEOSAL1.RAW to estimate 
the model

log(salary) � �
0
 � �

1
log(sales) � �

2
roe � �

3
rosneg � u.

 Discuss the interpretation and statistical significance of  ̂  � 
3
.

C7.6 Use the data in SLEEP75.RAW for this exercise. The equation of interest is

sleep � �
0
 � �

1
totwrk � �

2
educ � �

3
age � �

4
age2 � �

5
yngkid � u.

 (i)  Estimate this equation separately for men and women and report the results in the 
usual form. Are there notable differences in the two estimated equations?

 (ii)  Compute the Chow test for equality of the parameters in the sleep equation for 
men and women. Use the form of the test that adds male and the interaction terms 
male�totwrk, …, male�yngkid and uses the full set of observations. What are the 
relevant df for the test? Should you reject the null at the 5% level?

 (iii)  Now, allow for a different intercept for males and females and determine whether 
the interaction terms involving male are jointly significant.

 (iv) Given the results from parts (ii) and (iii), what would be your final model?

C7.7 Use the data in WAGE1.RAW for this exercise.
 (i)  Use equation (7.18) to estimate the gender differential when educ � 12.5. 

Compare this with the estimated differential when educ � 0.
 (ii)  Run the regression used to obtain (7.18), but with female�(educ � 12.5) replacing 

female�educ. How do you interpret the coefficient on female now?
 (iii)  Is the coefficient on female in part (ii) statistically significant? Compare this with 

(7.18) and comment.

C7.8  Use the data in LOANAPP.RAW for this exercise. The binary variable to be explained 
is approve, which is equal to one if a mortgage loan to an individual was approved. The 
key explanatory variable is white, a dummy variable equal to one if the applicant was 
white. The other applicants in the data set are black and Hispanic.

    To test for discrimination in the mortgage loan market, a linear probability model can 
be used:

approve � �
0
 � �

1
white � other factors.

 (i)  If there is discrimination against minorities, and the appropriate factors have been 
controlled for, what is the sign of �

1
?

 (ii)   Regress approve on white and report the results in the usual form. Interpret the 
coefficient on white. Is it statistically significant? Is it practically large?
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 (iii)  As controls, add the variables hrat, obrat, loanprc, unem, male, married, dep, sch, 
cosign, chist, pubrec, mortlat1, mortlat2, and vr. What happens to the coefficient 
on white? Is there still evidence of discrimination against nonwhites?

 (iv)  Now, allow the effect of race to interact with the variable measuring other obliga-
tions as a percentage of income (obrat). Is the interaction term significant?

 (v)  Using the model from part (iv), what is the effect of being white on the probability 
of approval when obrat � 32, which is roughly the mean value in the sample? 
Obtain a 95% confidence interval for this effect.

C7.9  There has been much interest in whether the presence of 401(k) pension plans, available 
to many U.S. workers, increases net savings. The data set 401KSUBS.RAW contains 
information on net financial assets (nettfa), family income (inc), a binary variable for 
eligibility in a 401(k) plan (e401k), and several other variables.

 (i)  What fraction of the families in the sample are eligible for participation in a 401(k) 
plan?

 (ii)  Estimate a linear probability model explaining 401(k) eligibility in terms of 
income, age, and gender. Include income and age in quadratic form, and report the 
results in the usual form.

 (iii)  Would you say that 401(k) eligibility is independent of income and age? What 
about gender? Explain.

 (iv)  Obtain the fitted values from the linear probability model estimated in part (ii). Are 
any fitted values negative or greater than one?

 (v)  Using the fitted values 2e401k
i
 from part (iv), define 	 e401k

i
 � 1 if 22e401k � .5 and 	401k � 0 if 22e401k � .5. Out of 9,275 families, how many are predicted to be 

eligible for a 401(k) plan?
 (vi)  For the 5,638 families not eligible for a 401(k), what percentage of these are 

predicted not to have a 401(k), using the predictor 	 e401k
i
? For the 3,637 families 

eligible for a 401(k) plan, what percentage are predicted to have one? (It is helpful 
if your econometrics package has a “tabulate” command.)

 (vii)  The overall percent correctly predicted is about 64.9%. Do you think this is a com-
plete description of how well the model does, given your answers in part (vi)?

 (viii)  Add the variable pira as an explanatory variable to the linear probability model. 
Other things equal, if a family has someone with an individual retirement account, 
how much higher is the estimated probability that the family is eligible for a 401(k) 
plan? Is it statistically different from zero at the 10% level?

C7.10 Use the data in NBASAL.RAW for this exercise.
 (i)  Estimate a linear regression model relating points per game to experience in the 

league and position (guard, forward, or center). Include experience in quadratic 
form and use centers as the base group. Report the results in the usual form.

 (ii) Why do you not include all three position dummy variables in part (i)?
 (iii)  Holding experience fixed, does a guard score more than a center? How much 

more? Is the difference statistically significant?
 (iv)  Now, add marital status to the equation. Holding position and experience fixed, are 

married players more productive (based on points per game)?
 (v)  Add interactions of marital status with both experience variables. In this expanded 

model, is there strong evidence that marital status affects points per game?
 (vi)  Estimate the model from part (iv) but use assists per game as the dependent vari-

able. Are there any notable differences from part (iv)? Discuss.
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C7.11 Use the data in 401KSUBS.RAW for this exercise.
 (i)  Compute the average, standard deviation, minimum, and maximum values of 

nettfa in the sample.
 (ii)  Test the hypothesis that average nettfa does not differ by 401(k) eligibility 

status; use a two-sided alternative. What is the dollar amount of the estimated 
difference?

 (iii)  From part (ii) of Computer Exercise C7.9, it is clear that e401k is not exogenous in 
a simple regression model; at a minimum, it changes by income and age. Estimate 
a multiple linear regression model for nettfa that includes income, age, and e401k 
as explanatory variables. The income and age variables should appear as quadrat-
ics. Now, what is the estimated dollar effect of 401(k) eligibility?

 (iv)  To the model estimated in part (iii), add the interactions e401k � (age � 41) and 
e401k · (age � 41)2. Note that the average age in the sample is about 41, so that in 
the new model, the coefficient on e401k is the estimated effect of 401(k) eligibility 
at the average age. Which interaction term is significant?

 (v)  Comparing the estimates from parts (iii) and (iv), do the estimated effects of 
401(k) eligibility at age 41 differ much? Explain.

 (vi)  Now, drop the interaction terms from the model, but define five family size 
dummy variables: fsize1, fsize2, fsize3, fsize4, and fsize5. The variable fsize5 is 
unity for families with five or more members. Include the family size dummies in 
the model estimated from part (iii); be sure to choose a base group. Are the family 
dummies significant at the 1% level?

 (vii) Now, do a Chow test for the model

nettfa � �
0
 � �

1
inc � �

2
inc2 � �

3
age � �

4
age2 � �

5
e401k � u

   across the five family size categories, allowing for intercept differences. The 
restricted sum of squared residuals, SSR

r
, is obtained from part (vi) because 

that regression assumes all slopes are the same. The unrestricted sum of squared 
residuals is SSR

ur
 � SSR

1
 � SSR

2
 � ... � SSR

5
, where SSR

f
 is the sum of squared 

residuals for the equation estimated using only family size f. You should convince 
yourself that there are 30 parameters in the unrestricted model (5 intercepts plus 
25 slopes) and 10 parameters in the restricted model (5 intercepts plus 5 slopes). 
Therefore, the number of restrictions being tested is q � 20, and the df for the 
unrestricted model is 9,275 � 30 � 9,245.

C7.12  Use the data set in BEAUTY.RAW, which contains a subset of the variables (but 
more usable observations than in the regressions) reported by Hamermesh and Biddle 
(1994).

 (i)  Find the separate fractions of men and women that are classified as having above aver-
age looks. Are more people rated as having above average or below average looks?

 (ii)  Test the null hypothesis that the population fractions of above-average-looking 
women and men are the same. Report the one-sided p-value that the fraction is 
higher for women. (Hint: Estimating a simple linear probability model is easiest.)

 (iii) Now estimate the model

log(wage) � �
0
 � �

1
belavg � �

2
abvavg � u

   separately for men and women, and report the results in the usual form. In both 
cases, interpret the coefficient on belavg. Explain in words what the hypothesis 
H

0
: �

1
 � 0 against H

1
: �

1
 � 0 means, and find the p-values for men and women.
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 (iv)   Is there convincing evidence that women with above average looks earn more than 
women with average looks? Explain.

 (v)  For both men and women, add the explanatory variables educ, exper, exper2, 
union, goodhlth, black, married, south, bigcity, smllcity, and service. Do the 
effects of the “looks” variables change in important ways?

C7.13 Use the data in APPLE.RAW to answer this question.
 (i)  Define a binary variable as ecobuy � 1 if ecolbs � 0 and ecobuy � 0 if ecolbs � 

0. In other words, ecobuy indicates whether, at the prices given, a family would 
buy any ecologically friendly apples. What fraction of families claim they would 
buy ecolabeled apples?

 (ii) Estimate the linear probability model

ecobuy � �
0
 � �

1
ecoprc � �

2
 regprc � �

3
  faminc 

� �
4
 hhsize � �

5
 educ � �

6
 age � u, 

   and report the results in the usual form. Carefully interpret the coefficients on the 
price variables.

 (iii)  Are the nonprice variables jointly significant in the LPM? (Use the usual F statis-
tic, even though it is not valid when there is heteroskedasticity.) Which explana-
tory variable other than the price variables seems to have the most important effect 
on the decision to buy ecolabeled apples? Does this make sense to you?

 (iv)  In the model from part (ii), replace faminc with log(faminc). Which model fits the 
data better, using faminc or log(  faminc)? Interpret the coefficient on log(  faminc).

 (v)  In the estimation in part (iv), how many estimated probabilities are negative? How 
many are bigger than one? Should you be concerned?

 (vi)  For the estimation in part (iv), compute the percent correctly predicted for each 
outcome, ecobuy � 0 and ecobuy � 1. Which outcome is best predicted by the 
model?

C7.14  Use the data in CHARITY.RAW to answer this question. The variable respond is a 
dummy variable equal to one if a person responded with a contribution on the most 
recent mailing sent by a charitable organization. The variable resplast is a dummy vari-
able equal to one if the person responded to the previous mailing, avggift is the average 
of past gifts (in Dutch guilders), and propresp is the proportion of times the person has 
responded to past mailings.

 (i)  Estimate a linear probability model relating respond to resplast and avggift. Report 
the results in the usual form, and interpret the coefficient on resplast.

 (ii) Does the average value of past gifts seem to affect the probability of responding?
 (iii)  Add the variable propresp to the model, and interpret its coefficient. (Be careful 

here: an increase of one in propresp is the largest possible change.)
 (iv)  What happened to the coefficient on resplast when propresp was added to the 

regression? Does this make sense?
 (v)  Add mailsyear, the number of mailings per year, to the model. How big is its 

estimated effect? Why might this not be a good estimate of the causal effect of 
mailings on responding?
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Heteroskedasticity

C H A P T E R 8

The homoskedasticity assumption, introduced in Chapter 3 for multiple regression, 
states that the variance of the unobservable error, u, conditional on the explanatory 
variables, is constant. Homoskedasticity fails whenever the variance of the unob-

servables changes across different segments of the population, where the segments are 
determined by the different values of the explanatory variables. For example, in a savings 
equation, heteroskedasticity is present if the variance of the unobserved factors affecting 
savings increases with income.
 In Chapters 4 and 5, we saw that homoskedasticity is needed to justify the usual t tests, 
F tests, and confidence intervals for OLS estimation of the linear regression model, even 
with large sample sizes. In this chapter, we discuss the available remedies when hetero-
skedasticity occurs, and we also show how to test for its presence. We begin by briefly 
reviewing the consequences of heteroskedasticity for ordinary least squares estimation.

8.1 Consequences of Heteroskedasticity 
for OLS
Consider again the multiple linear regression model:

 y � �0 � �
1
x

1
 � �

2
x

2
 � … � �

k 
x

k
 � u. 8.1

In Chapter 3, we proved unbiasedness of the OLS estimators  ̂  � 
0
,  ̂  � 

1
,  ̂  � 

2
, …,  ̂  � 

k
 under the first 

four Gauss-Markov assumptions, MLR.1 through MLR.4. In Chapter 5, we showed that 
the same four assumptions imply consistency of OLS. The homoskedasticity assumption 
MLR.5, stated in terms of the error variance as Var(u�x

1
, x

2
, …, x

k
) � �2, played no role in 

showing whether OLS was unbiased or consistent. It is important to remember that heter-
oskedasticity does not cause bias or inconsistency in the OLS estimators of the �

j
, whereas 

something like omitting an important variable would have this effect.
 The interpretation of our goodness-of-fit measures, R2 and  

-
 R 2, is also unaffected by the 

presence of heteroskedasticity. Why? Recall from Section 6.3 that the usual R-squared and 
the adjusted R-squared are different ways of estimating the population R-squared, which 
is simply 1 � � 2   u  /� 2   y  , where � 2   u  is the population error variance and �

y
2 is the population 
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variance of y. The key point is that because both variances in the population R-squared 
are unconditional variances, the population R-squared is unaffected by the presence 
of heteroskedasticity in Var(u�x

1
, …, x

k
). Further, SSR/n consistently estimates � 2   u , and 

SST/n consistently estimates � 2   y  , whether or not Var(u�x
1
, …, x

k
) is constant. The same 

is true when we use the degrees of freedom adjustments. Therefore, R2 and  
-

 R 2 are both 
consistent estimators of the population R-squared whether or not the homoskedasticity 
assumption holds.
 If heteroskedasticity does not cause bias or inconsistency in the OLS estimators, why 
did we introduce it as one of the Gauss-Markov assumptions? Recall from Chapter 3 that 
the estimators of the variances, Var( ̂  � 

j
), are biased without the homoskedasticity assump-

tion. Since the OLS standard errors are based directly on these variances, they are no 
longer valid for constructing confidence intervals and t statistics. The usual OLS t statistics 
do not have t distributions in the presence of heteroskedasticity, and the problem is not 
resolved by using large sample sizes. We will see this explicitly for the simple regression 
case in the next section, where we derive the variance of the OLS slope estimator under 
heteroskedasticity and propose a valid estimator in the presence of heteroskedasticity. 
Similarly, F statistics are no longer F distributed, and the LM statistic no longer has an 
asymptotic chi-square distribution. In summary, the statistics we used to test hypotheses 
under the Gauss-Markov assumptions are not valid in the presence of heteroskedasticity.
 We also know that the Gauss-Markov Theorem, which says that OLS is best linear 
unbiased, relies crucially on the homoskedasticity assumption. If Var(u�x) is not constant, 
OLS is no longer BLUE. In addition, OLS is no longer asymptotically efficient in the 
class of estimators described in Theorem 5.3. As we will see in Section 8.4, it is possible 
to find estimators that are more efficient than OLS in the presence of heteroskedasticity 
(although it requires knowing the form of the heteroskedasticity). With relatively large 
sample sizes, it might not be so important to obtain an efficient estimator. In the next sec-
tion, we show how the usual OLS test statistics can be modified so that they are valid, at 
least asymptotically.

8.2 Heteroskedasticity-Robust Inference 
after OLS Estimation
Because testing hypotheses is such an important component of any econometric analysis 
and the usual OLS inference is generally faulty in the presence of heteroskedasticity, we 
must decide if we should entirely abandon OLS. Fortunately, OLS is still useful. In the last 
two decades, econometricians have learned how to adjust standard errors and t, F, and LM 
statistics so that they are valid in the presence of heteroskedasticity of unknown form. 
This is very convenient because it means we can report new statistics that work regardless 
of the kind of heteroskedasticity present in the population. The methods in this section are 
known as heteroskedasticity-robust procedures because they are valid—at least in large 
samples—whether or not the errors have constant variance, and we do not need to know 
which is the case.
 We begin by sketching how the variances, Var( ̂  � 

j
), can be estimated in the presence of 

heteroskedasticity. A careful derivation of the theory is well beyond the scope of this text, 
but the application of heteroskedasticity-robust methods is very easy now because many 
statistics and econometrics packages compute these statistics as an option.
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 First, consider the model with a single independent variable, where we include an i 
subscript for emphasis:

y
i
 � �

0
 � �

1
x

i
 � u

i 
.

We assume throughout that the first four Gauss-Markov assumptions hold. If the errors 
contain heteroskedasticity, then

Var(u
i
�x

i
) � � 2   i  ,

where we put an i subscript on � 2 to indicate that the variance of the error depends upon 
the particular value of x

i
.

 Write the OLS estimator as

 ̂  � 
1
 � �

1
 �   

 ∑ 
i�1

   
n

    (x
i
 �  - x  )u

i 

  ___________________ 

 ∑ 
i�1

   
n

    (x
i
 �  - x  )2

  .

Under Assumptions MLR.1 through MLR.4 (that is, without the homoskedasticity 
assumption), and conditioning on the values x

i
 in the sample, we can use the same argu-

ments from Chapter 2 to show that

 Var( ̂  � 
1
) �   

 ∑ 
i�1

   
n

    (x
i
 �  - x  )2� 2   i   

  _____________________ 
SST 2   x  

  , 8.2

where SST
x
 �  ∑ 

i�1
  

n
    (x

i
 �  - x )2 is the total sum of squares of the x

i
. When � 2   i  � � 2 for all i, 

this formula reduces to the usual form, � 2/SST
x
. Equation (8.2) explicitly shows that, for the 

simple regression case, the variance formula derived under homoskedasticity is no longer 
valid when heteroskedasticity is present.
 Since the standard error of  ̂  � 

1
 is based directly on estimating Var( ̂  � 

1
), we need a way 

to estimate equation (8.2) when heteroskedasticity is present. White (1980) showed how 
this can be done. Let  ̂  u 

i
 denote the OLS residuals from the initial regression of y on x. 

Then, a valid estimator of Var( ̂  � 
1
), for heteroskedasticity of any form (including homo-

skedasticity), is

   
 ∑ 
i�1

   
n

    (x
i
 �  - x  )2 ̂  
  2   i  

  ____________ 
SST 2   x  

  , 8.3

which is easily computed from the data after the OLS regression.
 In what sense is (8.3) a valid estimator of Var( ̂  � 

1
)? This is pretty subtle. Briefly, it can 

be shown that when equation (8.3) is multiplied by the sample size n, it converges in prob-
ability to E[(x

i
 � 


x
)2u 2   i  ]/(� 2   x )2, which is the probability limit of n times (8.2). Ultimately, 

this is what is necessary for justifying the use of standard errors to construct  confidence 
intervals and t statistics. The law of large numbers and the central limit theorem play 
key roles in establishing these convergences. You can refer to White’s original paper for 
details, but that paper is quite technical. See also Wooldridge (2002, Chapter 4).



 Chapter 8   Heteroskedasticity 267

 A similar formula works in the general multiple regression model

y � �
0
 � �

1
x

1
 � … � �

k      
x 

k
 � u.

It can be shown that a valid estimator of Var( ̂  � 
j
), under Assumptions MLR.1 through 

MLR.4, is

 1Var ( ̂  � 
j
) � 

 ∑ 
i�1

   
n

     ̂   r   2
ij
 ̂  u 2

i

SSR2
j

, 8.4

where  ̂  r 
ij
 denotes the ith residual from regressing x

j
 on all other independent variables, and 

SSR
j
 is the sum of squared residuals from this regression (see Section 3.2 for the partial-

ling out representation of the OLS estimates). The square root of the quantity in (8.4) 
is called the heteroskedasticity-robust standard error for  ̂  � 

j
. In econometrics, these 

robust standard errors are usually attributed to White (1980). Earlier works in statistics, 
notably those by Eicker (1967) and Huber (1967), pointed to the possibility of obtaining 
such robust standard errors. In applied work, these are sometimes called White, Huber, or 
Eicker standard errors (or some hyphenated combination of these names). We will just 
refer to them as heteroskedasticity-robust standard errors, or even just robust standard 
errors when the context is clear.
 Sometimes, as a degrees of freedom correction, (8.4) is multiplied by n/(n � k � 1) 
before taking the square root. The reasoning for this adjustment is that, if the squared OLS 
residuals  ̂  u  2   i   were the same for all observations i—the strongest possible form of homoske-
dasticity in a sample—we would get the usual OLS standard errors. Other modifications 
of (8.4) are studied in MacKinnon and White (1985). Since all forms have only asymp-
totic justification and they are asymptotically equivalent, no form is uniformly preferred 
above all others. Typically, we use whatever form is computed by the regression package 
at hand.
 Once heteroskedasticity-robust standard errors are obtained, it is simple to construct 
a heteroskedasticity-robust t statistic. Recall that the general form of the t statistic is

 t �   
estimate � hypothesized value

   _________________________  
standard error

  . 8.5

Because we are still using the OLS estimates and we have chosen the hypothesized value 
ahead of time, the only difference between the usual OLS t statistic and the heteroskedasticity-
robust t statistic is in how the standard error is computed.

E x a m p l e  8 . 1

[Log Wage Equation with Heteroskedasticity-Robust Standard Errors]

We estimate the model in Example 7.6, but we report the heteroskedasticity-robust standard errors 
along with the usual OLS standard errors. Some of the estimates are reported to more digits so that 
we can compare the usual standard errors with the heteroskedasticity-robust standard errors:
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 2log(wage) � .321 � .213 marrmale � .198 marrfem � .110 singfem

 (.100) (.055) (.058) (.056)

 [.109] [.057] [.058] [.057]

 � .0789 educ � .0268 exper � .00054 exper  2

 (.0067) (.0055) (.00011)

 [.0074] [.0051] [.00011]
 8.6

 � .0291 tenure � .00053 tenure2

 (.0068)  (.00023)

 [.0069] [.00024]

 n � 526, R2 � .461.

The usual OLS standard errors are in parentheses, ( ), below the corresponding OLS estimate, and 
the heteroskedasticity-robust standard errors are in brackets, [ ]. The numbers in brackets are the 
only new things, since the equation is still estimated by OLS.
 Several things are apparent from equation (8.6). First, in this particular application, any variable 
that was statistically significant using the usual t statistic is still statistically significant using the 
heteroskedasticity-robust t statistic. This occurs because the two sets of standard errors are not very 
different. (The associated p-values will differ slightly because the robust t statistics are not identical 
to the usual, nonrobust t statistics.) The largest relative change in standard errors is for the coefficient on 
educ: the usual standard error is .0067, and the robust standard error is .0074. Still, the robust stan-
dard error implies a robust t statistic above 10.
 Equation (8.6) also shows that the robust standard errors can be either larger or smaller than the 
usual standard errors. For example, the robust standard error on exper is .0051, whereas the usual 
standard error is .0055. We do not know which will be larger ahead of time. As an empirical matter, 
the robust standard errors are often found to be larger than the usual standard errors.
 Before leaving this example, we must emphasize that we do not know, at this point, whether 
heteroskedasticity is even present in the population model underlying equation (8.6). All we have 
done is report, along with the usual standard errors, those that are valid (asymptotically) whether or 
not heteroskedasticity is present. We can see that no important conclusions are overturned by using 
the robust standard errors in this example. This often happens in applied work, but in other cases, the 
differences between the usual and robust standard errors are much larger. As an example of where 
the differences are substantial, see Computer Exercise C8.2.

 At this point, you may be asking the following question: If the heteroskedasticity-
robust standard errors are valid more often than the usual OLS standard errors, why do 
we bother with the usual standard errors at all? This is a sensible question. One reason the 
usual standard errors are still used in cross-sectional work is that, if the homoskedasticity 
assumption holds and the errors are normally distributed, then the usual t statistics have 
exact t distributions, regardless of the sample size (see Chapter 4). The robust standard 
errors and robust t statistics are justified only as the sample size becomes large. With small 
sample sizes, the robust t statistics can have distributions that are not very close to the t 
distribution, and that could throw off our inference.
 In large sample sizes, we can make a case for always reporting only the heteroskedasticity-
robust standard errors in cross-sectional applications, and this practice is being followed 
more and more in applied work. It is also common to report both standard errors, as in 
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equation (8.6), so that a reader can determine whether any conclusions are sensitive to the 
standard error in use.
 It is also possible to obtain F and LM statistics that are robust to heteroskedasticity 
of an unknown, arbitrary form. The heteroskedasticity-robust F statistic (or a simple 
transformation of it) is also called a heteroskedasticity-robust Wald statistic. A general 
treatment of the Wald statistic requires matrix algebra and is sketched in Appendix E; 
see Wooldridge (2002, Chapter 4) for a more detailed treatment. Nevertheless, using 
heteroskedasticity-robust statistics for multiple exclusion restrictions is straightforward 
because many econometrics packages now compute such statistics routinely.

E x a m p l e  8 . 2

[Heteroskedasticity-Robust F Statistic]

Using the data for the spring semester in GPA3.RAW, we estimate the following equation:

 2cumgpa � 1.47 � .00114 sat  � .00857 hsperc � .00250 tothrs

 (.23) (.00018) (.00124) (.00073)

 [.22] [.00019] [.00140] [.00073]

 � .303 female � .128 black � .059 white 8.7

 (.059) (.147) (.141)

 [.059] [.118] [.110]

 n � 366, R2 � .4006,  
-

 R 2 � .3905.

Again, the differences between the usual standard errors and the heteroskedasticity-robust standard 
errors are not very big, and use of the robust t statistics does not change the statistical significance 
of any independent variable. Joint significance tests are not much affected either. Suppose we wish 
to test the null hypothesis that, after the other factors are controlled for, there are no differences in 
cumgpa by race. This is stated as H

0
: �

black
 � 0, �

white
 � 0. The usual F statistic is easily obtained, 

once we have the R-squared from the restricted model; this turns out to be .3983. The F statistic is 
then [(.4006 � .3983)/(1�.4006)](359/2) � .69. If heteroskedasticity is present, this version of the 
test is invalid. The heteroskedasticity-robust version has no simple form, but it can be computed using 
certain statistical packages. The value of the heteroskedasticity-robust F statistic turns out to be .75, 
which differs only slightly from the nonrobust version. The p-value for the robust test is .474, which 
is not close to standard significance levels. We fail to reject the null hypothesis using either test.

Computing Heteroskedasticity-Robust LM Tests

Not all regression packages compute F statistics that are robust to heteroskedasticity. 
Therefore, it is sometimes convenient to have a way of obtaining a test of multiple exclu-
sion restrictions that is robust to het-
eroskedasticity and does not require a 
particular kind of econometric software. 
It turns out that a heteroskedasticity-
robust LM statistic is easily obtained 
using virtually any regression package.

Q u e s t i o n  8 . 1
Evaluate the following statement: The heteroskedasticity-robust 
standard errors are always bigger than the usual standard errors.
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 To illustrate computation of the robust LM statistic, consider the model

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � �

4
x

4
 � �

5
x

5
 � u,

and suppose we would like to test H
0
: �

4
 � 0, �

5
 � 0. To obtain the usual LM statistic, 

we would first estimate the restricted model (that is, the model without x
4
 and x

5
) to obtain 

the residuals,  ̃  u . Then, we would regress  ̃  u  on all of the independent variables and the 
LM � n�R 2   

 ̃  u 
  , where R 2   

 ̃  u 
   is the usual R-squared from this regression.

 Obtaining a version that is robust to heteroskedasticity requires more work. One 
way to compute the statistic requires only OLS regressions. We need the residuals, say,
 ̃  r 

1
, from the regression of x

4
 on x

1
, x

2
, x

3
. Also, we need the residuals, say,  ̃  r 

2
, from the 

regression of x
5
 on x

1
, x

2
, x

3
. Thus, we regress each of the independent variables excluded 

under the null on all of the included independent variables. We keep the residuals each 
time. The final step appears odd, but it is, after all, just a computational device. Run the 
regression of

 1 on  ̃  r 
1
 ̃  u ,  ̃  r 

2 
 ̃  u , 8.8

without an intercept. Yes, we actually define a dependent variable equal to the value one 
for all observations. We regress this onto the products  ̃  r 

1
 ̃  u  and  ̃  r 

2
 ̃  u . The robust LM statistic 

turns out to be n � SSR
1
, where SSR

1
 is just the usual sum of squared residuals from 

regression (8.8).
 The reason this works is somewhat technical. Basically, this is doing for the LM test 
what the robust standard errors do for the t test. [See Wooldridge (1991b) or Davidson and 
MacKinnon (1993) for a more detailed discussion.]
 We now summarize the computation of the heteroskedasticity-robust LM statistic in 
the general case.

A HETEROSKEDASTICITY-ROBUST LM STATISTIC:

 1. Obtain the residuals  ̃  u  from the restricted model.
 2.  Regress each of the independent variables excluded under the null on all of the 

included independent variables; if there are q excluded variables, this leads to q sets 
of residuals ( ̃  r 

1
,  ̃  r 

2
, …,  ̃  r 

q
).

 3. Find the products between each  ̃  r 
j
 and  ̃  u  (for all observations).

 4.  Run the regression of 1 on  ̃  r 
1
 ̃  u ,  ̃  r 

2
 ̃  u , …,  ̃  r 

q
 ̃  u , without an intercept. The  heteroskedasticity-

robust LM statistic is n � SSR
1
, where SSR

1
 is just the usual sum of squared 

 residuals from this final regression. Under H
0
, LM is distributed approximately 

as 	 2   q .

Once the robust LM statistic is obtained, the rejection rule and computation of p-values are 
the same as for the usual LM statistic in Section 5.2.

E x a m p l e  8 . 3

[Heteroskedasticity-Robust LM Statistic]

We use the data in CRIME1.RAW to test whether the average sentence length served for past con-
victions affects the number of arrests in the current year (1986). The estimated model is
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 2narr86 � .567 � .136 pcnv � .0178 avgsen � .00052 avgsen2

 (.036) (.040) (.0097) (.00030)

 [.040] [.034] [.0101] [.00021]

 � .0394 ptime86 � .0505 qemp86 � .00148 inc86

 (.0087) (.0144) (.00034) 
8.9  

 [.0062] [.0142] [.00023]

 � .325 black � .193 hispan

 (.045) (.040)

 [.058] [.040]

 n � 2,725, R2 � .0728.

In this example, there are more substantial differences between some of the usual standard errors 
and the robust standard errors. For example, the usual t statistic on avgsen2 is about �1.73, while the 
robust t statistic is about �2.48. Thus, avgsen2 is more significant using the robust standard error.
 The effect of avgsen on narr86 is somewhat difficult to reconcile. Because the relationship 
is quadratic, we can figure out where avgsen has a positive effect on narr86 and where the effect 
becomes negative. The turning point is .0178/[2(.00052)] � 17.12; recall that this is measured in 
months. Literally, this means that narr86 is positively related to avgsen when avgsen is less than 
17 months; then avgsen has the expected deterrent effect after 17 months.
 To see whether average sentence length has a statistically significant effect on narr86, we must 
test the joint hypothesis H

0
: �

avgsen
 � 0, �

avgsen2 � 0. Using the usual LM statistic (see Section 5.2), we 
obtain LM � 3.54; in a chi-square distribution with two df, this yields a p-value � .170. Thus, we do 
not reject H

0
 at even the 15% level. The heteroskedasticity-robust LM statistic is LM � 4.00 (rounded 

to two decimal places), with a p-value � .135. This is still not very strong evidence against H
0
; avgsen 

does not appear to have a strong effect on narr86. [Incidentally, when avgsen appears alone in (8.9), 
that is, without the quadratic term, its usual t statistic is .658, and its robust t statistic is .592.]

8.3 Testing for Heteroskedasticity
The heteroskedasticity-robust standard errors provide a simple method for computing t 
statistics that are asymptotically t distributed whether or not heteroskedasticity is present. 
We have also seen that heteroskedasticity-robust F and LM statistics are available. 
Implementing these tests does not require knowing whether or not heteroskedasticity is 
present. Nevertheless, there are still some good reasons for having simple tests that can 
detect its presence. First, as we mentioned in the previous section, the usual t statistics 
have exact t distributions under the classical linear model assumptions. For this reason, 
many economists still prefer to see the usual OLS standard errors and test statistics 
reported, unless there is evidence of heteroskedasticity. Second, if heteroskedasticity is 
present, the OLS estimator is no longer the best linear unbiased estimator. As we will 
see in Section 8.4, it is possible to obtain a better estimator than OLS when the form of 
heteroskedasticity is known.
 Many tests for heteroskedasticity have been suggested over the years. Some of them, 
while having the ability to detect heteroskedasticity, do not directly test the assumption that 
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the variance of the error does not depend upon the independent variables. We will restrict 
ourselves to more modern tests, which detect the kind of heteroskedasticity that invalidates 
the usual OLS statistics. This also has the benefit of putting all tests in the same framework.
 As usual, we start with the linear model

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
 � u, 8.10

where Assumptions MLR.1 through MLR.4 are maintained in this section. In particular, 
we assume that E(u�x

1
, x

2
, …, x

k
) � 0, so that OLS is unbiased and consistent.

 We take the null hypothesis to be that Assumption MLR.5 is true:

 H
0
: Var(u�x

1
, x

2
, …, x

k
) � �2. 8.11

That is, we assume that the ideal assumption of homoskedasticity holds, and we require 
the data to tell us otherwise. If we cannot reject (8.11) at a sufficiently small significance 
level, we usually conclude that heteroskedasticity is not a problem. However, remember 
that we never accept H

0
; we simply fail to reject it.

 Because we are assuming that u has a zero conditional expectation, Var(u�x) � E(u2�x), 
and so the null hypothesis of homoskedasticity is equivalent to

 H
0
: E(u2�x

1
, x

2
, …, x

k
) � E(u2) � �2.

This shows that, in order to test for violation of the homoskedasticity assumption, we want 
to test whether u2 is related (in expected value) to one or more of the explanatory variables. 
If H

0
 is false, the expected value of u2, given the independent variables, can be virtually 

any function of the x
j
. A simple approach is to assume a linear function:

 u2 � �
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
 � v, 8.12

where v is an error term with mean zero given the x
j
. Pay close attention to the dependent 

variable in this equation: it is the square of the error in the original regression equation, (8.10). 
The null hypothesis of homoskedasticity is

 H
0
: �

1
 � �

2
 � … � �

k
 � 0. 8.13

Under the null hypothesis, it is often reasonable to assume that the error in (8.12), v, is 
independent of x

1
, x

2
, …, x

k
. Then, we know from Section 5.2 that either the F or LM sta-

tistics for the overall significance of the independent variables in explaining u2 can be used 
to test (8.13). Both statistics would have asymptotic justification, even though u2 cannot be 
normally distributed. (For example, if u is normally distributed, then u2/�2 is distributed as 
	 2   

1
 .) If we could observe the u2 in the sample, then we could easily compute this statistic 

by running the OLS regression of u2 on x
1
, x

2
, …, x

k
, using all n observations.

 As we have emphasized before, we never know the actual errors in the population 
model, but we do have estimates of them: the OLS residual,  ̂  u 

i
, is an estimate of the error 

u
i
 for observation i. Thus, we can estimate the equation

  ̂  u 2 � �
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
 � error 8.14
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and compute the F or LM statistics for the joint significance of x
1
, …, x

k
. It turns out that 

using the OLS residuals in place of the errors does not affect the large sample distribution 
of the F or LM statistics, although showing this is pretty complicated.
 The F and LM statistics both depend on the R-squared from regression (8.14); call 
this R 2    ̂  u 

  2  to distinguish it from the R-squared in estimating equation (8.10). Then, the F 
statistic is

 F �   
R 2   

 ̂  u 
  2/k  __________________  

(1 � R 2   
 ̂  u 
  2 )/(n � k � 1)

  , 8.15

where k is the number of regressors in (8.14); this is the same number of independent 
variables in (8.10). Computing (8.15) by hand is rarely necessary, because most regression 
packages automatically compute the F statistic for overall significance of a regression. 
This F statistic has (approximately) an F

k,n�k�1 
distribution under the null hypothesis of 

homoskedasticity.
 The LM statistic for heteroskedasticity is just the sample size times the R-squared 
from (8.14):

 LM � n�R 2    ̂  u 
  2 . 8.16

Under the null hypothesis, LM is distributed asymptotically as 	 2   
k
  . This is also very easy to 

obtain after running regression (8.14).
 The LM version of the test is typically called the Breusch-Pagan test for heteroske-
dasticity (BP test). Breusch and Pagan (1979) suggested a different form of the test that 
assumes the errors are normally distributed. Koenker (1981) suggested the form of the LM 
statistic in (8.16), and it is generally preferred due to its greater applicability.
 We summarize the steps for testing for heteroskedasticity using the BP test:

THE BREUSCH-PAGAN TEST FOR HETEROSKEDASTICITY:

 1.  Estimate the model (8.10) by OLS, as usual. Obtain the squared OLS residuals,  ̂  u 2 

(one for each observation).
 2.  Run the regression in (8.14). Keep the R-squared from this regression, R 2    ̂  u 

  2 .
 3.  Form either the F statistic or the LM statistic and compute the p-value (using the 

F
k,n�k�1 

distribution in the former case and the 	
k
2 distribution in the latter case). If 

the p-value is sufficiently small, that is, below the chosen significance level, then 
we reject the null hypothesis of homoskedasticity.

 If the BP test results in a small enough p-value, some corrective measure should be 
taken. One possibility is to just use the heteroskedasticity-robust standard errors and test 
statistics discussed in the previous section. Another possibility is discussed in Section 8.4.

E x a m p l e  8 . 4

[Heteroskedasticity in Housing Price Equations]

We use the data in HPRICE1.RAW to test for heteroskedasticity in a simple housing price equation. 
The estimated equation using the levels of all variables is
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 2price � �21.77 � .00207 lotsize � .123 sqrft � 13.85 bdrms

  (29.48) (.00064) (.013) (9.01) 8.17

 n � 88, R2 � .672.

This equation tells us nothing about whether the error in the population model is heteroskedastic. 
We need to regress the squared OLS residuals on the independent variables. The R-squared from the 
regression of  ̂  u 2 on lotsize, sqrft, and bdrms is R 2   

 ̂  u 
  2 � .1601. With n � 88 and k � 3, this produces an F 

statistic for significance of the independent variables of F � [.1601/(1 � .1601)](84/3) � 5.34. The 
associated p-value is .002, which is strong evidence against the null. The LM statistic is 88(.1601) � 
14.09; this gives a p-value � .0028 (using the 	  2   

3
  distribution), giving essentially the same conclu-

sion as the F statistic. This means that the usual standard errors reported in (8.17) are not reliable.
 In Chapter 6, we mentioned that one benefit of using the logarithmic functional form for the 
dependent variable is that heteroskedasticity is often reduced. In the current application, let us put 
price, lotsize, and sqrft in logarithmic form, so that the elasticities of price, with respect to lotsize 
and sqrft, are constant. The estimated equation is

 2log(price) � �1.30 � .168 log(lotsize) � .700 log(sqrft) � .037 bdrms

 (.65) (.038) (.093) (.028) 8.18

 n � 88, R2 � .643.

Regressing the squared OLS residuals from this regression on log(lotsize), log(sqrft), and bdrms 
gives  R 2   

 ̂  u 
  2 � .0480. Thus, F � 1.41 ( p-value � .245), and LM � 4.22 ( p-value � .239). Therefore, 

we fail to reject the null hypothesis of homoskedasticity in the model with the logarithmic functional 
forms. The occurrence of less heteroskedasticity with the dependent variable in logarithmic form has 
been noticed in many empirical applications.

 If we suspect that heteroskedasticity depends only upon certain independent variables, 
we can easily modify the Breusch-Pagan test: we simply regress  ̂  u 2 on whatever indepen-
dent variables we choose and carry out the appropriate F or LM test. Remember that the 
appropriate degrees of freedom depends upon the number of independent variables in 

the regression with  ̂  u 2 as the dependent 
variable; the number of independent 
variables showing up in equation (8.10) 
is irrelevant.
 If the squared residuals are regressed 
on only a single independent variable, 
the test for heteroskedasticity is just 
the usual t statistic on the variable. A 
significant t statistic suggests that het-
eroskedasticity is a problem.

The White Test for Heteroskedasticity

In Chapter 5, we showed that the usual OLS standard errors and test statistics are asymp-
totically valid, provided all of the Gauss-Markov assumptions hold. It turns out that the 
homoskedasticity assumption, Var(u

1
�x

1
, …, x

k
) � �2, can be replaced with the weaker 

Q u e s t i o n  8 . 2
Consider wage equation (7.11), where you think that the condi-
tional variance of log(wage) does not depend on educ, exper, or 
tenure. However, you are worried that the variance of log(wage) 
differs across the four demographic groups of married males, 
married females, single males, and single females. What regres-
sion would you run to test for heteroskedasticity? What are the 
degrees of freedom in the F test?
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assumption that the squared error, u2, is uncorrelated with all the independent variables 
(x

j
), the squares of the independent variables (x 2   j  ), and all the cross products (x

j 
x

h 
for j 	 h). 

This observation motivated White (1980) to propose a test for heteroskedasticity that adds 
the squares and cross products of all the independent variables to equation (8.14). The test 
is explicitly intended to test for forms of heteroskedasticity that invalidate the usual OLS 
standard errors and test statistics.
 When the model contains k � 3 independent variables, the White test is based on an 
estimation of

  ̂  u 2 � �
0 
� �

1
x

1 
� �

2
x

2 
� �

3
x

3 
� �

4
x 2   

1
  � �

5
x 2   

2
  � �

6
x 2   

3
 

 � �
7 
x

1
x

2 
� �

8
x

1
x

3 
� �

9
x

2
x

3 
� error.

 8.19

Compared with the Breusch-Pagan test, this equation has six more regressors. The 
White test for heteroskedasticity is the LM statistic for testing that all of the �

j 
in 

equation (8.19) are zero, except for the intercept. Thus, nine restrictions are being tested 
in this case. We can also use an F test of this hypothesis; both tests have asymptotic 
 justification.
 With only three independent variables in the original model, equation (8.19) has nine 
independent variables. With six independent variables in the original model, the White 
regression would generally involve 27 regressors (unless some are redundant). This abun-
dance of regressors is a weakness in the pure form of the White test: it uses many degrees 
of freedom for models with just a moderate number of independent variables.
 It is possible to obtain a test that is easier to implement than the White test and more 
conserving on degrees of freedom. To create the test, recall that the difference between the 
White and Breusch-Pagan tests is that the former includes the squares and cross products 
of the independent variables. We can preserve the spirit of the White test while conserv-
ing on degrees of freedom by using the OLS fitted values in a test for heteroskedasticity. 
Remember that the fitted values are defined, for each observation i, by

  ̂  y 
i 
�  ̂  � 

0
 �  ̂  � 

1
x

i1
 �  ̂  � 

2
x

i2
 � … �  ̂  � 

k
x

ik
.

These are just linear functions of the independent variables. If we square the fitted values, 
we get a particular function of all the squares and cross products of the independent vari-
ables. This suggests testing for heteroskedasticity by estimating the equation

  ̂  u 2 � �
0 
� �

1
 ̂  y  � �

2
  ̂  y 2 � error, 8.20

where  ̂  y  stands for the fitted values. It is important not to confuse  ̂  y  and y in this 
equation. We use the fitted values because they are functions of the independent vari-
ables (and the estimated parameters); using y in (8.20) does not produce a valid test for 
 heteroskedasticity.
 We can use the F or LM statistic for the null hypothesis H

0
: �

1 
� 0, �

2 
� 0 in equation (8.20). 

This results in two restrictions in testing the null of homoskedasticity, regardless of the 
number of independent variables in the original model. Conserving on degrees of freedom 
in this way is often a good idea, and it also makes the test easy to implement.
 Since  ̂  y  is an estimate of the expected value of y, given the x

j
, using (8.20) to test for 

heteroskedasticity is useful in cases where the variance is thought to change with the level 
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of the expected value, E(y�x). The test from (8.20) can be viewed as a special case of the 
White test, since equation (8.20) can be shown to impose restrictions on the parameters in 
equation (8.19).

A SPECIAL CASE OF THE WHITE TEST FOR HETEROSKEDASTICITY:

 1.  Estimate the model (8.10) by OLS, as usual. Obtain the OLS residuals  ̂  u  and 
the fitted values  ̂  y . Compute the squared OLS residuals  ̂  u 2 and the squared fitted 
values  ̂  y 2.

 2.  Run the regression in equation (8.20). Keep the R-squared from this regression, R 2   
 ̂  u 
  2.

 3.  Form either the F or LM statistic and compute the p-value (using the F
2,n�3 

distribu-
tion in the former case and the � 2   

2
  distribution in the latter case).

E x a m p l e  8 . 5

[Special Form of the White Test in the Log Housing Price Equation]

We apply the special case of the White test to equation (8.18), where we use the LM form of the 
statistic. The important thing to remember is that the chi-square distribution always has two df. The 
regression of  ̂  u 2 on 1lprice, (1lprice)2, where 1lprice denotes the fitted values from (8.18), produces 
R 2   

 ̂  u 
  2 � .0392; thus, LM � 88(.0392) � 3.45, and the p-value � .178. This is stronger evidence of 

heteroskedasticity than is provided by the Breusch-Pagan test, but we still fail to reject homoskedas-
ticity at even the 15% level.

 Before leaving this section, we should discuss one important caveat. We have inter-
preted a rejection using one of the heteroskedasticity tests as evidence of heteroskedastic-
ity. This is appropriate provided we maintain Assumptions MLR.1 through MLR.4. But, 
if MLR.4 is violated—in particular, if the functional form of E(y�x) is misspecified—then 
a test for heteroskedasticity can reject H

0
, even if Var(y�x) is constant. For example, if 

we omit one or more quadratic terms in a regression model or use the level model when 
we should use the log, a test for heteroskedasticity can be significant. This has led some 
economists to view tests for heteroskedasticity as general misspecification tests. However, 
there are better, more direct tests for functional form misspecification, and we will cover 
some of them in Section 9.1. It is better to use explicit tests for functional form first, since 
functional form misspecification is more important than heteroskedasticity. Then, once we 
are satisfied with the functional form, we can test for heteroskedasticity.

8.4 Weighted Least Squares Estimation
If heteroskedasticity is detected using one of the tests in Section 8.3, we know from 
Section 8.2 that one possible response is to use heteroskedasticity-robust statistics after 
estimation by OLS. Before the development of heteroskedasticity-robust statistics, the 
response to a finding of heteroskedasticity was to specify its form and use a weighted least 
squares method, which we develop in this section. As we will argue, if we have correctly 
specified the form of the variance (as a function of explanatory variables), then weighted 
least squares (WLS) is more efficient than OLS, and WLS leads to new t and F statistics 
that have t and F distributions. We will also discuss the implications of using the wrong 
form of the variance in the WLS procedure.
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The Heteroskedasticity Is Known 

up to a Multiplicative Constant

Let x denote all the explanatory variables in equation (8.10) and assume that

 Var(u�x) � �2h(x), 8.21

where h(x) is some function of the explanatory variables that determines the heteroskedas-
ticity. Since variances must be positive, h(x) � 0 for all possible values of the independent 
variables. For now, we assume that the function h(x) is known. The population parameter 
�2 is unknown, but we will be able to estimate it from a data sample.
 For a random drawing from the population, we can write � 2   i   � Var(u

i
�x

i
) � �2h(x

i
) � 

�2h
i
, where we again use the notation x

i 
to denote all independent variables for observation 

i, and h
i 
changes with each observation because the independent variables change across 

observations. For example, consider the simple savings function

 sav
i 
� �

0 
� �

1
inc

i 
� u

i
 8.22

  Var(u
i
�inc

i
) � �2inc

i
. 8.23

Here, h(x) � h(inc) � inc: the variance of the error is proportional to the level of income. 
This means that, as income increases, the variability in savings increases. (If �

1
 � 0, the 

expected value of savings also increases with income.) Because inc is always positive, the 
variance in equation (8.23) is always guaranteed to be positive. The standard deviation of 
u

i
, conditional on inc

i
, is � �

___
 inc  
i
.

 How can we use the information in equation (8.21) to estimate the �
j
? Essentially, we 

take the original equation,

 y
i 
� �

0 
� �

1
x

i1 
� �

2
x

i2 
� … � �

k
x

ik 
� u

i 
, 8.24

which contains heteroskedastic errors, and transform it into an equation that has homoske-
dastic errors (and satisfies the other Gauss-Markov assumptions). Since h

i 
is just a function 

of x
i
, u

i 
/ �

__
 h

i
    has a zero expected value conditional on x

i
. Further, since Var(u

i
�x

i
) � E(u 2   i  �xi

) � 
�2h

i
, the variance of u

i 
/ �

__
 h  
i
 (conditional on x

i
) is �2:

 E  � (ui  
/ �

__
 h

i
   )2 �  � E(u 2   i  ) / hi 

� (�2h
i
) / h

i 
� �2,

where we have suppressed the conditioning on x
i 
for simplicity. We can divide equation (8.24) 

by  �
__

 h
i
    to get

 y
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__
 h

i
    � �
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   ) 8.25

or

 y *   i   � �
0
x *   

i0
  
 
� �

1
x *   

i1
  
 
� … � �

k
x *   

ik
  
 
� u *   i  , 8.26
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where x *   
i0
  
  

� 1/ �
__

 h
i
    and the other starred variables denote the corresponding original 

 variables divided by  �
__

 h
i
   .

 Equation (8.26) looks a little peculiar, but the important thing to remember is that we 
derived it so we could obtain estimators of the �

j 
that have better efficiency properties than 

OLS. The intercept �
0 
in the original equation (8.24) is now multiplying the variable x *   

i0
   � 

1/ �
__

 h
i
   . Each slope parameter in �

j 
multiplies a new variable that rarely has a useful inter-

pretation. This should not cause problems if we recall that, for interpreting the parameters 
and the model, we always want to return to the original equation (8.24).
 In the preceding savings example, the transformed equation looks like

 sav
i 
/ �

____
 inc

i
   � �

0
(1/ �

____
 inc

i
   ) � �

1
 �

____
 inc

i
   � u *   i  ,

where we use the fact that inc
i 
/ �

____
 inc

i
   �  �

____
 inc

i
  . Nevertheless, �

1 
is the marginal propensity 

to save out of income, an interpretation we obtain from equation (8.22).
 Equation (8.26) is linear in its parameters (so it satisfies MLR.1), and the random 
sampling assumption has not changed. Further, u *   i   has a zero mean and a constant 
variance (�2), conditional on x *   i  . This means that if the original equation satisfies the first 
four Gauss-Markov assumptions, then the transformed equation (8.26) satisfies all five 
Gauss-Markov assumptions. Also, if u

i 
has a normal distribution, then u *   i   has a normal 

distribution with variance �2. Therefore, the transformed equation satisfies the classical 
linear model assumptions (MLR.1 through MLR.6) if the original model does so except 
for the homoskedasticity assumption.
 Since we know that OLS has appealing properties (is BLUE, for example) under the 
Gauss-Markov assumptions, the discussion in the previous paragraph suggests estimating 
the parameters in equation (8.26) by ordinary least squares. These estimators, � *   

0
  , � *   

1
  , …, � *   

k
  ,

will be different from the OLS estimators in the original equation. The � *   j   are examples 
of generalized least squares (GLS) estimators. In this case, the GLS estimators are used 
to account for heteroskedasticity in the errors. We will encounter other GLS estimators 
in Chapter 12.
 Because equation (8.26) satisfies all of the ideal assumptions, standard errors, t statis-
tics, and F statistics can all be obtained from regressions using the transformed variables. 
The sum of squared residuals from (8.26) divided by the degrees of freedom is an unbiased 
estimator of �2. Further, the GLS estimators, because they are the best linear unbiased 
estimators of the �

j
, are necessarily more efficient than the OLS estimators  ̂  � 

j 
obtained 

from the untransformed equation. Essentially, after we have transformed the variables, 
we simply use standard OLS analysis. But we must remember to interpret the estimates in 
light of the original equation.
 The R-squared that is obtained from estimating (8.26), while useful for computing F 
statistics, is not especially informative as a goodness-of-fit measure: it tells us how much 
variation in y* is explained by the x *   j  , and this is seldom very meaningful.
 The GLS estimators for correcting heteroskedasticity are called weighted least 
squares (WLS) estimators. This name comes from the fact that the � *   j   minimize the 
weighted sum of squared residuals, where each squared residual is weighted by 1/h

i
. The 

idea is that less weight is given to observations with a higher error variance; OLS gives 
each observation the same weight because it is best when the error variance is identical 
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for all partitions of the population. Mathematically, the WLS estimators are the values of 
the b

j 
that make

  ∑ 
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k
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ik
)2/h

i
 8.27

as small as possible. Bringing the square root of 1/h
i 
inside the squared residual shows that 

the weighted sum of squared residuals is identical to the sum of squared residuals in the 
transformed variables:

  ∑ 
i�1
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  )2.

Since OLS minimizes the sum of squared residuals (regardless of the definitions of the 
dependent variable and independent variable), it follows that the WLS estimators that min-
imize (8.27) are simply the OLS estimators from (8.26). Note carefully that the squared 
residuals in (8.27) are weighted by 1/h

i
, whereas the transformed variables in (8.26) are 

weighted by 1/ �
__

 h
i
  .

 A weighted least squares estimator can be defined for any set of positive weights. 
OLS is the special case that gives equal weight to all observations. The efficient proce-
dure, GLS, weights each squared residual by the inverse of the conditional variance of u

i
 

given x
i
.

 Obtaining the transformed variables in equation (8.25) in order to manually perform 
weighted least squares can be tedious, and the chance of making mistakes is nontrivial. 
Fortunately, most modern regression packages have a feature for computing weighted 
least squares. Typically, along with the dependent and independent variables in the origi-
nal model, we just specify the weighting function, 1/h

i
, appearing in (8.27). That is, we 

specify weights proportional to the inverse of the variance. In addition to making mistakes 
less likely, this forces us to interpret weighted least squares estimates in the original 
model. In fact, we can write out the estimated equation in the usual way. The estimates 
and standard errors will be different from OLS, but the way we interpret those estimates, 
standard errors, and test statistics is the same.

E x a m p l e  8 . 6 

[Financial Wealth Equation]

We now estimate equations that explain net total financial wealth (nettfa, measured in $1,000s) in 
terms of income (inc, also measured in $1,000s) and some other variables, including age, gender, and 
an indicator for whether the person is eligible for a 401(k) pension plan.We use the data on single 
people (  fsize � 1) in 401KSUBS.RAW. In Computer Exercise C6.12, it was found that a specific 
quadratic function in age, namely (age � 25)2, fit the data just as well as an unrestricted quadratic. 
Plus, the restricted form gives a simplified intepretation because the minimum age in the sample is 
25: nettfa is an increasing function of age after age � 25. 
 The results are reported in Table 8.1. Because we suspect heteroskedasticity, we report the 
heteroskedasticity-robust standard errors for OLS. The weighted least squares estimates, and their 
standard errors, are obtained under the assumption Var(u�inc) � �2inc. 
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 Without controlling for other factors, another dollar of income is estimated to increase nettfa by 
about 82¢ when OLS is used; the WLS estimate is smaller, about 79¢. The  difference is not large; we 
certainly do not expect them to be identical. The WLS coefficient does have a smaller standard error 
than OLS, almost 40% smaller, provided we assume the model Var(nettfa�inc) � �2inc is correct. 
 Adding the other controls reduced the inc coefficient somewhat, with the OLS estimate 
still larger than the WLS estimate. Again, the WLS estimate of �

inc
 is more precise. Age has 

an increasing effect starting at age � 25, with the OLS estimate showing a larger effect. The 
WLS estimate of �

age 
is more precise in this case. Gender does not have a statistically signifi-

cant effect on nettfa, but being eligible for a 401(k) plan does: the OLS estimate is that those 
eligible, holding fixed income, age, and gender, have net total financial assets about $6,890 
higher. The WLS estimate is substantially below the OLS estimate and suggests a misspeci-
fication of the functional form in the mean equation. (One possibility is to interact e401k and 
inc; see Computer Exercise C8.11.) 

 Using WLS, the F statistic for joint sig-
nificance of (age � 25)2, male, and e401k is 
about 30.8 if we use the R-squareds reported 
in Table 8.1. With 2 and 2,012 degrees of 
freedom, the p-value is zero to more than 
15 decimal places; of course, this is not sur-
prising given the very large t statistics for the 
age and 401(k) variables.

Q u e s t i o n  8 . 3
Using the OLS residuals obtained from the OLS regression  reported 
in column (1) of Table 8.1, the regression of  ̂  u 2 on inc yields a t 
statistic of 2.96. Does it appear we should worry about heteroske-
dasticity in the financial wealth equation?

TABLE  8 . 1

Dependent Variable: nettfa

Independent
Variables

(1)
OLS

(2)
WLS

(3)
OLS

(4)
WLS

inc  .821
 (.104)

 .787
 (.063)

 .771
 (.100)

 .740 
 (.064)

(age � 25)2 — —  .0251 
 (.0043)

 .0175
 (.0019)

male — —  2.48 
 (2.06)

 1.84 
 (1.56)

e401k — —  6.89 
 (2.29)

 5.19
 (1.70)

intercept  �10.57
  (2.53)

 −9.58 
 (1.65)

 �20.98 
 (3.50)

 �16.70 
 (1.96)

Observations 2,017 2,017 2,017 2,017

R-squared .0827 .0709 .1279 .1115
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 Assuming that the error variance in the financial wealth equation has a variance pro-
portional to income is essentially arbitrary. In fact, in most cases, our choice of weights in 
WLS has a degree of arbitrariness. However, there is one case where the weights needed 
for WLS arise naturally from an underlying econometric model. This happens when, 
instead of using individual-level data, we only have averages of data across some group or 
geographic region. For example, suppose we are interested in determining the relationship 
between the amount a worker contributes to his or her 401(k) pension plan as a function 
of the plan generosity. Let i denote a particular firm and let e denote an employee within 
the firm. A simple model is

 contrib
i, e 

� �
0
 � �

1
earns

i, e
 � �

2
age

i, e
 � �

3
mrate

i
 � u

i, e
, 8.28

where contrib
i, e 

is the annual contribution by employee e who works for firm i, earns
i, e 

is annual 
earnings for this person, and age

i, e 
is the person’s age. The variable mrate

i 
is the amount the 

firm puts into an employee’s account for every dollar the employee contributes.
 If (8.28) satisfies the Gauss-Markov assumptions, then we could estimate it, given 
a sample on individuals across various employers. Suppose, however, that we only have 
average values of contributions, earnings, and age by employer. In other words, individual-
level data are not available. Thus, let  

�
 contrib

i
  denote average contribution for people at 

firm i, and similarly for  
�

 earns
i
  and  

�
 age

i
 . Let m

i 
denote the number of employees at firm i; 

we assume that this is a known quantity. Then, if we average equation (8.28) across all 
employees at firm i, we obtain the firm-level equation

   
�

 contrib
i
  
 
� �

0 
� �

1
 
�

 earns
i
  � �

2
 
�

 age
i
 
 
� �

3
mrate

i 
�  - u 

i
, 8.29

where  - u 
i 
� m

i
�1  ∑ 

e�1
  

m
i

    u
i, e 

is the average error across all employees in firm i. If we have 
n firms in our sample, then (8.29) is just a standard multiple linear regression model that 
can be estimated by OLS. The estimators are unbiased if the original model (8.28) satisfies 
the Gauss-Markov assumptions and the individual errors u

i, e 
are independent of the firm’s 

size, m
i 
[because then the expected value of  - u 

i
,
 
given the explanatory variables in (8.29), 

is zero].
 If the individual-level equation (8.28) satisfies the homoskedasticity assumption, 
and the errors within firm i are uncorrelated across employees, then we can show that 
the firm-level equation (8.29) has a particular kind of heteroskedasticity. Specifically, if 
Var(u

i,e
) � �2 for all i and e, and Cov(u

i,e
,u

i,g
) � 0 for every pair of employees e 	 g within 

firm i, then Var( - u 
i
) � �2/m

i
; this is just the usual formula for the variance of an average 

of uncorrelated random variables with common variance. In other words, the variance of 
the error term  - u 

i
 decreases with firm size. In this case, h

i 
� 1/m

i
, and so the most efficient 

procedure is weighted least squares, with weights equal to the number of employees at 
the firm (1/h

i 
� m

i
). This ensures that larger firms receive more weight. This gives us an 

efficient way of estimating the parameters in the individual-level model when we only 
have averages at the firm level.
 A similar weighting arises when we are using per capita data at the city, county, state, 
or country level. If the individual-level equation satisfies the Gauss-Markov assumptions, 
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then the error in the per capita equation has a variance proportional to one over the size of 
the population. Therefore, weighted least squares with weights equal to the population is 
appropriate. For example, suppose we have city-level data on per capita beer consumption 
(in ounces), the percentage of people in the population over 21 years old, average adult 
education levels, average income levels, and the city price of beer. Then, the city-level 
model

 beerpc � �
0
 � �

1
perc21 � �

2
avgeduc � �

3
incpc � �

4 
price � u

can be estimated by weighted least squares, with the weights being the city population.
 The advantage of weighting by firm size, city population, and so on, relies on the 
underlying individual equation being homoskedastic. If heteroskedasticity exists at the 
individual level, then the proper weighting depends on the form of heteroskedasticity. 
Further, if there is correlation across errors within a group (say, firm), then Var( - u 

i
) 	 �2/m

i
;

see Problem 8.7. Uncertainty about the form of Var( - u 
i
) in equations such as (8.29) is why 

more and more researchers simply use OLS and compute robust standard errors and test 
statistics when estimating models using per capita data. An alternative is to weight by 
group size but to report the heteroskedasticity-robust statistics in the WLS estimation. 
This ensures that, while the estimation is efficient if the individual-level model satisfies 
the Gauss-Markov assumptions, heteroskedasticity at the individual level or within-group 
correlation are accounted for through robust inference.

The Heteroskedasticity Function Must 

Be Estimated: Feasible GLS

In the previous subsection, we saw some examples of where the heteroskedasticity is 
known up to a multiplicative form. In most cases, the exact form of heteroskedasticity is 
not obvious. In other words, it is difficult to find the function h(x

i
) of the previous section. 

Nevertheless, in many cases we can model the function h and use the data to estimate 
the unknown parameters in this model. This results in an estimate of each h

i
, denoted as 

 ̂  h 
i
. Using  ̂  h 

i 
instead of h

i 
in the GLS transformation yields an estimator called the feasible 

GLS (FGLS) estimator. Feasible GLS is sometimes called estimated GLS, or EGLS.
 There are many ways to model heteroskedasticity, but we will study one particular, 
fairly flexible approach. Assume that

 Var(u�x) � �2exp(�
0 
� �

1
x

1 
� �

2
x

2 
� … � �

k
x

k
), 8.30

where x
1
, x

2
, …, x

k 
are the independent variables appearing in the regression model 

[see equation (8.1)], and the �
j 
are unknown parameters. Other functions of the x

j 
can 

appear, but we will focus primarily on (8.30). In the notation of the previous subsection, 
h(x) � exp(�

0 
� �

1
x

1 
� �

2
x

2 
� … � �

k
x

k
).

 You may wonder why we have used the exponential function in (8.30). After all, when 
testing for heteroskedasticity using the Breusch-Pagan test, we assumed that heteroskedas-
ticity was a linear function of the x

j
. Linear alternatives such as (8.12) are fine when testing 

for heteroskedasticity, but they can be problematic when correcting for heteroskedasticity 
using weighted least squares. We have encountered the reason for this problem before: 
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linear models do not ensure that predicted values are positive, and our estimated variances 
must be positive in order to perform WLS.
 If the parameters �

j 
were known, then we would just apply WLS, as in the previous 

subsection. This is not very realistic. It is better to use the data to estimate these param-
eters, and then to use these estimates to construct weights. How can we estimate the �

j
? 

Essentially, we will transform this equation into a linear form that, with slight modifica-
tion, can be estimated by OLS.
 Under assumption (8.30), we can write

 u2 � �2exp(�
0
 � �

1
x

1
 � �

2
x

2
 � … � �

k
x

k
)v,

where v has a mean equal to unity, conditional on x � (x
1
, x

2
, …, x

k
). If we assume that v 

is actually independent of x, we can write

 log(u2) � �
0
 � �

1
x

1 
� �

2
x

2 
� … � �

k
x

k 
� e, 8.31

where e has a zero mean and is independent of x; the intercept in this equation is different 
from �

0
, but this is not important in implementing WLS. The dependent variable is the 

log of the squared error. Since (8.31) satisfies the Gauss-Markov assumptions, we can get 
unbiased estimators of the �

j 
by using OLS.

 As usual, we must replace the unobserved u with the OLS residuals. Therefore, we run 
the regression of

 log( ̂  u 2) on x
1
, x

2
, …, x

k
. 8.32

Actually, what we need from this regression are the fitted values; call these  ̂  g 
i
. Then, the 

estimates of h
i 
are simply

  ̂  h 
i 
� exp( ̂  g 

i
). 8.33

We now use WLS with weights 1/ ̂  h 
i
 in place of 1/h

i
 in equation (8.27). We summarize 

the steps.

A FEASIBLE GLS PROCEDURE TO CORRECT FOR HETEROSKEDASTICITY:

 1. Run the regression of y on x
1
, x

2
, …, x

k 
and obtain the residuals,  ̂  u .

 2. Create log( ̂  u 2) by first squaring the OLS residuals and then taking the natural log.
 3. Run the regression in equation (8.32) and obtain the fitted values,  ̂  g .
 4. Exponentiate the fitted values from (8.32):  ̂  h  � exp( ̂  g ).
 5. Estimate the equation

 y � �
0 
� �

1
x

1 
� … � �

k
x

k 
� u

  by WLS, using weights 1/ ̂  h . In other words, we replace h
i
 with  ̂  h 

i 
in equation (8.27). 

Remember, the squared residual for observation i gets weighted by 1/ ̂  h 
i
. If instead 

we first transform all variables and run OLS, each variable gets multiplied by 1/ �
__

  ̂  h 
i
  , 

including the intercept.

 If we could use h
i 
rather than  ̂  h 

i 
in the WLS procedure, we know that our estimators 

would be unbiased; in fact, they would be the best linear unbiased estimators, assuming 
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that we have properly modeled the heteroskedasticity. Having to estimate h
i 
using the same 

data means that the FGLS estimator is no longer unbiased (so it cannot be BLUE, either). 
Nevertheless, the FGLS estimator is consistent and asymptotically more efficient than 
OLS. This is difficult to show because of estimation of the variance parameters. But if we 
ignore this—as it turns out we may—the proof is similar to showing that OLS is efficient 
in the class of estimators in Theorem 5.3. At any rate, for large sample sizes, FGLS is an 
attractive alternative to OLS when there is evidence of heteroskedasticity that inflates the 
standard errors of the OLS estimates.
 We must remember that the FGLS estimators are estimators of the parameters in the 
usual population model

 y � �
0 
� �

1
x

1 
� … � �

k
x

k 
� u.

Just as the OLS estimates measure the marginal impact of each x
j 
on y, so do the FGLS 

estimates. We use the FGLS estimates in place of the OLS estimates because the FGLS 
estimators are more efficient and have associated test statistics with the usual t and F dis-
tributions, at least in large samples. If we have some doubt about the variance specified in 
equation (8.30), we can use heteroskedasticity-robust standard errors and test statistics in 
the transformed equation.
 Another useful alternative for estimating h

i 
is to replace the independent variables in 

regression (8.32) with the OLS fitted values and their squares. In other words, obtain the  
ˆ g 

i 
as the fitted values from the regression of

 log( ̂  u 2) on  ̂  y ,  ̂  y 2 8.34

and then obtain the  ̂  h 
i 
exactly as in equation (8.33). This changes only step (3) in the previ-

ous procedure.
 If we use regression (8.32) to estimate the variance function, you may be wondering if 
we can simply test for heteroskedasticity using this same regression (an F or LM test can 
be used). In fact, Park (1966) suggested this. Unfortunately, when compared with the tests 
discussed in Section 8.3, the Park test has some problems. First, the null hypothesis must 
be something stronger than homoskedasticity: effectively, u and x must be independent. 
This is not required in the Breusch-Pagan or White tests. Second, using the OLS residuals  
ˆ u  in place of u in (8.32) can cause the F statistic to deviate from the F distribution, even in 
large sample sizes. This is not an issue in the other tests we have covered. For these reasons, 
the Park test is not recommended when testing for heteroskedasticity. Regression (8.32) 
works well for weighted least squares because we only need consistent estimators of the 
�

j
, and regression (8.32) certainly delivers those.

E x a m p l e  8 . 7

[Demand for Cigarettes]

We use the data in SMOKE.RAW to estimate a demand function for daily cigarette consumption. 
Since most people do not smoke, the dependent variable, cigs, is zero for most observations. A linear 
model is not ideal because it can result in negative predicted values. Nevertheless, we can still learn 
something about the determinants of cigarette smoking by using a linear model.
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 The equation estimated by ordinary least squares, with the usual OLS standard errors in paren-
theses, is

 1cigs � �3.64 � .880 log(income) � .751 log(cigpric)

 (24.08) (.728) (5.773)

 � .501 educ � .771 age � .0090 age2 � 2.83 restaurn 8.35

 (.167) (.160) (.0017) (1.11)

 n � 807, R2 � .0526,

where 

 cigs � number of cigarettes smoked per day.
 income � annual income.
 cigpric � the per pack price of cigarettes (in cents).
 educ � years of schooling.
 age � measured in years. 
 restaurn �  a binary indicator equal to unity if the person resides in a state with restaurant 

smoking restrictions. 

Since we are also going to do weighted least squares, we do not report the heteroskedasticity-robust 
standard errors for OLS. (Incidentally, 13 out of the 807 fitted values are less than zero; this is less 
than 2% of the sample and is not a major cause for concern.)
 Neither income nor cigarette price is statistically significant in (8.35), and their effects are 
not practically large. For example, if income increases by 10%, cigs is predicted to increase by 
(.880/100)(10) � .088, or less than one-tenth of a cigarette per day. The magnitude of the price effect 
is similar.
 Each year of education reduces the average cigarettes smoked per day by one-half, and the effect 
is statistically significant. Cigarette smoking is also related to age, in a quadratic fashion. Smoking 
increases with age up until age � .771/[2(.009)] � 42.83, and then smoking decreases with age. 
Both terms in the quadratic are statistically significant. The presence of a restriction on smoking in 
restaurants decreases cigarette smoking by almost three cigarettes per day, on average.
 Do the errors underlying equation (8.35) contain heteroskedasticity? The Breusch-Pagan regres-
sion of the squared OLS residuals on the independent variables in (8.35) [see equation (8.14)] 
produces R 2    ̂  u 

  2 � .040. This small R-squared may seem to indicate no heteroskedasticity, but we must 
remember to compute either the F or LM statistic. If the sample size is large, a seemingly small 
R 2    ̂  u 

  2 can result in a very strong rejection of homoskedasticity. The LM statistic is LM � 807(.040) � 
32.28, and this is the outcome of a � 2   

6
  random variable. The p-value is less than .000015, which is 

very strong evidence of heteroskedasticity.
 Therefore, we estimate the equation using the feasible GLS procedure based on equation (8.32). 
The weighted least squares estimates are

 1cigs � 5.64 � 1.30 log(income) � 2.94 log(cigpric)

 (17.80) (.44) (4.46)

 � .463 educ � .482 age � .0056 age2 � 3.46 restaurn 8.36

 (.120) (.097) (.0009) (.80)

 n � 807, R2 � .1134.
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The income effect is now statistically significant and larger in magnitude. The price effect is also 
notably bigger, but it is still statistically insignificant. [One reason for this is that cigpric varies only 
across states in the sample, and so there is much less variation in log(cigpric) than in log(income), 
educ, and age.]
 The estimates on the other variables have, naturally, changed somewhat, but the basic story is 
still the same. Cigarette smoking is negatively related to schooling, has a quadratic relationship with 
age, and is negatively affected by restaurant smoking restrictions.

 We must be a little careful in computing F statistics for testing multiple hypotheses 
after estimation by WLS. (This is true whether the sum of squared residuals or R-squared 
form of the F statistic is used.) It is important that the same weights be used to estimate 
the unrestricted and restricted models. We should first estimate the unrestricted model by 
OLS. Once we have obtained the weights, we can use them to estimate the restricted model 
as well. The F statistic can be computed as usual. Fortunately, many regression packages 
have a simple command for testing joint restrictions after WLS estimation, so we need not 
perform the restricted regression ourselves.
 Example 8.7 hints at an issue that sometimes arises in applications of weighted least 
squares: the OLS and WLS estimates can be substantially different. This is not such a 

big problem in the demand for ciga-
rettes equation because all the coeffi-
cients maintain the same signs, and the 
biggest changes are on variables that 
were statistically insignificant when the 
equation was estimated by OLS. The 
OLS and WLS estimates will always 
differ due to sampling error. The issue 
is whether their difference is enough to 
change important conclusions.
 If OLS and WLS produce statisti-
cally significant estimates that differ 
in sign—for example, the OLS price 
elasticity is positive and significant, 
while the WLS price elasticity is nega-
tive and significant—or the difference 

in magnitudes of the estimates is practically large, we should be suspicious. Typically, this 
indicates that one of the other Gauss-Markov assumptions is false, particularly the zero 
conditional mean assumption on the error (MLR.4). If E(y�x)  �

0
 � �

1
x

1
 � … � �

k
x

k
, 

then OLS and WLS have different expected values and probability limits. For WLS to 
be consistent for the �

j
, it is not enough for u to be uncorrelated with each x

j
; we need 

the stronger assumption MLR.4 in the linear model MLR.1. Therefore, a significant 
 difference between OLS and WLS can indicate a functional form misspecification in 
E(y�x). The Hausman test [Hausman (1978)] can be used to formally compare the OLS 
and WLS estimates to see if they differ by more than sampling error suggests they should, 
but this test is beyond the scope of this text. In many cases, an informal “eyeballing” of 
the estimates is sufficient to detect a problem. 

Q u e s t i o n  8 . 4
Let  ̂  u i be the WLS residuals from (8.36), which are not weighted, 
and let 1cigsi  be the fitted values. (These are obtained using the 
same formulas as OLS; they differ because of different estimates of 
the �j.) One way to determine whether heteroskedasticity has 

been eliminated is to use the  ̂  u  2   
i
  / ̂  h i � ( ̂  u i / �

__

  ̂  h i  )
2  in a test for het-

eroskedasticity. [If hi � Var(ui�xi), then the transformed residuals 
should have little evidence of heteroskedasticity.] There are many 
possibilities, but one—based on White’s test in the transformed 
equation—is to regress  ̂  u  2   

i
  / ̂  h i on 1cigsi  / �

__

  ̂  h   i and 1cigsi   
2/ ̂  h i (including an 

intercept). The joint F statistic when we use SMOKE.RAW is 11.15. 
Does it appear that our correction for heteroskedasticity has actu-
ally eliminated the heteroskedasticity?
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What If the Assumed Heteroskedasticity 

Function Is Wrong? 

We just noted that if OLS and WLS produce very different estimates, it is likely that the 
conditional mean E(y�x) is misspecified. What are the properties of WLS if the variance 
function we use is misspecified in the sense that Var(y�x) 	 �2h(x) for our chosen function 
h(x)? The most important issue is whether misspecification of h(x) causes bias or incon-
sistency in the WLS estimator. Fortunately, the answer is no, at least under MLR.4. Recall 
that, if E(u�x) � 0, then any function of x is uncorrelated with u, and so the weighted 
error, u/ �

____
 h(x)  , is uncorrelated with the weighted regressors, x

j 
/ �

____
 h(x)  , for any function h(x) 

that is always positive. This is why, as we just discussed, we can take large differences 
between the OLS and WLS estimators as indicative of functional form misspecification. 
If we estimate parameters in the function, say h(x,  ̂  � ), then we can no longer claim that 
WLS is unbiased, but it will generally be consistent (whether or not the variance function 
is correctly specified). 
 If WLS is at least consistent under MLR.1 to MLR.4, what are the consequences of 
using WLS with a misspecified variance function? There are two. The first, which is 
very important, is that the usual WLS standard errors and test statistics, computed under 
the assumption that Var(y�x) � �2h(x), are no longer valid, even in large samples. For 
example, the WLS estimates and standard errors in column (4) of Table 8.1 assume that 
Var(nettfa�inc, age, male, e401k) � Var(nettfa�inc) � �2inc; so we are assuming not only 
that the variance depends just on income, but also that it is a linear function of income. If 
this assumption is false, the standard errors (and any statistics we obtain using those stan-
dard errors) are not valid. Fortunately, there is an easy fix: just as we can obtain standard 
errors for the OLS estimates that are robust to arbitrary heteroskedasticity, we can obtain 
standard errors for WLS that allow the variance function to be arbitrarily misspecified. It 
is easy to see why this works. Write the transformed equation as 

 y
i 
/ �

__
 h

i
   � �

0 
 � 1/ �

__
 h

i
   �  � �

1
 � xi1 

/ �
__

 h
i
   �  � … � �

k
 � xik 

/ �
__

 h
i
   �  � u

i 
/ �

__
 h

i
   .

Now, if Var(u
i
�x

i
) 	 �2h

i
, then the weighted error u

i 
/ �

__
 h

i
   is heteroskedastic. So we can just 

apply the usual heteroskedasticity-robust standard errors after estimating this equation by 
OLS—which, remember, is identical to WLS. 
 To see how this works, column (1) of Table 8.2 reproduces the last column of 
Table 8.1, and column (2) contains standard errors robust to Var(u

i
�x

i
) 	 �2inc

i
. 

 The standard errors in column (2) allow the variance function to be misspecified. We 
see that, for the income and age variables, the robust standard errors are somewhat above 
the usual WLS standard errors—certainly by enough to stretch the confidence intervals. 
On the other hand, the robust standard errors for male and e401k are actually smaller 
than those that assume a correct variance function. We saw this could happen with the 
heteroskedasticity-robust standard errors for OLS, too. 
 Even if we use flexible forms of variance functions, such as that in (8.30), there is no guar-
antee that we have the correct model. While exponential heteroskedasticity is appealing and 
reasonably flexible, it is, after all, just a model. Therefore, it is always a good idea to com-
pute fully robust standard errors and test statistics after WLS  estimation. 
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 A modern criticism of WLS is that if the variance function is misspecified, it is not 
guaranteed to be more efficient than OLS. In fact, that is the case: if Var(y�x) is neither 
constant nor equal to �2h(x), where h(x) is the proposed model of heteroskedasticity, 
then we cannot rank OLS and WLS in terms of variances (or asymptotic variances 
when the variance parameters must be estimated). However, this theoretically correct 
criticism misses an important practical point. Namely, in cases of strong heteroske-
dasticity, it is often better to use a wrong form of heteroskedasticity and apply WLS 
than to ignore heteroskedasticity altogether in estimation and use OLS. Models such as 
(8.30) can well approximate a variety of heteroskedasticity functions and may produce 
estimators with smaller (asymptotic) variances. Even in Example 8.6, where the form of 
hetero skedasticity was assumed to have the simple form Var(nettfa�x) � �2inc, the fully 
robust standard errors for WLS are well below the fully robust standard errors for OLS. 
(Comparing robust standard errors for the two estimators puts them on equal footing: we 
assume neither homoskedasticity nor that the variance has the form �2inc.) For example, 
the robust standard error for WLS is 25% less than the robust standard error for OLS. 
For (age � 25)2, the robust WLS standard error is about 40% less than the robust OLS 
standard error. 

Independent 
Variables 

With Nonrobust 
Standard Errors 

With Robust 
Standard Errors 

inc .740
(.064)

.740
(.075) 

(age � 25)2 .0175
(.0019)

.0175
(.0026)

male 1.84
(1.56)

1.84
(1.31)

e401k 5.19
(1.70)

5.19
(1.57)

intercept �16.70
(1.96)

�16.70
(2.24)

Observations 2,017 2,017 

R-squared .1115 .1115 

TABLE  8 . 2

WLS Estimation of the nettfa Equation
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Prediction and Prediction Intervals with Heteroskedasticity

If we start with the standard linear model under MLR.1 to MLR.4, but allow for heteroske-
dasticity of the form Var(y�x) � �2h(x) [see equation (8.21)], the presence of heteroske-
dasticity affects the point prediction of y only insofar as it affects estimation of the �

j
. Of 

course, it is natural to use WLS on a sample of size n to obtain the  ̂  � 
j
. Our prediction of an 

unobserved outcome, y0, given known values of the explanatory variables x0, has the same 
form as in Section 6.4:  ̂  y 0 �  ̂  � 

0
 � x0 ̂  � . This makes sense: once we know E(y|x), we base 

our prediction on it; the structure of Var(y|x) plays no direct role. 
 On the other hand, prediction intervals do depend directly on the nature of Var(y�x). 
Recall in Section 6.4 that we constructed a prediction interval under the classical linear 
model assumptions. Suppose now that all the CLM assumptions hold except that (8.21) 
replaces the homoskedasticity assumption, MLR.5. We know that the WLS estimators are 
BLUE and, because of normality, have (conditional) normal distributions. We can obtain 
se( ̂  y 0) using the same method in Section 6.4, except that now we use WLS. [A simple 
approach is to write y

i
 � �

0
 � �

1
(x

i1
 − x 0   

1
 ) � … � �

k
(x

ik 
� x 0   

k
  ) � u

i
, where the x 0   

j
  
 
are the 

values of the explanatory variables for which we want the predict value of y. We can 
estimate this equation by WLS and the obtain  ̂  y 0 �  ̂  � 

0
 and se( ̂  y 0) � se( ̂  � 

0
).] We also need 

to estimate the standard deviation of u0, the unobserved part of y0. But Var(u0�x � x0) � 
�2h(x0), and so se(u0) �  ̂  �  �

_____
 h(x0)  , where  ̂  �  is the standard error of the regression from the 

WLS estimation. Therefore, a 95% prediction interval is 

  ̂  y 0 � t
.025

 � se( ̂  e 0) 8.37  

where se( ̂  e 0) � {[se( ̂  y 0)]2  �  ̂  � 2h(x0)}1/2.
 This interval is exact only if we do not have to estimate the variance function. If we 
estimate parameters, as in model (8.30), then we cannot obtain an exact interval. In fact, 
accounting for the estimation error in the  ̂  � 

j 
and the  ̂  � 

j
 (the variance parameters) becomes 

very difficult. We saw two examples in Section 6.4 where the estimation error in the 
parameters was swamped by the variation in the unobservables, u0. Therefore, we might 
still use equation (8.37) with h(x0) simply replaced by  ̂  h (x0). In fact, if we are to ignore 
the parameter estimation error entirely, we can drop se( ̂  y 0) from se( ̂  e 0). [Remember, se( ̂  y 0) 
converges to zero at the rate 1/ �

__
 n  , while se( ̂  u 0) is roughly constant.] 

 We can also obtain a prediction for y in the model

 log(y) � �
0
 � �

1
x

1
 � … � �

k
x

k 
� u, 8.38  

where u is heteroskedastic. We assume that u has a conditional normal distribution with a 
specific form of heteroskedasticity. We assume the exponential form in equation (8.30), 
but add the normality assumption: 

 u�x
1
, x

2
, …, x

k
 	Normal[0, exp(�

0
 � �

1
x

1
 � … � �

k
x

k
)]. 8.39  

As a notational shorthand, write the variance function as exp(�
0 

�
 
x�). Then, because 

log(y) given x has a normal distribution with mean �
0 
�

 
x� and variance exp(�

0 
�

 
x�), it 

follows that 

 E(y|x) � exp(�
0 
�

 
x� � �2 exp(�

0 
�

 
x�)/2). 8.40  
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Now we estimate the �
j
 and �

j
 using WLS estimation of (8.38). That is, after OLS to obtain 

the residuals, run the regression in (8.32) to obtain fitted values, 

  ̂  g 
i
 �  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k
x

ik
, 8.41  

and then the  ̂  h 
i
 as in (8.33). Using these  ̂  h 

i
, obtain the WLS estimates,  ̂  � 

j 
and also  ̂  � 2. Then, 

for each i, we can obtain a fitted value

  ̂  y 
i
 � exp(1logy

i
 �  ̂  � 2 ̂  h 

i
   / 2). 8.42

We can use these fitted values to obtain an R-squared measure, as described in Section 6.4: 
use the squared correlation coefficient between y

i
 and  ̂  y 

i
. 

 For any values of the explanatory variables x0, we can estimate E(y�x � x0) as 

  ̂  E (y�x � x0) � exp( ̂  � 
0
 �

 
x0 ̂  �  �  ̂  � 2 exp( ̂  � 

0
 �

 
x0 ̂  � )/2), 8.43  

where 

  ̂  � 
j
 � the WLS estimates.

  ̂  � 
0 
 � the intercept in (8.41).

  ̂  � 
j 
 � the slopes from the same regression. 

Obtaining a proper standard error for the prediction in (8.42) is very complicated ana-
lytically, but, as in Section 6.4, it would be fairly easy to obtain a standard error using a 
resampling method such as the bootstrap described in Appendix 6A. 
 Obtaining a prediction interval is more of a challenge when we estimate a model for het-
eroskedasticity, and a full treatment is complicated. Nevertheless, we saw in Section 6.4 two 
examples where the error variance swamps the estimation error, and we would make only 
a small mistake by ignoring the estimation error in all parameters. Using arguments similar 
to those in Section 6.4, an approximate 95% prediction interval (for large sample sizes) is 
exp[�1.96 �  ̂  �  �

_____

  ̂  h (x0)  ] exp( ̂  � 
0 
�

 
x0 ̂  � ) to exp[1.96 �  ̂  �  �

_____

  ̂  h (x0)  ] exp( ̂  � 
0 
�

 
x0 ̂  � ), where  ̂  h (x0) is the 

estimated variance function evaluated at x0,  ̂  h (x0) � exp( ̂  � 
0
 �  ̂  � 

1
x 0   

1
  � … �  ̂  � 

k
x 0   

k
  ). As in 

Section 6.4, we obtain this approximate interval by simply exponentiating the endpoints.

8.5 The Linear Probability Model Revisited
As we saw in Section 7.5, when the dependent variable y is a binary variable, the model 
must contain heteroskedasticity, unless all of the slope parameters are zero. We are now 
in a position to deal with this problem.
 The simplest way to deal with heteroskedasticity in the linear probability model is to 
continue to use OLS estimation, but to also compute robust standard errors in test statis-
tics. This ignores the fact that we actually know the form of heteroskedasticity for the 
LPM. Nevertheless, OLS estimation of the LPM is simple and often produces satisfactory 
results.
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E x a m p l e  8 . 8

[Labor Force Participation of Married Women]

In the labor force participation example in Section 7.5 [see equation (7.29)], we reported the usual 
OLS standard errors. Now, we compute the heteroskedasticity-robust standard errors as well. These 
are reported in brackets below the usual standard errors:

 1inlf � .586 � .0034 nwifeinc � .038 educ � .039 exper

 (.154) (.0014) (.007) (.006)

 [.151] [.0015] [.007] [.006]

 � .00060 exper2 � .016 age � .262 kidslt6 � .0130 kidsge6 8.44

 (.00018) (.002) (.034) (.0132)

 [.00019] [.002] [.032] [.0135]

 n � 753, R2 � .264.

Several of the robust and OLS standard errors are the same to the reported degree of precision; in all 
cases, the differences are practically very small. Therefore, while heteroskedasticity is a problem in 
theory, it is not in practice, at least not for this example. It often turns out that the usual OLS standard 
errors and test statistics are similar to their heteroskedasticity-robust counterparts. Furthermore, it 
requires a minimal effort to compute both.

 Generally, the OLS estimators are inefficient in the LPM. Recall that the conditional 
variance of y in the LPM is

 Var( y�x) � p(x)[1 � p(x)], 8.45

where

 p(x) � �
0 
� �

1
x

1 
� … � �

k
x

k
 8.46

is the response probability (probability of success, y � 1). It seems natural to use weighted 
least squares, but there are a couple of hitches. The probability p(x) clearly depends on 
the unknown population parameters, �

j
. Nevertheless, we do have unbiased estimators of 

these parameters, namely the OLS estimators. When the OLS estimators are plugged into 
equation (8.46), we obtain the OLS fitted values. Thus, for each observation i, Var(y

i
�x

i
) 

is estimated by

  ̂  h 
i 
�  ̂  y 

i
(1 �  ̂  y 

i
), 8.47

where  ̂  y 
i 
is the OLS fitted value for observation i. Now, we apply feasible GLS, just as in 

Section 8.4.
 Unfortunately, being able to estimate h

i 
for each i does not mean that we can proceed 

directly with WLS estimation. The problem is one that we briefly discussed in Section 7.5: 
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the fitted values  ̂  y 
i 
need not fall in the unit interval. If either   ̂  y 

i 
� 0 or   ̂  y 

i
 � 1, equation (8.47) 

shows that  ̂  h 
i 
will be negative. Since WLS proceeds by multiplying observation i by 1/ �

__

  ̂  h 
i
  , 

the method will fail if  ̂  h 
i 
is negative (or zero) for any observation. In other words, all of the 

weights for WLS must be positive.
 In some cases, 0 �  ̂  y 

i 
� 1 for all i, in which case WLS can be used to estimate the 

LPM. In cases with many observations and small probabilities of success or failure, it is 
very common to find some fitted values outside the unit interval. If this happens, as it 
does in the labor force participation example in equation (8.44), it is easiest to abandon 
WLS and to report the heteroskedasticity-robust statistics. An alternative is to adjust 
those fitted values that are less than zero or greater than unity, and then to apply WLS. 
One suggestion is to set  ̂  y 

i 
� .01 if  ̂  y 

i 
� 0 and  ̂  y 

i 
� .99 if  ̂  y 

i
 � 1. Unfortunately, this requires 

an arbitrary choice on the part of the researcher—for example, why not use .001 and 
.999 as the adjusted values? If many fitted values are outside the unit interval, the adjust-
ment to the fitted values can affect the results; in this situation, it is probably best to just 
use OLS.

ESTIMATING THE LINEAR PROBABILITY MODEL BY WEIGHTED LEAST SQUARES:

 1. Estimate the model by OLS and obtain the fitted values,  ̂  y .
 2.  Determine whether all of the fitted values are inside the unit interval. If so, proceed 

to step (3). If not, some adjustment is needed to bring all fitted values into the unit 
interval.

 3. Construct the estimated variances in equation (8.47).
 4. Estimate the equation

 y � �
0 
� �

1
x

1 
� … � �

k
x

k 
� u

 by WLS, using weights 1/ ̂  h .

E x a m p l e  8 . 9

[Determinants of Personal Computer Ownership]

We use the data in GPA1.RAW to estimate the probability of owning a computer. Let PC denote 
a binary indicator equal to unity if the student owns a computer, and zero otherwise. The variable 
hsGPA is high school GPA, ACT is achievement test score, and parcoll is a binary indicator equal 
to unity if at least one parent attended college. (Separate college indicators for the mother and the 
father do not yield individually significant results, as these are pretty highly correlated.)
 The equation estimated by OLS is

  1PC � �.0004 � .065 hsGPA � .0006 ACT � .221 parcoll

 (.4905) (.137) (.0155) (.093)

 [.4888]  [.139] [.0158] [.087] 
8.48

 n � 141, R2 � .0415.
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Just as with Example 8.8, there are no striking differences between the usual and robust standard 
errors. Nevertheless, we also estimate the model by WLS. Because all of the OLS fitted values are 
inside the unit interval, no adjustments are needed:

  1PC � .026 � .033 hsGPA � .0043 ACT � .215 parcoll

 (.477) (.130) (.0155) (.086) 8.49

 n � 141, R2 � .0464.

There are no important differences in the OLS and WLS estimates. The only significant explanatory 
variable is parcoll, and in both cases we estimate that the probability of PC ownership is about .22 
higher if at least one parent attended college.

S U M M A R Y

We began by reviewing the properties of ordinary least squares in the presence of heteroske-
dasticity. Heteroskedasticity does not cause bias or inconsistency in the OLS estimators, but 
the usual standard errors and test statistics are no longer valid. We showed how to compute 
heteroskedasticity-robust standard errors and t statistics, something that is routinely done by 
many regression packages. Most regression packages also compute a heteroskedasticity-robust, 
F-type statistic.
 We discussed two common ways to test for heteroskedasticity: the Breusch-Pagan test and 
a special case of the White test. Both of these statistics involve regressing the squared OLS 
residuals on either the independent variables (BP) or the fitted and squared fitted values (White). 
A simple F test is asymptotically valid; there are also Lagrange multiplier versions of the tests.
 OLS is no longer the best linear unbiased estimator in the presence of heteroskedasticity. 
When the form of heteroskedasticity is known, generalized least squares (GLS) estimation can 
be used. This leads to weighted least squares as a means of obtaining the BLUE estimator. The 
test statistics from the WLS estimation are either exactly valid when the error term is normally 
distributed or asymptotically valid under nonnormality. This assumes, of course, that we have 
the proper model of heteroskedasticity.
 More commonly, we must estimate a model for the heteroskedasticity before applying 
WLS. The resulting feasible GLS estimator is no longer unbiased, but it is consistent and 
asymptotically efficient. The usual statistics from the WLS regression are asymptotically valid. 
We discussed a method to ensure that the estimated variances are strictly positive for all obser-
vations, something needed to apply WLS.
 As we discussed in Chapter 7, the linear probability model for a binary dependent vari-
able necessarily has a heteroskedastic error term. A simple way to deal with this problem is to 
compute heteroskedasticity-robust statistics. Alternatively, if all the fitted values (that is, the 
estimated probabilities) are strictly between zero and one, weighted least squares can be used 
to obtain asymptotically efficient estimators.
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P R O B L E M S

8.1 Which of the following are consequences of heteroskedasticity?
 (i) The OLS estimators,  ̂  � 

j
, are inconsistent.

 (ii) The usual F statistic no longer has an F distribution.
 (iii) The OLS estimators are no longer BLUE.

8.2 Consider a linear model to explain monthly beer consumption:

 beer � �
0 
� �

1
inc � �

2 
price � �

3
educ � �

4  
female � u

 E(u�inc,price,educ, female) � 0

 Var(u�inc,price,educ, female) � � 2 inc2.

 Write the transformed equation that has a homoskedastic error term.

8.3  True or False: WLS is preferred to OLS, when an important variable has been omitted 
from the model.

8.4  Using the data in GPA3.RAW, the following equation was estimated for the fall and 
second semester students:

 2trmgpa � �2.12 � .900 crsgpa � .193 cumgpa � .0014 tothrs

 (.55) (.175) (.064) (.0012)

 [.55] [.166] [.074] [.0012]

 � .0018 sat � .0039 hsperc � .351 female � .157 season

 (.0002) (.0018) (.085) (.098)

 [.0002] [.0019] [.079] [.080]

 n � 269, R2 � .465.

  Here, trmgpa is term GPA, crsgpa is a weighted average of overall GPA in courses taken, 
cumgpa is GPA prior to the current semester, tothrs is total credit hours prior to the 
semester, sat is SAT score, hsperc is graduating percentile in high school class, female 
is a gender dummy, and season is a dummy variable equal to unity if the student’s sport 
is in season during the fall. The usual and heteroskedasticity-robust standard errors are 
reported in parentheses and brackets, respectively.

Breusch-Pagan Test for 
Heteroskedasticity 
(BP Test)

Feasible GLS (FGLS) 
Estimator 

Generalized Least Squares 
(GLS) Estimators 

Heteroskedasticity of 
Unknown Form

Heteroskedasticity-Robust 
F Statistic

Heteroskedasticity-Robust 
LM Statistic

Heteroskedasticity-Robust 
Standard Error

Heteroskedasticity-Robust 
t Statistic

Weighted Least Squares 
(WLS) Estimators

White Test for 
Heteroskedasticity

K E Y  T E R M S



 Chapter 8   Heteroskedasticity 295

 (i)  Do the variables crsgpa, cumgpa, and tothrs have the expected estimated effects? 
Which of these variables are statistically significant at the 5% level? Does it matter 
which standard errors are used?

 (ii)  Why does the hypothesis H
0
: �

crsgpa 
� 1 make sense? Test this hypothesis against 

the two-sided alternative at the 5% level, using both standard errors. Describe your 
conclusions.

 (iii)  Test whether there is an in-season effect on term GPA, using both standard errors. 
Does the significance level at which the null can be rejected depend on the standard 
error used?

8.5  The variable smokes is a binary variable equal to one if a person smokes, and zero 
otherwise. Using the data in SMOKE.RAW, we estimate a linear probability model for 
smokes:

 2smokes � .656 � .069 log(cigpric) � .012 log(income) � .029 educ

 (.855) (.204) (.026) (.006)

 [.856] [.207] [.026] [.006]

 � .020 age � .00026 age2 � .101 restaurn � .026 white

 (.006) (.00006) (.039) (.052)

 [.005] [.00006] [.038] [.050]

 n � 807, R2 � .062.

  The variable white equals one if the respondent is white, and zero otherwise; the other in-
dependent variables are defined in Example 8.7. Both the usual and heteroskedasticity-
robust standard errors are reported.

 (i)  Are there any important differences between the two sets of standard errors?
 (ii)  Holding other factors fixed, if education increases by four years, what happens to 

the estimated probability of smoking?
 (iii)  At what point does another year of age reduce the probability of smoking?
 (iv)  Interpret the coefficient on the binary variable restaurn (a dummy variable equal to 

one if the person lives in a state with restaurant smoking restrictions).
 (v)  Person number 206 in the data set has the following characteristics: cigpric � 67.44, 

income � 6,500, educ � 16, age � 77, restaurn � 0, white � 0, and smokes � 0. 
Compute the predicted probability of smoking for this person and comment on the 
result.

8.6  There are different ways to combine features of the Breusch-Pagan and White tests for 
heteroskedasticity. One possibility not covered in the text is to run the regression

  ̂  u  2   i   on x
i1
, x

i2
, …, x

ik 
, ̂  y  2   i  , i � 1, …, n,

  
where the  ̂  u 

i
 are the OLS residuals and the  ̂  y 

i
 are the OLS fitted values. Then, we would 

test joint significance of x
i1
, x

i2
, …, x

ik
 and  ̂  y  2   i  . 

(Of course, we always include an intercept 
in this regression.)

 
(i)  What are the df associated with the proposed F test for heteroskedasticity?

 (ii)  Explain why the R-squared from the regression above will always be at least as large 
as the R-squareds for the BP regression and the special case of the White test.
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 (iii)  Does part (ii) imply that the new test always delivers a smaller p-value than either 
the BP or special case of the White statistic? Explain.

 (iv)  Suppose someone suggests also adding  ̂  y 
i
 to the newly proposed test. What do you 

think of this idea?

8.7 Consider a model at the employee level,

 y
i,e

 � �
0
 � �

1
x

i,e,1
 � �

2
x

i,e,2
 � … � 

 
�

k
x

i,e,k
 � 

 
f
i
 � v

i,e
,

  
where the unobserved variable f

i
 is a “firm effect” to each employee at a given firm i. The 

error term v
i,e

 is specific to employee e at firm i. The composite error is u
i,e

 � f
i
 � v

i,e
, 

such as in equation (8.28).
 (i)  Assume that Var(f 

i
) � � 2   

f
  , Var(v

i,e
) � � 2   

v
  , and f

i
 and v

i,e
 are uncorrelated. Show that 

Var(u
i,e

) � � 2   
f
   � � 2   

v
  ; call this �2.

 (ii)  Now suppose that for e 	 g, v
i,e

 and v
i,g

 are uncorrelated. Show that Cov(u
i,e

,u
i,g

) � � 2   
f
  .

 
(iii)  Let  - u 

i 
� m

i
�1 ∑ 

 ̂  e �1
  

m
i

    u
i,e

 be the average of the composite errors within a firm. Show 
that Var( - u 

i
) � � 2   

f
   � � 2   

v
  /m

i
.

 (iv)  Discuss the relevance of part (iii) for WLS estimation using data averaged at the 
firm level, where the weight used for observation i is the usual firm size.

C O M P U T E R  E X E R C I S E S

C8.1 Consider the following model to explain sleeping behavior:

 sleep � �
0 
� �

1
totwrk � �

2
educ � �

3
age � �

4
age2 � �

5 
yngkid � �

6
male � u.

 (i)  Write down a model that allows the variance of u to differ between men and 
women. The variance should not depend on other factors.

 (ii)  Use the data in SLEEP75.RAW to estimate the parameters of the model for 
 heteroskedasticity. (You have to estimate the sleep equation by OLS, first, to 
obtain the OLS residuals.) Is the estimated variance of u higher for men or for 
women?

 (iii) Is the variance of u statistically different for men and for women?

C8.2 (i)  Use the data in HPRICE1.RAW to obtain the heteroskedasticity-robust standard 
errors for equation (8.17). Discuss any important differences with the usual stan-
dard errors.

 (ii) Repeat part (i) for equation (8.18).
 (iii)  What does this example suggest about heteroskedasticity and the transformation 

used for the dependent variable?

C8.3  Apply the full White test for heteroskedasticity [see equation (8.19)] to equation (8.18). 
Using the chi-square form of the statistic, obtain the p-value. What do you conclude?

C8.4 Use VOTE1.RAW for this exercise.
 (i)  Estimate a model with voteA as the dependent variable and prtystrA, democA, 

log(expendA), and log(expendB) as independent variables. Obtain the OLS residu-
als,  ̂  u 

i
, and regress these on all of the independent variables. Explain why you 

obtain R2 � 0.
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 (ii)  Now, compute the Breusch-Pagan test for heteroskedasticity. Use the F statistic 
version and report the p-value.

 (iii)  Compute the special case of the White test for heteroskedasticity, again using the 
F statistic form. How strong is the evidence for heteroskedasticity now?

C8.5 Use the data in PNTSPRD.RAW for this exercise.
 (i)  The variable sprdcvr is a binary variable equal to one if the Las Vegas point spread 

for a college basketball game was covered. The expected value of sprdcvr, say 
, 
is the probability that the spread is covered in a randomly selected game. Test 
H

0
: 
 � .5 against H

1
: 
 	 .5 at the 10% significance level and discuss your find-

ings. (Hint: This is easily done using a t test by regressing sprdcvr on an intercept 
only.)

 (ii) How many games in the sample of 553 were played on a neutral court?
 (iii) Estimate the linear probability model

 sprdcvr � �
0 
� �

1 
favhome � �

2
neutral � �

3 
fav25 � �

4
und25 � u

   and report the results in the usual form. (Report the usual OLS standard errors and 
the heteroskedasticity-robust standard errors.) Which variable is most significant, 
both practically and statistically?

 (iv)  Explain why, under the null hypothesis H
0
: �

1 
� �

2 
� �

3 
� �

4 
� 0, there is no 

heteroskedasticity in the model.
 (v)  Use the usual F statistic to test the hypothesis in part (iv). What do you  conclude?
 (vi)  Given the previous analysis, would you say that it is possible to systematically 

predict whether the Las Vegas spread will be covered using information available 
prior to the game?

C8.6  In Example 7.12, we estimated a linear probability model for whether a young man was 
arrested during 1986:

 arr86 � �
0 
� �

1
pcnv � �

2
avgsen � �

3
tottime � �

4
 ptime86 � �

5
qemp86 � u.

 (i)  Estimate this model by OLS and verify that all fitted values are strictly between 
zero and one. What are the smallest and largest fitted values?

 (ii)  Estimate the equation by weighted least squares, as discussed in Section 8.5.
 (iii)  Use the WLS estimates to determine whether avgsen and tottime are jointly sig-

nificant at the 5% level.

C8.7 Use the data in LOANAPP.RAW for this exercise.
 (i)  Estimate the equation in part (iii) of Computer Exercise C7.8, computing the 

 heteroskedasticity-robust standard errors. Compare the 95% confidence interval 
on �

white 
with the nonrobust confidence interval.

 (ii)  Obtain the fitted values from the regression in part (i). Are any of them less than 
zero? Are any of them greater than one? What does this mean about applying 
weighted least squares?

C8.8 Use the data set GPA1.RAW for this exercise.
 (i)  Use OLS to estimate a model relating colGPA to hsGPA, ACT, skipped, and PC. 

Obtain the OLS residuals.
 (ii)  Compute the special case of the White test for heteroskedasticity. In the regression 

of û 2   
i
  on 2colGPA

i
, 2colGPA 2   i  , obtain the fitted values, say  ̂  h 

i
.
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 (iii)  Verify that the fitted values from part (ii) are all strictly positive. Then, obtain the 
weighted least squares estimates using weights 1/ ̂  h 

i
. Compare the weighted least 

squares estimates for the effect of skipping lectures and the effect of PC ownership 
with the corresponding OLS estimates. What about their statistical significance?

 (iv)  In the WLS estimation from part (iii), obtain heteroskedasticity-robust standard 
errors. In other words, allow for the fact that the variance function estimated in 
part (ii) might be misspecified. (See Question 8.4.) Do the standard errors change 
much from part (iii)?

C8.9  In Example 8.7, we computed the OLS and a set of WLS estimates in a cigarette demand 
equation.

 (i) Obtain the OLS estimates in equation (8.35).
 (ii)  Obtain the  ̂  h 

i
 used in the WLS estimation of equation (8.36) and reproduce 

equation (8.36). From this equation, obtain the unweighted residuals and fitted 
values; call these  ̂  u 

i
 and  ̂  y 

i
, respectively. (For example, in Stata, the unweighted 

residuals and fitted values are given by default.)

 (iii)  Let ŭ
i
 �  ̂  u 

i 
/ �

__

  ̂  h 
i
   and y̆

i
 �  ̂  y 

i 
/ �

__

  ̂  h 
i
   be the weighted quantities. Carry out the special 

case of the White test for heteroskedasticity by regressing ŭ  2   i   on y̆
i
, y̆  2   i  , being sure 

to include an intercept, as always. Do you find heteroskedasticity in the weighted 
residuals?

 (iv)  What does the finding from part (iii) imply about the proposed form of heteroske-
dasticity used in obtaining (8.36)?

 (v)  Obtain valid standard errors for the WLS estimates that allow the variance func-
tion to be misspecified.

C8.10 Use the data set 401KSUBS.RAW for this exercise.
 (i)  Using OLS, estimate a linear probability model for e401k, using as explanatory 

variables inc, inc2, age, age2, and male. Obtain both the usual OLS standard errors 
and the heteroskedasticity-robust versions. Are there any important differences?

 (ii)  In the special case of the White test for heteroskedasticity, where we regress the 
squared OLS residuals on a quadratic in the OLS fitted values,  ̂  u  2   i   on  ̂  y 

i
, ̂  y  2   i  , i � 

1, …, n, argue that the probability limit of the coefficient on  ̂  y 
i
 should be one, the 

probability limit of the coefficient on  ̂  y  2   i   should be �1, and the probability limit of 
the intercept should be zero. {Hint: Remember that Var(y�x

1
, …, x

k
) � p(x)[1 � 

p(x)], where p(x) � �
0
 � �

1
x

1
 � … � �

k
x

k
.}

 (iii)  For the model estimated from part (i), obtain the White test and see if the coeffi-
cient estimates roughly correspond to the theoretical values described in part (ii).

 (iv)  After verifying that the fitted values from part (i) are all between zero and one, 
obtain the weighted least squares estimates of the linear probability model. Do 
they differ in important ways from the OLS estimates?

C8.11  Use the data in 401KSUBS.RAW for this question, restricting the sample to 
fsize � 1. 

 (i)  To the model estimated in Table 8.1, add the interaction term, e401k � inc. Estimate 
the equation by OLS and obtain the usual and robust standard errors. What do you 
conclude about the statistical significance of the interaction term? 

 (ii)  Now estimate the more general model by WLS using the same weights, 1/inc
i
, as 

in Table 8.1. Compute the usual and robust standard error for the WLS estimator. 
Is the interaction term statistically significant using the robust standard error? 
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 (iii)  Discuss the WLS coefficient on e401k in the more general model. Is it of much 
interest by itself? Explain. 

 (iv)  Reestimate the model by WLS but use the interaction term e401k � (inc � 30); 
the average income in the sample is about 29.44. Now interpret the coefficient on 
e401k. 

C8.12 Use the data in MEAP00_01.RAW to answer this question. 
 (i) Estimate the model

math4 � �
0
 � �

1
lunch � �

2
log(enroll) � �

3
log(exppp) � u

   by OLS and obtain the usual standard errors and the fully robust standard errors. 
How do they generally compare? 

 (ii)  Apply the special case of the White test for heteroskedasticity. What is the value 
of the F test? What do you conclude? 

 (iii)  Obtain  ̂  g 
i
 as the fitted values from the regression log( ̂  u  2   i  ) on 2math4

i
, 2math4 2   i  ,

where 2math4
i
 are the OLS fitted values and the  ̂  u 

i
 are the OLS residuals. Let 

 ̂  h 
i 
� exp( ̂  g 

i
). Use the  ̂  h 

i
 to obtain WLS estimates. Are there big differences with 

the OLS coefficients? 
 (iv)  Obtain the standard errors for WLS that allow misspecification of the variance 

function. Do these differ much from the usual WLS standard errors? 
 (v)  For estimating the effect of spending on math4, does OLS or WLS appear to be 

more precise?
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C H A P T E R

In Chapter 8, we dealt with one failure of the Gauss-Markov assumptions. While heter-
oskedasticity in the errors can be viewed as a problem with a model, it is a relatively 
minor one. The presence of heteroskedasticity does not cause bias or inconsistency in 

the OLS estimators. Also, it is fairly easy to adjust confidence intervals and t and F statis-
tics to obtain valid inference after OLS estimation, or even to get more efficient estimators 
by using weighted least squares.
 In this chapter, we return to the much more serious problem of correlation between 
the error, u, and one or more of the explanatory variables. Remember from Chapter 3 that 
if u is, for whatever reason, correlated with the explanatory variable x

j
, then we say that x

j 

is an endogenous explanatory variable. We also provide a more detailed discussion on 
three reasons why an explanatory variable can be endogenous; in some cases, we discuss 
possible remedies.
 We have already seen in Chapters 3 and 5 that omitting a key variable can cause cor-
relation between the error and some of the explanatory variables, which generally leads 
to bias and inconsistency in all of the OLS estimators. In the special case that the omit-
ted variable is a function of an explanatory variable in the model, the model suffers from 
functional form misspecification.
 We begin in the first section by discussing the consequences of functional form mis-
specification and how to test for it. In Section 9.2, we show how the use of proxy variables 
can solve, or at least mitigate, omitted variables bias. In Section 9.3, we derive and explain 
the bias in OLS that can arise under certain forms of measurement error. Additional data 
problems are discussed in Section 9.4.
 All of the procedures in this chapter are based on OLS estimation. As we will see, 
certain problems that cause correlation between the error and some explanatory variables 
cannot be solved by using OLS on a single cross section. We postpone a treatment of 
alternative estimation methods until Part 3.

9.1 Functional Form Misspecifi cation
A multiple regression model suffers from functional form misspecification when it does not 
properly account for the relationship between the dependent and the observed explanatory 

9
More on Specification 
and Data Issues
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variables. For example, if hourly wage is determined by log(wage) � �
0
 � �

1
educ � 

�
2
exper � �

3
exper2 � u, but we omit the squared experience term, exper2, then we are 

committing a functional form misspecification. We already know from Chapter 3 that 
this generally leads to biased estimators of �

0
, �

1
, and �

2
. (We do not estimate �

3
 because 

exper2 is excluded from the model.) Thus, misspecifying how exper affects log(wage) 
generally results in a biased estimator of the return to education, �

1
. The amount of this 

bias depends on the size of �
3
 and the correlation among educ, exper, and exper2.

 Things are worse for estimating the return to experience: even if we could get an unbi-
ased estimator of �

2
, we would not be able to estimate the return to experience because 

it equals �
2
 � 2�

3
exper (in decimal form). Just using the biased estimator of �

2
 can be 

misleading, especially at extreme values of exper.
 As another example, suppose the log(wage) equation is

log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
exper2

� �
4
  female � �

5
  female·educ � u, 

9.1

where female is a binary variable. If we omit the interaction term, female�educ, then we 
are misspecifying the functional form. In general, we will not get unbiased estimators of 
any of the other parameters, and since the return to education depends on gender, it is not 
clear what return we would be estimating by omitting the interaction term.
 Omitting functions of independent variables is not the only way that a model can suffer 
from misspecified functional form. For example, if (9.1) is the true model satisfying the first 
four Gauss-Markov assumptions, but we use wage rather than log(wage) as the dependent 
variable, then we will not obtain unbiased or consistent estimators of the partial effects. The 
tests that follow have some ability to detect this kind of functional form problem, but there are 
better tests that we will mention in the subsection on testing against nonnested alternatives.
 Misspecifying the functional form of a model can certainly have serious consequences. 
Nevertheless, in one important respect, the problem is minor: by definition, we have data 
on all the necessary variables for obtaining a functional relationship that fits the data well. 
This can be contrasted with the problem addressed in the next section, where a key vari-
able is omitted on which we cannot collect data.
 We already have a very powerful tool for detecting misspecified functional form: the F test 
for joint exclusion restrictions. It often makes sense to add quadratic terms of any significant 
variables to a model and to perform a joint test of significance. If the additional quadratics are 
significant, they can be added to the model (at the cost of complicating the interpretation of 
the model). However, significant quadratic terms can be symptomatic of other functional form 
problems, such as using the level of a variable when the logarithm is more appropriate, or vice 
versa. It can be difficult to pinpoint the precise reason that a functional form is misspecified. 
Fortunately, in many cases, using logarithms of certain variables and adding quadratics are 
sufficient for detecting many important nonlinear relationships in economics.

E x a m p l e  9 . 1

[Economic Model of Crime]

Table 9.1 contains OLS estimates of the economic model of crime (see Example 8.3). We first esti-
mate the model without any quadratic terms; those results are in column (1).
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TABLE  9 . 1

Dependent Variable: narr86

Independent Variables (1) (2)

pcnv –.133
  (.040)

.533
(.154)

pcnv2 — –.730
(.156)

avgsen –.011
  (.012)

–.017
(.012)

tottime   .012
  (.009)

.012
(.009)

ptime86 –.041
  (.009)

.287
(.004)

ptime862 — –.0296
(.0039)

qemp86 –.051
  (.014)

–.014
(.017)

inc86   –.0015
    (.0003)

–.0034
(.0008)

inc862 — –.000007
(.000003)

black   .327
  (.045)

.292
(.045)

hispan   .194
  (.040)

.164
(.039)

intercept   .596
  (.036)

.505
(.037)

Observations
R-squared

2,725
.0723

2,725
.1035

In column (2), the squares of pcnv, ptime86, and inc86 are added; we chose to include the squares 
of these variables because each level term is significant in column (1). The variable qemp86 is a 
discrete variable taking on only five values, so we do not include its square in column (2).
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 Each of the squared terms is signifi-
cant and together they are jointly very 
significant (F � 31.37, with df � 3 and 
2,713; the p-value is essentially zero). Thus, 
it appears that the initial model overlooked 
some potentially important nonlinearities.
 The presence of the quadratics makes interpreting the model somewhat difficult. For example, 
pcnv no longer has a strict deterrent effect: the relationship between narr86 and pcnv is positive up 
until pcnv � .365, and then the relationship is negative. We might conclude that there is little or no 
deterrent effect at lower values of pcnv; the effect only kicks in at higher prior conviction rates. We 
would have to use more sophisticated functional forms than the quadratic to verify this conclusion. 
It may be that pcnv is not entirely exogenous. For example, men who have not been convicted in 
the past (so that pcnv � 0) are perhaps casual criminals, and so they are less likely to be arrested in 
1986. This could be biasing the estimates.
 Similarly, the relationship between narr86 and ptime86 is positive up until ptime86 � 4.85 
(almost five months in prison), and then the relationship is negative. The vast majority of men in the 
sample spent no time in prison in 1986, so again we must be careful in interpreting the results.
 Legal income has a negative effect on narr86 until inc86 � 242.85; since income is measured 
in hundreds of dollars, this means an annual income of $24,285. Only 46 of the men in the sample 
have incomes above this level. Thus, we can conclude that narr86 and inc86 are negatively related 
with a diminishing effect.

 

 Example 9.1 is a tricky functional form problem due to the nature of the dependent vari-
able. Other models are theoretically better suited for handling dependent variables taking on 
a small number of integer values. We will briefly cover these models in Chapter 17.

RESET as a General Test for Functional

Form Misspecifi cation

Some tests have been proposed to detect general functional form misspecification. 
Ramsey’s (1969) regression specification error test (RESET) has proven to be useful 
in this regard.
 The idea behind RESET is fairly simple. If the original model

 y � �
0
 � �

1
x

1
 � ... � �

k
x

k
 � u 9.2

satisfies MLR.4, then no nonlinear functions of the independent variables should 
be significant when added to equation (9.2). In Example 9.1, we added quadratics in the 
significant explanatory variables. Although this often detects functional form problems, 
it has the drawback of using up many degrees of freedom if there are many explana-
tory variables in the original model (much as the straight form of the White test for 
heteroskedasticity consumes degrees of freedom). Further, certain kinds of neglected 
nonlinearities will not be picked up by adding quadratic terms. RESET adds polynomi-
als in the OLS fitted values to equation (9.2) to detect general kinds of functional form 
misspecification.

Q u e s t i o n  9 . 1
Why do we not include the squares of black and hispan in column (2) 
of Table 9.1?
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 To implement RESET, we must decide how many functions of the fitted values to 
include in an expanded regression. There is no right answer to this question, but the 
squared and cubed terms have proven to be useful in most applications.
 Let  ̂  y  denote the OLS fitted values from estimating (9.2). Consider the expanded equation

 y � �
0
 � �

1
x

1
 � ... � �

k
 x

k
 � �

1
  ̂  y 2 � �

2
  ̂  y 3 � error. 9.3

This equation seems a little odd, because functions of the fitted values from the initial 
estimation now appear as explanatory variables. In fact, we will not be interested in the 
estimated parameters from (9.3); we only use this equation to test whether (9.2) has missed 
important nonlinearities. The thing to remember is that  ̂  y 2 and  ̂  y 3 are just nonlinear func-
tions of the x

j
.

 The null hypothesis is that (9.2) is correctly specified. Thus, RESET is the F statistic 
for testing H

0
: �

1
 � 0, �

2
 � 0 in the expanded model (9.3). A significant F statistic suggests 

some sort of functional form problem. The distribution of the F statistic is approximately 
F

2,n�k�3
 in large samples under the null hypothesis (and the Gauss-Markov assumptions). 

The df in the expanded equation (9.3) is n � k � 1 � 2 � n � k � 3. An LM version is also 
available (and the chi-square distribution will have two df  ). Further, the test can be made 
robust to heteroskedasticity using the methods discussed in Section 8.2.

E x a m p l e  9 . 2

[Housing Price Equation]

We estimate two models for housing prices. The first one has all variables in level form:

 price � �
0
 � �

1
lotsize � �

2
 sqrft � �

3
 bdrms � u. 9.4

The second one uses the logarithms of all variables except bdrms:

 lprice � �
0
 � �

1
llotsize � �

2
 lsqrft � �

3
 bdrms � u. 9.5

Using n � 88 houses in HPRICE1.RAW, the RESET statistic for equation (9.4) turns out to be 4.67; 
this is the value of an F

2,82
 random variable (n � 88, k � 3), and the associated p-value is .012. This 

is evidence of functional form misspecification in (9.4).
 The RESET statistic in (9.5) is 2.56, with p-value � .084. Thus, we do not reject (9.5) at the 
5% significance level (although we would at the 10% level). On the basis of RESET, the log-log 
model in (9.5) is preferred.

 
 In the previous example, we tried two models for explaining housing prices. One was 
rejected by RESET, while the other was not (at least at the 5% level). Often, things are not 
so simple. A drawback with RESET is that it provides no real direction on how to proceed 
if the model is rejected. Rejecting (9.4) by using RESET does not immediately suggest 
that (9.5) is the next step. Equation (9.5) was estimated because constant elasticity models 
are easy to interpret and can have nice statistical properties. In this example, it so happens 
that it passes the functional form test as well.
 Some have argued that RESET is a very general test for model misspecification, 
including unobserved omitted variables and heteroskedasticity. Unfortunately, such use 
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of RESET is largely misguided. It can be shown that RESET has no power for detecting 
omitted variables whenever they have expectations that are linear in the included inde-
pendent variables in the model [see Wooldridge (1995) for a precise statement]. Further, 
if the functional form is properly specified, RESET has no power for detecting heteroske-
dasticity. The bottom line is that RESET is a functional form test, and nothing more.

Tests against Nonnested Alternatives

Obtaining tests for other kinds of functional form misspecification—for example, trying to 
decide whether an independent variable should appear in level or logarithmic form—takes 
us outside the realm of classical hypothesis testing. It is possible to test the model

 y � �
0
 � �

1
x

1
 � �

2
 x

2
 � u 9.6

against the model

 y � �
0
 � �

1
log(x

1
) � �

2
log(x

2
) � u, 9.7

and vice versa. However, these are nonnested models (see Chapter 6), and so we cannot 
simply use a standard F test. Two different approaches have been suggested. The first is 
to construct a comprehensive model that contains each model as a special case and then 
to test the restrictions that led to each of the models. In the current example, the compre-
hensive model is

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
log(x

1
) � �

4
log(x

2
) � u. 9.8

We can first test H
0
: �

3
 � 0, �

4
 � 0 as a test of (9.6). We can also test H

0
: �

1
 � 0, �

2
 � 0 

as a test of (9.7). This approach was suggested by Mizon and Richard (1986).
 Another approach has been suggested by Davidson and MacKinnon (1981). They 
point out that, if (9.6) is true, then the fitted values from the other model, (9.7), should be 
insignificant in (9.6). Thus, to test (9.6), we first estimate model (9.7) by OLS to obtain the 
fitted values. Call these  ̂   ̂  y  . Then, the Davidson-MacKinnon test is based on the t statistic 
on  ̂   ̂  y   in the equation

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

1
  ̂   ̂  y   � error.

A significant t statistic (against a two-sided alternative) is a rejection of (9.6).
 Similarly, if  ̂  y  denotes the fitted values from estimating (9.6), the test of (9.7) is the 
t statistic on  ̂  y  in the model

y � �
0
 � �

1
log(x

1
) � �

2
log(x

2
) � �

1
 ̂  y  � error;

a significant t statistic is evidence against (9.7). The same two tests can be used for testing 
any two nonnested models with the same dependent variable.
 There are a few problems with nonnested testing. First, a clear winner need not emerge. 
Both models could be rejected or neither model could be rejected. In the latter case, we 
can use the adjusted R-squared to choose between them. If both models are rejected, more 
work needs to be done. However, it is important to know the practical consequences from 
using one form or the other: if the effects of key independent variables on y are not very 
different, then it does not really matter which model is used.



306 Part 1   Regression Analysis with Cross-Sectional Data

 A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test 
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety of 
functional form misspecifications.
 An even more difficult problem is obtaining nonnested tests when the competing 
models have different dependent variables. The leading case is y versus log(y). We saw 
in Chapter 6 that just obtaining goodness-of-fit measures that can be compared requires 
some care. Tests have been proposed to solve this problem, but they are beyond the scope 
of this text. [See Wooldridge (1994a) for a test that has a simple interpretation and is easy 
to implement.]

9.2 Using Proxy Variables for Unobserved 
Explanatory Variables
A more difficult problem arises when a model excludes a key variable, usually because of 
data unavailability. Consider a wage equation that explicitly recognizes that ability (abil) 
affects log(wage):

 log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
abil � u. 9.9

This model shows explicitly that we want to hold ability fixed when measuring the return to 
educ and exper. If, say, educ is correlated with abil, then putting abil in the error term causes 
the OLS estimator of �

1
 (and �

2
) to be biased, a theme that has appeared repeatedly.

 Our primary interest in equation (9.9) is in the slope parameters �
1
 and �

2
. We do 

not really care whether we get an unbiased or consistent estimator of the intercept �
0
; as 

we will see shortly, this is not usually possible. Also, we can never hope to estimate �
3
 

because abil is not observed; in fact, we would not know how to interpret �
3
 anyway, since 

ability is at best a vague concept.
 How can we solve, or at least mitigate, the omitted variables bias in an equation like 
(9.9)? One possibility is to obtain a proxy variable for the omitted variable. Loosely 
speaking, a proxy variable is something that is related to the unobserved variable that 
we would like to control for in our analysis. In the wage equation, one possibility is to 
use the intelligence quotient, or IQ, as a proxy for ability. This does not require IQ to be 
the same thing as ability; what we need is for IQ to be correlated with ability, something 
we clarify in the following discussion.
 All of the key ideas can be illustrated in a model with three independent variables, two 
of which are observed:

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x  *   

3
   � u. 9.10

We assume that data are available on y, x
1
, and x

2
—in the wage example, these are 

log(wage), educ, and exper, respectively. The explanatory variable x  *   
3
   is unobserved, but 

we have a proxy variable for x  *   
3
  . Call the proxy variable x

3
.

 What do we require of x
3
? At a minimum, it should have some relationship to x  *   

3
  . This 

is captured by the simple regression equation

 x  *   
3
   � �

0
 � �

3
x

3
 � v

3
, 9.11
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where v
3
 is an error due to the fact that x  *   

3
   and x

3
 are not exactly related. The parameter �

3
 

measures the relationship between x  *   
3
   and x

3
; typically, we think of x  *   

3
   and x

3
 as being posi-

tively related, so that �
3
 � 0. If �

3
 � 0, then x

3
 is not a suitable proxy for x  *   

3
  . The intercept 

�
0
 in (9.11), which can be positive or negative, simply allows x  *   

3
   and x

3
 to be measured 

on different scales. (For example, unobserved ability is certainly not required to have the 
same average value as IQ in the U.S. population.)
 How can we use x

3
 to get unbiased (or at least consistent) estimators of �

1
 and �

2
? The 

proposal is to pretend that x
3
 and x  *   

3
   are the same, so that we run the regression of

 y on x
1
, x

2
, x

3
. 9.12

We call this the plug-in solution to the omitted variables problem because x
3
 is just 

plugged in for x  *   
3
   before we run OLS. If x

3
 is truly related to x  *   

3
  , this seems like a sensible 

thing. However, since x
3
 and x  *   

3
   are not the same, we should determine when this procedure 

does in fact give consistent estimators of �
1
 and �

2
.

 The assumptions needed for the plug-in solution to provide consistent estimators of �
1
 

and �
2
 can be broken down into assumptions about u and v

3
:

 (1) The error u is uncorrelated with x
1
, x

2
, and x  *   

3
  , which is just the standard assumption 

in model (9.10). In addition, u is uncorrelated with x
3
. This latter assumption just means 

that x
3
 is irrelevant in the population model, once x

1
, x

2
, and x  *   

3
   have been included. This 

is essentially true by definition, since x
3
 is a proxy variable for x  *   

3
  : it is x  *   

3
   that directly 

affects y, not x
3
. Thus, the assumption that u is uncorrelated with x

1
, x

2
, x  *   

3
  , and x

3
 is not 

very controversial. (Another way to state this assumption is that the expected value of u, 
given all these variables, is zero.)
 (2) The error v

3
 is uncorrelated with x

1
, x

2
, and x

3
. Assuming that v

3
 is uncorrelated 

with x
1
 and x

2
 requires x

3
 to be a “good” proxy for x  *   

3
  . This is easiest to see by writing the 

analog of these assumptions in terms of conditional expectations:

 E(x  *   
3
  �x

1
, x

2
, x

3
) � E(x  *   

3
  �x

3
) � �

0
 � �

3
x

3
. 9.13

The first equality, which is the most important one, says that, once x
3
 is controlled for, the 

expected value of x  *   
3
   does not depend on x

1
 or x

2
. Alternatively, x  *   

3
   has zero correlation with 

x
1
 and x

2
 once x

3
 is partialled out.

 In the wage equation (9.9), where IQ is the proxy for ability, condition (9.13) 
becomes

E(abil�educ,exper,IQ) � E(abil�IQ) � �
0
 � �

3
IQ.

Thus, the average level of ability only changes with IQ, not with educ and exper. Is this 
reasonable? Maybe it is not exactly true, but it may be close to being true. It is certainly 
worth including IQ in the wage equation to see what happens to the estimated return to 
education.
 We can easily see why the previous assumptions are enough for the plug-in solution to 
work. If we plug equation (9.11) into equation (9.10) and do simple algebra, we get

y � (�
0
 � �

3
�

0
) � �

1
x

1
 � �

2
x

2
 � �

3
�

3
x

3
 � u � �

3
v

3
.

 Call the composite error in this equation e � u � �
3
v

3
; it depends on the error in the 

model of interest, (9.10), and the error in the proxy variable equation, v
3
. Since u and v

3
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both have zero mean and each is uncorrelated with x
1
, x

2
, and x

3
, e also has zero mean and 

is uncorrelated with x
1
, x

2
, and x

3
. Write this equation as

y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � e,

where �
0
 � (�

0
 � �

3
�

0
) is the new intercept and �

3
 � �

3
�

3
 is the slope parameter on the 

proxy variable x
3
. As we alluded to earlier, when we run the regression in (9.12), we will 

not get unbiased estimators of �
0
 and �

3
; instead, we will get unbiased (or at least consis-

tent) estimators of �
0
, �

1
, �

2
, and �

3
. The important thing is that we get good estimates of 

the parameters �
1
 and �

2
.

 In most cases, the estimate of �
3
 is actually more interesting than an estimate of �

3
 

anyway. For example, in the wage equation, �
3
 measures the return to wage given one 

more point on IQ score.

E x a m p l e  9 . 3

[IQ as a Proxy for Ability]

The file WAGE2.RAW, from Blackburn and Neumark (1992), contains information on monthly 
earnings, education, several demographic variables, and IQ scores for 935 men in 1980. As a method 
to account for omitted ability bias, we add IQ to a standard log wage equation. The results are shown 
in Table 9.2.
 Our primary interest is in what happens to the estimated return to education. Column (1) con-
tains the estimates without using IQ as a proxy variable. The estimated return to education is 6.5%. 
If we think omitted ability is positively correlated with educ, then we assume that this estimate is 
too high. (More precisely, the average estimate across all random samples would be too high.) When 
IQ is added to the equation, the return to education falls to 5.4%, which corresponds with our prior 
beliefs about omitted ability bias.
 The effect of IQ on socioeconomic outcomes has been documented in the controversial book, 
The Bell Curve, by Herrnstein and Murray (1994). Column (2) shows that IQ does have a statisti-
cally significant, positive effect on earnings, after controlling for several other factors. Everything 
else being equal, an increase of 10 IQ points is predicted to raise monthly earnings by 3.6%. The 
standard deviation of IQ in the U.S. population is 15, so a one standard deviation increase in IQ is 
associated with higher earnings of 5.4%. This is identical to the predicted increase in wage due to 
another year of education. It is clear from column (2) that education still has an important role in 
increasing earnings, even though the effect is not as large as originally estimated.
 Some other interesting observations emerge from columns (1) and (2). Adding IQ to the 
equation only increases the R-squared from .253 to .263. Most of the variation in log(wage) is not 
explained by the factors in column (2). Also, adding IQ to the equation does not eliminate the esti-
mated earnings difference between black and white men: a black man with the same IQ, education, 
experience, and so on, as a white man is predicted to earn about 14.3% less, and the difference is 

very statistically significant.
 Column (3) in Table 9.2 includes the 
interaction term educ�IQ. This allows for 
the possibility that educ and abil interact in 
determining log(wage). We might think that 
the return to education is higher for people 
with more ability, but this turns out not to 

Q u e s t i o n  9 . 2
What do you make of the small and statistically insignificant coef-
ficient on educ in column (3) of Table 9.2? (Hint: When educ�IQ 
is in the equation, what is the interpretation of the coefficient on 
educ?)
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TABLE  9 . 2

Dependent Variable: log(wage)

Independent Variables (1) (2) (3)

educ .065
(.006)

.054
(.007)

.018
(.041)

exper .014
(.003)

    .014
(.003)

.014
(.003)

tenure      .012
 (.002)

    .011
(.002)

.011
(.002)

married .199
(.039)

.200
(.039)

.201
(.039)

south    –.091
(.026)

  �.080
(.026)

  �.080
(.026)

urban .184
(.027)

.182
  (.027)

.184
(.027)

black    –.188
(.038)

   –.143
(.039)

  �.147
(.040)

IQ —  .0036
(.0010)

  �.0009
(.0052)

educ�IQ — —     .00034
   (.00038)

intercept    5.395
(.113)

   5.176
(.128)

   5.648
(.546)

Observations
R-squared

935
.253

935
.263

935
.263

be the case: the interaction term is not significant, and its addition makes educ and IQ individually 
insignificant while complicating the model. Therefore, the estimates in column (2) are preferred.
 There is no reason to stop at a single proxy variable for ability in this example. The data set 
WAGE2.RAW also contains a score for each man on the Knowledge of the World of Work (KWW) 
test. This provides a different measure of ability, which can be used in place of IQ or along with IQ, 
to estimate the return to education (see Computer Exercise C9.2).
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 It is easy to see how using a proxy variable can still lead to bias, if the proxy variable 
does not satisfy the preceding assumptions. Suppose that, instead of (9.11), the unobserved 
variable, x   *   

3
  , is related to all of the observed variables by

 x   *   
3
   � �

0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � v

3
, 9.14

where v
3
 has a zero mean and is uncorrelated with x

1
, x

2
, and x

3
. Equation (9.11) assumes 

that �
1
 and �

2
 are both zero. By plugging equation (9.14) into (9.10), we get

 y � (�
0
 � �

3
�

0
) � (�

1
 � �

3
�

1
)x

1
 � (�

2
 � �

3
�

2
)x

2

� �
3
�

3
x

3
 � u � �

3
v

3
,
 9.15

from which it follows that plim( ̂  � 
1
) � �

1
 � �

3
�

1
 and plim( ̂  � 

2
) � �

2
 � �

3
�

2
. [This follows 

because the error in (9.15), u � �
3
v

3
, has zero mean and is uncorrelated with x

1
, x

2
, and 

x
3
.] In the previous example where x

1
 � educ and x   *   

3
   � abil, �

3
 � 0, so there is a positive 

bias (inconsistency), if abil has a positive partial correlation with educ (�
1
 � 0). Thus, we 

could still be getting an upward bias in the return to education, using IQ as a proxy for 
abil, if IQ is not a good proxy. But we can reasonably hope that this bias is smaller than 
if we ignored the problem of omitted ability entirely.
 Proxy variables can come in the form of binary information as well. In Example 7.9 
[see equation (7.15)], we discussed Krueger’s (1993) estimates of the return to using 
a computer on the job. Krueger also included a binary variable indicating whether the 
worker uses a computer at home (as well as an interaction term between computer usage 
at work and at home). His primary reason for including computer usage at home in the 
equation was to proxy for unobserved “technical ability” that could affect wage directly 
and be related to computer usage at work.

Using Lagged Dependent Variables as Proxy Variables

In some applications, like the earlier wage example, we have at least a vague idea about 
which unobserved factor we would like to control for. This facilitates choosing proxy 
variables. In other applications, we suspect that one or more of the independent variables 
is correlated with an omitted variable, but we have no idea how to obtain a proxy for that 
omitted variable. In such cases, we can include, as a control, the value of the dependent 
variable from an earlier time period. This is especially useful for policy analysis.
 Using a lagged dependent variable in a cross-sectional equation increases the data require-
ments, but it also provides a simple way to account for historical factors that cause current dif-
ferences in the dependent variable that are difficult to account for in other ways. For example, 
some cities have had high crime rates in the past. Many of the same unobserved factors contrib-
ute to both high current and past crime rates. Likewise, some universities are traditionally better 
in academics than other universities. Inertial effects are also captured by putting in lags of y.
 Consider a simple equation to explain city crime rates:

 crime � �
0
 � �

1
unem � �

2
expend � �

3
crime

�1
 � u, 9.16

where crime is a measure of per capita crime, unem is the city unemployment rate, expend 
is per capita spending on law enforcement, and crime

�1
 indicates the crime rate measured 
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in some earlier year (this could be the past year or several years ago). We are interested in 
the effects of unem on crime, as well as of law enforcement expenditures on crime.
 What is the purpose of including crime

�1
 in the equation? Certainly, we expect that �

3
 � 0 

because crime has inertia. But the main reason for putting this in the equation is that cities 
with high historical crime rates may spend more on crime prevention. Thus, factors unob-
served to us (the econometricians) that affect crime are likely to be correlated with expend 
(and unem). If we use a pure cross-sectional analysis, we are unlikely to get an unbiased 
estimator of the causal effect of law enforcement expenditures on crime. But, by including 
crime

�1
 in the equation, we can at least do the following experiment: if two cities have the 

same previous crime rate and current unemployment rate, then �
2
 measures the effect of 

another dollar of law enforcement on crime.

E x a m p l e  9 . 4

[City Crime Rates]

We estimate a constant elasticity version of the crime model in equation (9.16) (unem, because it is 
a percentage, is left in level form). The data in CRIME2.RAW are from 46 cities for the year 1987. 
The crime rate is also available for 1982, and we use that as an additional independent variable in 
trying to control for city unobservables that affect crime and may be correlated with current law 
enforcement expenditures. Table 9.3 contains the results.
 Without the lagged crime rate in the equation, the effects of the unemployment rate and expen-
ditures on law enforcement are counterintuitive; neither is statistically significant, although the 
t statistic on log(lawexpc

87
) is 1.17. One possibility is that increased law enforcement expenditures 

TABLE  9 . 3

Dependent Variable: log(crmrte87)

Independent Variables (1) (2)

unem
87 �.029

   (.032)
  .009
(.020)

log(lawexpc
87

)    .203
   (.173)

 �.140
   (.109)

log(crmrte
82

) —         1.194
        (.132)

intercept         3.34
      (1.25)

         .076
        (.821)

Observations
R-squared

 46
        .057

          46
       .680
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improve reporting conventions, and so more crimes are reported. But it is also likely that cities with 
high recent crime rates spend more on law enforcement.
 Adding the log of the crime rate from five years earlier has a large effect on the expenditures 
coefficient. The elasticity of the crime rate with respect to expenditures becomes �.14, with t � 
�1.28. This is not strongly significant, but it suggests that a more sophisticated model with more 
cities in the sample could produce significant results.
 Not surprisingly, the current crime rate is strongly related to the past crime rate. The estimate 
indicates that if the crime rate in 1982 was 1% higher, then the crime rate in 1987 is predicted to 
be about 1.19% higher. We cannot reject the hypothesis that the elasticity of current crime with 
respect to past crime is unity [t � (1.194 � 1)/.132 � 1.47]. Adding the past crime rate increases the 
explanatory power of the regression markedly, but this is no surprise. The primary reason for includ-
ing the lagged crime rate is to obtain a better estimate of the ceteris paribus effect of log(lawexpc

87
) 

on log(crmrte
87

).

 

 The practice of putting in a lagged y as a general way of controlling for unobserved 
variables is hardly perfect. But it can aid in getting a better estimate of the effects of policy 
variables on various outcomes.
 Adding a lagged value of y is not the only way to use two years of data to control 
for omitted factors. When we discuss panel data methods in Chapters 13 and 14, we will 
cover other ways to use repeated data on the same cross-sectional units at different points 
in time.

A Different Slant on Multiple Regression

The discussion of proxy variables in this section suggests an alternative way of interpreting 
a multiple regression analysis when we do not necessarily observe all relevant explanatory 
variables. Until now, we have specified the population model of interest with an additive 
error, as in equation (9.9). Our discussion of that example hinged upon whether we have a 
suitable proxy variable (IQ score in this case, other test scores more generally) for the unob-
served explanatory variable, which we called “ability.”
 A less structured, more general approach to multiple regression is to forego specifying 
models with unobservables. Rather, we begin with the premise that we have access to a 
set of observable explanatory variables—which includes the variable of primary interest, 
such as years of schooling, and controls, such as observable test scores. We then model 
the mean of y conditional on the observed explanatory variables. For example, in the wage 
example with lwage denoting log(wage), we can estimate E(lwage�educ,exper,tenure, 
south,urban,black,IQ)—exactly what is reported in Table 9.2. The difference now is that 
we set our goals more modestly. Namely, rather than introduce the nebulous concept of 
“ability” in equation (9.9), we state from the outset that we will estimate the ceteris paribus 
effect of education holding IQ (and the other observed factors) fixed. There is no need 
to discuss whether IQ is a suitable proxy for ability. Consequently, while we may not be 
answering the question underlying equation (9.9), we are answering a question of interest: 
if two people have the same IQ levels (and same values of experience, tenure, and so on), 
yet they differ in education levels by a year, what is the expected difference in their log 
wages?
 As another example, if we include as an explanatory variable the poverty rate in a school-
level regression to assess the effects of spending on standardized test scores, we should 
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recognize that the poverty rate only crudely captures the relevant differences in children and 
parents across schools. But often it is all we have, and it is better to control for the poverty 
rate than to do nothing because we cannot find suitable proxies for student “ability,” parental 
“involvement,” and so on. Almost certainly controlling for the poverty rate gets us closer to 
the ceteris paribus effects of spending than if we leave the poverty rate out of the analysis.
 In some applications of regression analysis, we are interested simply in predicting 
the outcome, y, given a set of explanatory variables, (x

1
, ..., x

k
). In such cases, it makes 

little sense to think in terms of “bias” in estimated coefficients due to omitted variables. 
Instead, we should focus on obtaining a model that predicts as well as possible, and 
make sure we do not include as regressors variables that cannot be observed at the time 
of prediction. For example, an admissions officer for a college or university might be 
interested in predicting success in college, as measured by grade point average, in terms 
of variables that can be measured at application time. Those variables would include 
high school performance (maybe just grade point average, but perhaps performance 
in specific kinds of courses), standardized test scores, participation in various activi-
ties (such as debate or math club), and even family background variables. We would 
not include a variable measuring college class attendance because we do not observe 
attendance in college at application time. Nor would we wring our hands about poten-
tial “biases” caused by omitting an attendance variable: we have no interest in, say, 
 measuring the effect of high school GPA holding attendance in college fixed. Likewise, 
we would not worry about biases in coefficients because we cannot observe factors such 
as motivation. Naturally, for predictive purposes it would probably help substantially if 
we had a measure of motivation, but in its absence we fit the best model we can with 
observed explanatory variables.

9.3 Models with Random Slopes
In our treatment of regression so far, we have assumed that the slope coefficients are the 
same across individuals in the population, or that, if the slopes differ, they differ by measur-
able characteristics, in which case we are led to regression models containing interaction 
terms. For example, as we saw in Section 7.4, we can allow the return to education to differ 
by men and women by interacting education with a gender dummy in a log wage equation.
 Here we are interested in a related but different question: What if the partial effect of 
a variable depends on unobserved factors that vary by population unit? If we have only 
one explanatory variable, x, we can write a general model (for a random draw, i, from the 
population, for emphasis) as

 y
i
 � a

i
 � b

i 
x

i
, 9.17

where a
i
 is the intercept for unit i and b

i
 is the slope. In the simple regression model from 

Chapter 2 we assumed b
i
 � � and labeled a

i
 as the error, u

i
. The model in (9.17) is some-

times called a random coefficient model or random slope model because the unobserved 
slope coefficient, b

i
, is viewed as a random draw from the population along with the 

observed data, (x
i
,y

i
), and the unobserved intercept, a

i
. As an example, if y

i
 � log(wage

i
) 

and x
i
 � educ

i
, then (9.17) allows the return to education, b

i
, to vary by person. If, say, b

i
 

contains unmeasured ability (just as a
i
 would), the partial effect of another year of school-

ing can depend on ability.
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 With a random sample of size n, we (implicitly) draw n values of b
i
 along with n val-

ues of a
i
 (and the observed data on x and y). Naturally, we cannot estimate a slope—or, 

for that matter, an intercept—for each i. But we can hope to estimate the average slope 
(and average intercept), where the average is across the population. Therefore, define 
� � E(a

i
) and � � E(b

i
). Then � is the average of the partial effect of x on y, and so 

we call � the average partial effect (APE), or the average marginal effect (AME). In 
the context of a log wage equation, � is the average return to a year of schooling in the 
population.
 If we write a

i
 � � � c

i
 and b

i
 � � � d

i
, then d

i
 is the individual-specific deviation 

from the APE. By construction, E(c
i
) � 0 and E(d

i
) � 0. Substituting into (9.17) gives

 y
i
 � � � �x

i
 � c

i
 � d

i
 x

i
 � � � �x

i
 � u

i
, 9.18

where u
i
 � c

i
 � d

i
 x

i
. (To make the notation easier to follow, we now use �, the mean value 

of a
i
, as the intercept, and �, the mean of b

i
, as the slope.) In other words, we can write the 

random coefficient as a constant coefficient model but where the error term contains an 
interaction between an unobservable, d

i
, and the observed explanatory variable, x

i
. 

 When would a simple regression of y
i
 on x

i
 provide an unbiased estimate of � (and 

�)? We can apply the result for unbiasedness from Chapter 2. If E(u
i
�x

i
) � 0, then OLS is 

generally unbiased. When u
i
 � c

i
 � d

i
 x

i
, sufficient is E(c

i
�x

i
) � E(c

i
) � 0 and E(d

i
�x

i
) � 

E(d
i
) � 0. We can write these in terms of the unit-specific intercept and slope as

 E(a
i
�x

i
) � E(a

i
) and E(b

i
�x

i
) � E(b

i
); 9.19

that is, a
i
 and b

i
 are both mean independent of x

i
. This is a useful finding: if we allow for 

unit-specific slopes, OLS consistently estimates the population average of those slopes 
when they are mean independent of the explanatory variable. (See Problem 9.6 for a 
weaker set of conditions that imply consistency of OLS.)
 The error term in (9.18) almost certainly contains heteroskedasticity. In fact, if 
Var(c

i
�x

i
) � � 2   c  , Var(d

i
�x

i
) � � 2   

d
 , and Cov(c

i
, d

i
�x

i
) � 0, then

 Var(u
i
�x

i
) � � 2   c   � � 2   

d
  x 2   i  , 9.20

and so there must be heteroskedasticity in u
i
 unless � 2   d   � 0, which means b

i
 � � for all i. 

We know how to account for heteroskedasticity of this kind. We can use OLS and com-
pute heteroskedasticity-robust standard errors and test statistics, or we can estimate the 
variance function in (9.20) and apply weighted least squares. Of course the latter strategy 
imposes homoskedasticity on the random intercept and slope, and so we would want to 
make a WLS analysis fully robust to violations of (9.20).
 Because of equation (9.20), some authors like to view heteroskedasticity in regres-
sion models generally as arising from random slope coefficients. But we should 
remember that the form of (9.20) is special, and it does not allow for heteroskedasticity 
in a

i
 or b

i
. We cannot convincingly distinguish between a random slope model, where 

the intercept and slope are independent of x
i
, and a constant slope model with hetero-

skedasticity in a
i
.

 The treatment for multiple regression is similar. Generally, write

 y
i
 � a

i
 � b

i1
x

i1
 � b

i2 
x

i2
 … � b

ik 
x

ik
. 9.21
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Then, by writing a
i
 � � � c

i
 and b

ij
 � �

j
 � d

ij
, we have

 y
i
 � � � �

1
x

i1
 � … � �

k
x

ik
 � u

i
, 9.22

where u
i
 � c

i
 � d

i1
x

i1
 � … � d

ik
x

ik
. If we maintain the mean independence assumptions 

E(a
i
�x

i
) � E(a

i
) and E(b

ij
�x

i
) � E(b

ij
), j � 1, …, k, then E(y

i
�x

i
) � � � �

1
x

i1
 � … � �

k
x

ik
, 

and so OLS using a random sample produces unbiases estimators of � and the �
j
. As in 

the simple regression case, Var(u
i
�x

i
) is almost certainly heteroskedastic.

 We can allow the b
ij
 to depend on observable explanatory variables as well as observa-

bles. For example, suppose with k � 2 the effect of x
i2
 depends on x

i1
, and we write b

i2
 � 

�
2
 � �

1
(x

i1
 � 


1
) � d

i2
, where 


1
 � E(x

i1
). If we assume E(d

i2
�x

i
) � 0 (and similarly for c

i
 

and d
i1
), then E(y

i
�x

i1
, x

i2
) � � � �

1
x

i1
 � �

2
x

i2
 � �

1
(x

i1
 � 


1
)x

i2
, which means we have an 

interaction between x
i1
 and x

i2
. Because we have subtracted the mean 


1
 from x

i1
, �

2
 is the 

average partial effect of x
i2
.

 The bottom line of this section is that allowing for random slopes is fairly straightforward 
if the slopes are independent, or at least mean independent, of the explanatory variables. In 
addition, we can easily model the slopes as functions of the exogenous variables, which leads 
to models with squares and interactions. Of course, in Chapter 6 we discussed how such mod-
els can be useful without ever introducing the notion of a random slope. The random slopes 
specification provides a separate justification for such models. Estimation becomes consider-
ably more difficult if the random intercept as well as some slopes are correlated with some of 
the regressors. We cover the problem of endogenous explanatory variables in Chapter 15.

9.4 Properties of OLS under 
Measurement Error
Sometimes, in economic applications, we cannot collect data on the variable that truly 
affects economic behavior. A good example is the marginal income tax rate facing a fam-
ily that is trying to choose how much to contribute to charity in a given year. The marginal 
rate may be hard to obtain or summarize as a single number for all income levels. Instead, 
we might compute the average tax rate based on total income and tax payments.
 When we use an imprecise measure of an economic variable in a regression model, 
then our model contains measurement error. In this section, we derive the consequences 
of measurement error for ordinary least squares estimation. OLS will be consistent under 
certain assumptions, but there are others under which it is inconsistent. In some of these 
cases, we can derive the size of the asymptotic bias.
 As we will see, the measurement error problem has a similar statistical structure to 
the omitted variable–proxy variable problem discussed in the previous section, but they 
are conceptually different. In the proxy variable case, we are looking for a variable that 
is somehow associated with the unobserved variable. In the measurement error case, the 
variable that we do not observe has a well-defined, quantitative meaning (such as a mar-
ginal tax rate or annual income), but our recorded measures of it may contain error. For 
example, reported annual income is a measure of actual annual income, whereas IQ score 
is a proxy for ability.
 Another important difference between the proxy variable and measurement error problems 
is that, in the latter case, often the mismeasured independent variable is the one of primary 
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interest. In the proxy variable case, the partial effect of the omitted variable is rarely of central 
interest: we are usually concerned with the effects of the other independent variables.
 Before we consider details, we should remember that measurement error is an issue 
only when the variables for which the econometrician can collect data differ from the vari-
ables that influence decisions by individuals, families, firms, and so on.

Measurement Error in the Dependent Variable

We begin with the case where only the dependent variable is measured with error. Let y* 
denote the variable (in the population, as always) that we would like to explain. For exam-
ple, y* could be annual family savings. The regression model has the usual form

 y* � �
0
 � �

1
x

1
 � … � �

k
x

k
 � u, 9.23

and we assume it satisfies the Gauss-Markov assumptions. We let y represent the observ-
able measure of y*. In the savings case, y is reported annual savings. Unfortunately, 
families are not perfect in their reporting of annual family savings; it is easy to leave out 
categories or to overestimate the amount contributed to a fund. Generally, we can expect 
y and y* to differ, at least for some subset of families in the population.
 The measurement error (in the population) is defined as the difference between the 
observed value and the actual value:

 e
0
 � y � y*. 9.24

For a random draw i from the population, we can write e
i0
 � y

i
 � y  *   i  , but the important 

thing is how the measurement error in the population is related to other factors. To obtain 
an estimable model, we write y* � y � e

0
, plug this into equation (9.23), and rearrange:

 y � �
0
 � �

1
x

1
 � … � �

k
x

k
 � u � e

0
. 9.25

The error term in equation (9.25) is u � e
0
. Because y, x

1
, x

2
, …, x

k
 are observed, we 

can estimate this model by OLS. In effect, we just ignore the fact that y is an imperfect 
measure of y* and proceed as usual.
 When does OLS with y in place of y* produce consistent estimators of the �

j
? Since 

the original model (9.23) satisfies the Gauss-Markov assumptions, u has zero mean and 
is uncorrelated with each x

j
. It is only natural to assume that the measurement error has 

zero mean; if it does not, then we simply get a biased estimator of the intercept, �
0
, 

which is rarely a cause for concern. Of much more importance is our assumption about 
the relationship between the measurement error, e

0
, and the explanatory variables, x

j
. 

The usual assumption is that the measurement error in y is statistically independent of 
each explanatory variable. If this is true, then the OLS estimators from (9.25) are unbi-
ased and consistent. Further, the usual OLS inference procedures (t, F, and LM statistics) 
are valid.
 If e

0
 and u are uncorrelated, as is usually assumed, then Var(u � e

0
) � � 2   u  � � 2   

0
  � � 2   u .

This means that measurement error in the dependent variable results in a larger error 
variance than when no error occurs; this, of course, results in larger variances of the OLS 
estimators. This is to be expected, and there is nothing we can do about it (except collect 
better data). The bottom line is that, if the measurement error is uncorrelated with the 
independent variables, then OLS estimation has good properties.
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E x a m p l e  9 . 5

[Savings Function with Measurement Error]

Consider a savings function

 sav* � �
0
 � �

1
inc � �

2
size � �

3
educ � �

4
age � u,

but where actual savings (sav*) may deviate from reported savings (sav). The question is whether 
the size of the measurement error in sav is systematically related to the other variables. It might be 
reasonable to assume that the measurement error is not correlated with inc, size, educ, and age. On 
the other hand, we might think that families with higher incomes, or more education, report their 
savings more accurately. We can never know whether the measurement error is correlated with inc 
or educ, unless we can collect data on sav*; then, the measurement error can be computed for each 
observation as e

i0
 � sav

i
 � sav  *   i  .

 
 When the dependent variable is in logarithmic form, so that log(y*) is the dependent 
variable, it is natural for the measurement error equation to be of the form

 log(y) � log(y*) � e
0
. 9.26

This follows from a multiplicative measurement error for y: y � y*a
0
, where a

0
 � 0 

and e
0
 � log(a

0
).

E x a m p l e  9 . 6

[Measurement Error in Scrap Rates]

In Section 7.6, we discussed an example where we wanted to determine whether job training grants 
reduce the scrap rate in manufacturing firms. We certainly might think the scrap rate reported by 
firms is measured with error. (In fact, most firms in the sample do not even report a scrap rate.) In a 
simple regression framework, this is captured by

log(scrap*) � �
0
 � �

1
grant � u,

where scrap* is the true scrap rate and grant is the dummy variable indicating whether a firm 
received a grant. The measurement error equation is

log(scrap) � log(scrap*) � e
0
.

Is the measurement error, e
0
, independent of whether the firm receives a grant? A cynical person 

might think that a firm receiving a grant is more likely to underreport its scrap rate in order to make 
the grant look effective. If this happens, then, in the estimable equation,

log(scrap) � �
0
 � �

1
grant � u � e

0
,

the error u � e
0
 is negatively correlated with grant. This would produce a downward bias in �

1
, 

which would tend to make the training program look more effective than it actually was. (Remember, 
a more negative �

1
 means the program was more effective, since increased worker productivity is 

associated with a lower scrap rate.)
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 The bottom line of this subsection is that measurement error in the dependent variable 
can cause biases in OLS if it is systematically related to one or more of the explanatory 
variables. If the measurement error is just a random reporting error that is independent of 
the explanatory variables, as is often assumed, then OLS is perfectly appropriate.

Measurement Error in an Explanatory Variable

Traditionally, measurement error in an explanatory variable has been considered a much 
more important problem than measurement error in the dependent variable. In this subsec-
tion, we will see why this is the case.
 We begin with the simple regression model

 y � �
0
 � �

1
x  *   

1
   � u, 9.27

and we assume that this satisfies at least the first four Gauss-Markov assumptions. This 
means that estimation of (9.27) by OLS would produce unbiased and consistent estimators 
of �

0
 and �

1
. The problem is that x  *   

1
   is not observed. Instead, we have a measure of x  *   

1
  ; call 

it x
1
. For example, x  *   

1
   could be actual income, and x

1
 could be reported income.

 The measurement error in the population is simply

 e
1
 � x

1
 � x  *   

1
  , 9.28

and this can be positive, negative, or zero. We assume that the average measurement error 
in the population is zero: E(e

1
) � 0. This is natural, and, in any case, it does not affect 

the important conclusions that follow. A maintained assumption in what follows is that 
u is uncorrelated with x  *   

1
   and x

1
. In conditional expectation terms, we can write this as 

E(y�x  *   
1
  , x

1
) � E(y�x  *   

1
  ), which just says that x

1
 does not affect y after x  *   

1
   has been controlled 

for. We used the same assumption in the proxy variable case, and it is not controversial; it 
holds almost by definition.
 We want to know the properties of OLS if we simply replace x  *   

1
   with x

1
 and run 

the regression of y on x
1
. They depend crucially on the assumptions we make about the 

measurement error. Two assumptions have been the focus in econometrics literature, and 
they both represent polar extremes. The first assumption is that e

1
 is uncorrelated with the 

observed measure, x
1
:

 Cov(x
1
,e

1
) � 0. 9.29

From the relationship in (9.28), if assumption (9.29) is true, then e
1
 must be correlated 

with the unobserved variable x  *   
1
  . To determine the properties of OLS in this case, we write 

x  *   
1
   � x

1
 � e

1
 and plug this into equation (9.27):

 y � �
0
 � �

1
x

1
 � (u � �

1
e

1
). 9.30

Because we have assumed that u and e
1
 both have zero mean and are uncorrelated with x

1
, 

u � �
1
e

1
 has zero mean and is uncorrelated with x

1
. It follows that OLS estimation with x

1
 

in place of x  *   
1
   produces a consistent estimator of �

1
 (and also �

0
). Since u is uncorrelated 

with e
1
, the variance of the error in (9.30) is Var(u � �

1
e

1
) � � 2   u  � � 2   

1
 � 2   e  

1
. Thus, except 

when �
1
 � 0, measurement error increases the error variance. But this does not affect any 
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of the OLS properties (except that the variances of the  ̂  � 
j
 will be larger than if we observe 

x  *   
1
   directly).

 The assumption that e
1
 is uncorrelated with x

1
 is analogous to the proxy variable assump-

tion we made in Section 9.2. Since this assumption implies that OLS has all of its nice prop-
erties, this is not usually what econometricians have in mind when they refer to measurement 
error in an explanatory variable. The classical errors-in-variables (CEV) assumption is that 
the measurement error is uncorrelated with the unobserved explanatory variable:

 Cov(x  *   
1
  ,e

1
) � 0. 9.31

This assumption comes from writing the observed measure as the sum of the true explana-
tory variable and the measurement error,

 x
1
 � x   *   

1
   � e

1
,

and then assuming the two components of x
1
 are uncorrelated. (This has nothing to do 

with assumptions about u; we always maintain that u is uncorrelated with x  *   
1
   and x

1
, and 

therefore with e
1
.)

 If assumption (9.31) holds, then x
1
 and e

1
 must be correlated:

 Cov(x
1
,e

1
) � E(x

1
e

1
) � E(x  *   

1
  e

1
) � E(e 2   

1
 ) � 0 � �  2   e  1 � �  2   e  1. 9.32

Thus, the covariance between x
1
 and e

1
 is equal to the variance of the measurement error 

under the CEV assumption.
 Referring to equation (9.30), we can see that correlation between x

1
 and e

1
 is going 

to cause problems. Because u and x
1
 are uncorrelated, the covariance between x

1
 and the 

composite error u � �
1
e

1
 is

Cov(x
1
,u � �

1
e

1
) � ��

1
Cov(x

1
,e

1
) � ��

1
�  2   e  1.

Thus, in the CEV case, the OLS regression of y on x
1
 gives a biased and inconsistent 

estimator.
 Using the asymptotic results in Chapter 5, we can determine the amount of inconsis-
tency in OLS. The probability limit of  ̂  � 

1
 is �

1
 plus the ratio of the covariance between x

1
 

and u � �
1
e

1
 and the variance of x

1
:

 plim( ̂  � 
1
) � �

1
 �   

Cov(x
1
,u � �

1
e

1
)
  ______________ 

Var(x
1
)
  

  � �
1
 �    

�
1
�   2   e  1 ________ 

�  2   x
   *   
1
  � �  2   e

  
1

   

  � �
1
 � 1 �    

�  2   e  1 ________ 
�  2   x 

   *   1 
  � �  2   e

  
1

   �  
 9.33

  � �
1
 � 

�  2   x   *   1  

�  2   x   *   1 
  � �  2   e  1 

�  ,
where we have used the fact that Var(x

1
) � Var(x  *   

1
  ) � Var(e

1
).
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 Equation (9.33) is very interesting. The term multiplying �
1
, which is the ratio 

Var (x  *   
1
  )/Var(x

1
), is always less than one [an implication of the CEV assumption (9.31)]. 

Thus, plim( ̂  � 
1
) is always closer to zero than is �

1
. This is called the attenuation bias in 

OLS due to classical errors-in-variables: on average (or in large samples), the estimated 
OLS effect will be attenuated. In particular, if �

1
 is positive,  ̂  � 

1
 will tend to underestimate 

�
1
. This is an important conclusion, but it relies on the CEV setup.

 If the variance of x   *   
1
   is large relative to the variance in the measurement error, then the 

inconsistency in OLS will be small. This is because Var(x  *   
1
  )/Var(x

1
) will be close to unity 

when � 2   x    *   1
  /� 2   e  

1
 is large. Therefore, depending on how much variation there is in x  *   

1
   relative 

to e
1
, measurement error need not cause large biases.

 Things are more complicated when we add more explanatory variables. For illustra-
tion, consider the model

 y � �
0
 � �

1
x  *   

1
   � �

2
x

2
 � �

3
x

3
 � u, 9.34

where the first of the three explanatory variables is measured with error. We make the 
natural assumption that u is uncorrelated with x  *   

1
  , x

2
, x

3
, and x

1
. Again, the crucial assump-

tion concerns the measurement error e
1
. In almost all cases, e

1
 is assumed to be uncor-

related with x
2
 and x

3
—the explanatory variables not measured with error. The key issue 

is whether e
1
 is uncorrelated with x

1
. If it is, then the OLS regression of y on x

1
, x

2
, and x

3
 

produces consistent estimators. This is easily seen by writing

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � �

3
x

3
 � u � �

1
e

1
, 9.35

where u and e
1
 are both uncorrelated with all the explanatory variables.

 Under the CEV assumption in (9.31), OLS will be biased and inconsistent, because e
1
 is 

correlated with x
1
 in equation (9.35). Remember, this means that, in general, all OLS estima-

tors will be biased, not just  ̂  � 
1
. What about the attenuation bias derived in equation (9.33)? 

It turns out that there is still an attenuation bias for estimating �
1
: it can be shown that

 plim(  ̂  � 
1
) � �

1
  �   � 2   r   *   1

 
 ________ 

� 2   r   *   
1
  � � 2   e

1
 
   � , 9.36

where r  *   
1
   is the population error in the equation x   *   

1
   � �

0
 � �

1
x

2
 � �

2
x

3
 � r    *   

1
  . Formula (9.36) 

also works in the general k variable case when x
1
 is the only mismeasured variable.

 Things are less clear-cut for estimating the �
j
 on the variables not measured with error. 

In the special case that x   *   
1
   is uncorrelated with x

2
 and x

3
,  ̂  � 

2
 and  ̂  � 

3
 are consistent. But this 

is rare in practice. Generally, measurement error in a single variable causes inconsistency 
in all estimators. Unfortunately, the sizes, and even the directions of the biases, are not 
easily derived.

E x a m p l e  9 . 7

[GPA Equation with Measurement Error]

Consider the problem of estimating the effect of family income on college grade point average, after 
controlling for hsGPA (high school grade point average) and SAT (scholastic aptitude test). It could 
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be that, though family income is important for performance before college, it has no direct effect on 
college performance. To test this, we might postulate the model

colGPA � �
0
 � �

1
 faminc* � �

2
hsGPA � �

3
SAT � u,

where faminc* is actual annual family income. (This might appear in logarithmic form, but for the 
sake of illustration we leave it in level form.) Precise data on colGPA, hsGPA, and SAT are relatively 
easy to obtain. But family income, especially as reported by students, could be easily mismeasured. 
If faminc � faminc* � e

1
 and the CEV assumptions hold, then using reported family income in 

place of actual family income will bias the OLS estimator of �
1
 toward zero. One consequence of 

the downward bias is that a test of H
0
: �

1
 � 0 will have less chance of detecting �

1
 � 0.

 
 Of course, measurement error can be present in more than one explanatory variable, 
or in some explanatory variables and the dependent variable. As we discussed earlier, any 
measurement error in the dependent variable is usually assumed to be uncorrelated with 
all the explanatory variables, whether it is observed or not. Deriving the bias in the OLS 
estimators under extensions of the CEV assumptions is complicated and does not lead to 
clear results.
 In some cases, it is clear that the CEV assumption in (9.31) cannot be true. Consider a 
variant on Example 9.7:

colGPA � �
0
 � �

1
smoked* � �

2
hsGPA � �

3
SAT � u,

where smoked* is the actual number of times a student smoked marijuana in the last 
30 days. The variable smoked is the answer to this question: On how many separate occa-
sions did you smoke marijuana in the last 30 days? Suppose we postulate the standard 
measurement error model

smoked � smoked* � e
1
.

Even if we assume that students try to report the truth, the CEV assumption is unlikely to 
hold. People who do not smoke marijuana at all—so that smoked* � 0—are likely to report 
smoked � 0, so the measurement error is probably zero for students who never smoke mar-
ijuana. When smoked* � 0, it is much more likely that the student miscounts how many 
times he or she smoked marijuana in the last 30 days. This means that the measurement 
error e

1
 and the actual number of times 

smoked, smoked*, are correlated, which 
violates the CEV assumption in (9.31). 
Unfortunately, deriving the implica-
tions of measurement error that do not 
satisfy (9.29) or (9.31) is difficult and 
beyond the scope of this text.
 Before leaving this section, we 
emphasize that the CEV assumption (9.31), while more believable than assumption (9.29), 
is still a strong assumption. The truth is probably somewhere in between, and if e

1
 is cor-

related with both x  *   
1
   and x

1
, OLS is inconsistent. This raises an important question: Must 

we live with inconsistent estimators under classical errors-in-variables, or other kinds of 

Q u e s t i o n  9 . 3
Let educ* be actual amount of schooling, measured in years 
(which can be a noninteger), and let educ be reported highest 
grade completed. Do you think educ and educ* are related by the 
classical errors-in-variables model?
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measurement error that are correlated with x
1
? Fortunately, the answer is no. Chapter 15 

shows how, under certain assumptions, the parameters can be consistently estimated in the 
presence of general measurement error. We postpone this discussion until later because 
it requires us to leave the realm of OLS estimation. (See Problem 9.7 for how multiple 
measures can be used to reduce the attenuation bias.)

9.5 Missing Data, Nonrandom Samples,
and Outlying Observations
The measurement error problem discussed in the previous section can be viewed as a data 
problem: we cannot obtain data on the variables of interest. Further, under the classical 
errors-in-variables model, the composite error term is correlated with the mismeasured 
independent variable, violating the Gauss-Markov assumptions.
 Another data problem we discussed frequently in earlier chapters is multicollinearity 
among the explanatory variables. Remember that correlation among the explanatory vari-
ables does not violate any assumptions. When two independent variables are highly corre-
lated, it can be difficult to estimate the partial effect of each. But this is properly reflected 
in the usual OLS statistics.
 In this section, we provide an introduction to data problems that can violate the random 
sampling assumption, MLR.2. We can isolate cases in which nonrandom sampling has no 
practical effect on OLS. In other cases, nonrandom sampling causes the OLS estimators 
to be biased and inconsistent. A more complete treatment that establishes several of the 
claims made here is given in Chapter 17.

Missing Data

The missing data problem can arise in a variety of forms. Often, we collect a random 
sample of people, schools, cities, and so on, and then discover later that information is 
missing on some key variables for several units in the sample. For example, in the data 
set BWGHT.RAW, 197 of the 1,388 observations have no information on either mother’s 
education, father’s education, or both. In the data set on median starting law school salaries, 
LAWSCH85.RAW, six of the 156 schools have no reported information on median LSAT 
scores for the entering class; other variables are also missing for some of the law schools.
 If data are missing for an observation on either the dependent variable or one of the 
independent variables, then the observation cannot be used in a standard multiple regres-
sion analysis. In fact, provided missing data have been properly indicated, all modern 
regression packages keep track of missing data and simply ignore observations when com-
puting a regression. We saw this explicitly in the birth weight scenario in Example 4.9, 
when 197 observations were dropped due to missing information on parents’ education.
 Other than reducing the sample size available for a regression, are there any statistical 
consequences of missing data? It depends on why the data are missing. If the data are miss-
ing at random, then the size of the random sample available from the population is simply 
reduced. Although this makes the estimators less precise, it does not introduce any bias: the 
random sampling assumption, MLR.2, still holds. There are ways to use the information on 
observations where only some variables are missing, but this is not often done in practice. 
The improvement in the estimators is usually slight, while the methods are somewhat com-
plicated. In most cases, we just ignore the observations that have missing information.
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Nonrandom Samples

Missing data is more problematic when it results in a nonrandom sample from the popu-
lation. For example, in the birth weight data set, what if the probability that education is 
missing is higher for those people with lower than average levels of education? Or, in 
Section 9.2, we used a wage data set that included IQ scores. This data set was constructed 
by omitting several people from the sample for whom IQ scores were not available. If 
obtaining an IQ score is easier for those with higher IQs, the sample is not representative 
of the population. The random sampling assumption MLR.2 is violated, and we must 
worry about these consequences for OLS estimation.
 Fortunately, certain types of nonrandom sampling do not cause bias or inconsistency 
in OLS. Under the Gauss-Markov assumptions (but without MLR.2), it turns out that the 
sample can be chosen on the basis of the independent variables without causing any statis-
tical problems. This is called sample selection based on the independent variables, and it is 
an example of exogenous sample selection. To illustrate, suppose that we are estimating 
a saving function, where annual saving depends on income, age, family size, and perhaps 
some other factors. A simple model is

 saving � �
0
 � �

1
income � �

2
age � �

3
size � u. 9.37

Suppose that our data set was based on a survey of people over 35 years of age, thereby 
leaving us with a nonrandom sample of all adults. While this is not ideal, we can still get 
unbiased and consistent estimators of the parameters in the population model (9.37), using 
the nonrandom sample. We will not show this formally here, but the reason OLS on the 
nonrandom sample is unbiased is that the regression function E(saving�income,age,size) 
is the same for any subset of the population described by income, age, or size. Provided 
there is enough variation in the independent variables in the subpopulation, selection on 
the basis of the independent variables is not a serious problem, other than that it results in 
smaller sample sizes.
 In the IQ example just mentioned, things are not so clear-cut, because no fixed rule 
based on IQ is used to include someone in the sample. Rather, the probability of being in 
the sample increases with IQ. If the other factors determining selection into the sample are 
independent of the error term in the wage equation, then we have another case of exog-
enous sample selection, and OLS using the selected sample will have all of its desirable 
properties under the other Gauss-Markov assumptions.
 The situation is much different when selection is based on the dependent variable, y, 
which is called sample selection based on the dependent variable and is an example of 
endogenous sample selection. If the sample is based on whether the dependent variable 
is above or below a given value, bias always occurs in OLS in estimating the population 
model. For example, suppose we wish to estimate the relationship between individual 
wealth and several other factors in the population of all adults:

 wealth � �
0
 � �

1
educ � �

2
exper � �

3
age � u. 9.38

Suppose that only people with wealth below $250,000 are included in the sample. This is 
a nonrandom sample from the population of interest, and it is based on the value of the 
dependent variable. Using a sample on people with wealth below $250,000 will result in 
biased and inconsistent estimators of the parameters in (9.32). Briefly, this occurs because 
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the population regression E(wealth�educ,exper,age) is not the same as the expected value 
conditional on wealth being less than $250,000.
 Other sampling schemes lead to nonrandom samples from the population, usually 
intentionally. A common method of data collection is stratified sampling, in which the 
population is divided into nonoverlapping, exhaustive groups, or strata. Then, some groups 
are sampled more frequently than is dictated by their population representation, and some 
groups are sampled less frequently. For example, some surveys purposely oversample 
minority groups or low-income groups. Whether special methods are needed again hinges 
on whether the stratification is exogenous (based on exogenous explanatory variables) or 
endogenous (based on the dependent variable). Suppose that a survey of military personnel 
oversampled women because the initial interest was in studying the factors that determine 
pay for women in the military. (Oversampling a group that is relatively small in the popula-
tion is common in collecting stratified samples.) Provided men were sampled as well, we can 
use OLS on the stratified sample to estimate any gender differential, along with the returns to 
education and experience for all military personnel. (We might be willing to assume that the 
returns to education and experience are not gender specific.) OLS is unbiased and consistent 
because the stratification is with respect to an explanatory variable, namely, gender.
 If, instead, the survey oversampled lower-paid military personnel, then OLS using the 
stratified sample does not consistently estimate the parameters of the military wage equa-
tion because the stratification is endogenous. In such cases, special econometric methods 
are needed [see Wooldridge (2002, Chapter 17)].
 Stratified sampling is a fairly obvious form of nonrandom sampling. Other sample 
selection issues are more subtle. For instance, in several previous examples, we have esti-
mated the effects of various variables, particularly education and experience, on hourly 
wage. The data set WAGE1.RAW that we have used throughout is essentially a random 
sample of working individuals. Labor economists are often interested in estimating the 
effect of, say, education on the wage offer. The idea is this: every person of working age 
faces an hourly wage offer, and he or she can either work at that wage or not work. For 
someone who does work, the wage offer is just the wage earned. For people who do not 
work, we usually cannot observe the wage offer. Now, since the wage offer equation

 log(wageo) � �
0
 � �

1
educ � �

2
exper � u 9.39

represents the population of all working-age people, we cannot estimate it using a random 
sample from this population; instead, we have data on the wage offer only for working 
people (although we can get data on educ and exper for nonworking people). If we use 
a random sample on working people to estimate (9.39), will we get unbiased estimators? 
This case is not clear-cut. Since the sample is selected based on someone’s decision 
to work (as opposed to the size of the wage offer), this is not like the previous case. 
However, since the decision to work might be related to unobserved factors that 

affect the wage offer, selection 
might be endogenous, and this 
can result in a sample selection 
bias in the OLS estimators. 
We will cover methods that 
can be used to test and correct 
for sample selection bias in 
Chapter 17.

Q u e s t i o n  9 . 4
Suppose we are interested in the effects of campaign expenditures 
by incumbents on voter support. Some incumbents choose not 
to run for reelection. If we can only collect voting and spending 
outcomes on incumbents that actually do run, is there likely to be 
endogenous sample selection?
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Outliers and Infl uential Observations

In some applications, especially, but not only, with small data sets, the OLS estimates are 
sensitive to the inclusion of one or several observations. A complete treatment of outliers 
and influential observations is beyond the scope of this book, because a formal develop-
ment requires matrix algebra. Loosely speaking, an observation is an influential observa-
tion if dropping it from the analysis changes the key OLS estimates by a practically “large” 
amount. The notion of an outlier is also a bit vague, because it requires comparing values 
of the variables for one observation with those for the remaining sample. Nevertheless, 
one wants to be on the lookout for “unusual” observations because they can greatly affect 
the OLS estimates.
 OLS is susceptible to outlying observations because it minimizes the sum of squared 
residuals: large residuals (positive or negative) receive a lot of weight in the least squares 
minimization problem. If the estimates change by a practically large amount when we 
slightly modify our sample, we should be concerned.
 When statisticians and econometricians study the problem of outliers theoretically, 
sometimes the data are viewed as being from a random sample from a given population—
albeit with an unusual distribution that can result in extreme values—and sometimes the 
outliers are assumed to come from a different population. From a practical perspective, 
outlying observations can occur for two reasons. The easiest case to deal with is when a 
mistake has been made in entering the data. Adding extra zeros to a number or misplacing a 
decimal point can throw off the OLS estimates, especially in small sample sizes. It is always 
a good idea to compute summary statistics, especially minimums and maximums, in order 
to catch mistakes in data entry. Unfortunately, incorrect entries are not always obvious.
 Outliers can also arise when sampling from a small population if one or several 
members of the population are very different in some relevant aspect from the rest of the 
population. The decision to keep or drop such observations in a regression analysis can 
be a difficult one, and the statistical properties of the resulting estimators are complicated. 
Outlying observations can provide important information by increasing the variation in the 
explanatory variables (which reduces standard errors). But OLS results should probably be 
reported with and without outlying observations in cases where one or several data points 
substantially change the results.

E x a m p l e  9 . 8

[R&D Intensity and Firm Size]

Suppose that R&D expenditures as a percentage of sales (rdintens) are related to sales (in millions) 
and profits as a percentage of sales ( profmarg):

 rdintens � �
0
 � �

1
sales � �

2
 profmarg � u. 9.40

The OLS equation using data on 32 chemical companies in RDCHEM.RAW is

 2rdintens � 2.625 � .000053 sales � .0446 profmarg

 (0.586) (.000044) (.0462)

 n � 32, R2 � .0761,  
-

 R 2 � .0124.

Neither sales nor profmarg is statistically significant at even the 10% level in this regression.
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 Of the 32 firms, 31 have annual sales less than $20 billion. One firm has annual sales of almost 
$40 billion. Figure 9.1 shows how far this firm is from the rest of the sample. In terms of sales, 
this firm is over twice as large as every other firm, so it might be a good idea to estimate the model 
without it. When we do this, we obtain

 2rdintens � 2.297 � .000186 sales � .0478 profmarg

 (0.592)  (.000084) (.0445)

 n � 31, R2 � .1728,  
-

 R 2 � .1137.

When the largest firm is dropped from the regression, the coefficient on sales more than triples, and 
it now has a t statistic over two. Using the sample of smaller firms, we would conclude that there is 
a statistically significant positive effect between R&D intensity and firm size. The profit margin is 
still not significant, and its coefficient has not changed by much.

 
 Sometimes, outliers are defined by the size of the residual in an OLS regression, where 
all of the observations are used. Generally, this is not a good idea because the OLS esti-
mates adjust to make the sum of squared residuals as small as possible. In the previous 

F I GURE  9 . 1

Scatterplot of R&D intensity against firm sales.
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example, including the largest firm flattened the OLS regression line considerably, which 
made the residual for that estimation not especially large. In fact, the residual for the largest 
firm is �1.62 when all 32 observations are used. This value of the residual is not even one 
estimated standard deviation,  ̂  �  � 1.82, from the mean of the residuals, which is zero by 
construction.
 Studentized residuals are obtained from the original OLS residuals by dividing them 
by an estimate of their standard deviation (conditional on the explanatory variables in the 
sample). The formula for the studentized residuals relies on matrix algebra, but it turns 
out there is a simple trick to compute a studentized residual for any observation. Namely, 
define a dummy variable equal to one for that observation—say, observation h—and then 
include it in the regression (using all observations) along with the other explanatory vari-
ables. The coefficient on the dummy variable has a useful interpretation: it is the residual 
for observation h computed from the regression line using only the other observations. 
Therefore, the dummy’s coefficient can be used to see how far off the observation is from 
the regression line obtained without using that observation. Even better, the t statistic on 
the dummy variable is equal to the studentized residual for observation h. Under the clas-
sical linear model assumptions, this t statistic has a t

n�k�1
 distribution. Therefore, a large 

value of the t statistic (in absolute value) implies a large residual relative to its estimated 
standard deviation.
 For Example 9.8, if we define a dummy variable for the largest firm (observation 
10 in the data file), and include it as an additional regressor, its coefficient is �6.57, 
verifying that the observation for the largest firm is very far from the regression line 
obtained using the other observations. However, when studentized, the residual is only 
�1.82. While this is a marginally significant t statistic (two-sided p-value � .08), it 
is not close to being the largest studentized residual in the sample. If we use the same 
method for the observation with the highest value of rdintens—the first observation, 
with rdintens � 9.42—the coefficient on the dummy variable is 6.72 with a t statistic 
of 4.56. Therefore, by this measure, the first observation is more of an outlier than the 
tenth. Yet dropping the first observation changes the coefficient on sales by only a 
small amount (to about .000051 from .000053), although the coefficient on profmarg 
becomes larger and statistically significant. So, is the first observation an “outlier” 
too? These calculations show the conundrum one can enter when trying to determine 
observations that should be excluded from a regression analysis, even when the data 
set is small. Unfortunately, the size of the studentized residual need not correspond to 
how influential an observation is for the OLS slope estimates, and certainly not for all 
of them at once.
 A general problem with using studentized residuals is that, in effect, all other obser-
vations are used to estimate the regression line to compute the residual for a particular 
observation. In other words, when the studentized residual is obtained for the first obser-
vation, the tenth observation has been used in estimating the intercept and slope. Given 
how flat the regression line is with the largest firm (tenth observation) included, it is 
not too surprising that the first observation, with its high value of rdintens, is far off the 
regression line.
 Of course, we can add two dummy variables at the same time—one for the first obser-
vation and one for the tenth—which has the effect of using only the remaining 30 observa-
tions to estimate the regression line. If we estimate the equation without the first and tenth 
observations, the results are 
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 2rdintens � 1.939 � .000160 sales � .0701 profmarg

 (0.459) (.00065) (.0343)

 n � 30, R2 � .2711,  
-

 R 2 � .2171

The coefficient on the dummy for the first observation is 6.47 (t � 4.58), and for the tenth 
observation it is �5.41 (t � �1.95). Notice that the coefficients on the sales and profmarg 
are both statistically significant, the latter at just about the 5% level against a two-sided 
alternative (   p-value � .051). Even in this regression there are still two observations with 
studentized residuals greater than two (corresponding to the two remaining observations 
with R&D intensities above six).
 Certain functional forms are less sensitive to outlying observations. In Section 6.2, we 
mentioned that, for most economic variables, the logarithmic transformation significantly 
narrows the range of the data and also yields functional forms—such as constant elasticity 
models—that can explain a broader range of data.

E x a m p l e  9 . 9

[R&D Intensity]

We can test whether R&D intensity increases with firm size by starting with the model

 rd � sales �1exp(�
0
 � �

2
 profmarg � u). 9.41

Then, holding other factors fixed, R&D intensity increases with sales if and only if �
1
 � 1. Taking 

the log of (9.41) gives

 log(rd   ) � �
0
 � �

1
log(sales) � �

2
 profmarg � u. 9.42

When we use all 32 firms, the regression equation is

 2log(rd) � �4.378 � 1.084 log(sales) � .0217 profmarg,

 (.468) (.062) (.0128)

 n � 32, R2 � .9180,  
-

 R 2 � .9123,

while dropping the largest firm gives

 2log(rd) � �4.404 � 1.088 log(sales) � .0218 profmarg,

 (.511) (.067) (.0130)

 n � 31, R2 � .9037,  
-

 R 2 � .8968.

Practically, these results are the same. In neither case do we reject the null H
0
: �

1
 � 1 against 

H
1
: �

1
 � 1. (Why?)

 
 In some cases, certain observations are suspected at the outset of being funda-
mentally different from the rest of the sample. This often happens when we use data 
at very aggregated levels, such as the city, county, or state level. The following is an 
example.
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E x a m p l e  9 . 1 0

[State Infant Mortality Rates]

Data on infant mortality, per capita income, and measures of health care can be obtained at the state 
level from the Statistical Abstract of the United States. We will provide a fairly simple analysis here 
just to illustrate the effect of outliers. The data are for the year 1990, and we have all 50 states in 
the United States, plus the District of Columbia (D.C.). The variable infmort is number of deaths within 
the first year per 1,000 live births, pcinc is per capita income, physic is physicians per 100,000 members 
of the civilian population, and popul is the population (in thousands). The data are contained in 
INFMRT.RAW. We include all independent variables in logarithmic form:

 2infmort � 33.86 � 4.68 log( pcinc) � 4.15 log(physic)

 (20.43) (2.60) (1.51)

 �.088 log(popul) 9.43

 (.287)

 n � 51, R2 � .139,  
-

 R 2 � .084.

Higher per capita income is estimated to lower infant mortality, an expected result. But more physi-
cians per capita is associated with higher infant mortality rates, something that is counterintuitive. 
Infant mortality rates do not appear to be related to population size.
 The District of Columbia is unusual in that it has pockets of extreme poverty and great wealth in 
a small area. In fact, the infant mortality rate for D.C. in 1990 was 20.7, compared with 12.4 for the 
next highest state. It also has 615 physicians per 100,000 of the civilian population, compared with 
337 for the next highest state. The high number of physicians coupled with the high infant mortality 
rate in D.C. could certainly influence the results. If we drop D.C. from the regression, we obtain

 2infmort � 23.95 � .57 log(pcinc) � 2.74 log(physic)

 (12.42) (1.64) (1.19) 

 � .629 log(popul) 9.44

 (.191)

 n � 50, R2 � .273,  
-

 R 2 � .226.

We now find that more physicians per capita lowers infant mortality, and the estimate is statistically 
different from zero at the 5% level. The effect of per capita income has fallen sharply and is no 
longer statistically significant. In equation (9.44), infant mortality rates are higher in more populous 
states, and the relationship is very statistically significant. Also, much more variation in infmort is 
explained when D.C. is dropped from the regression. Clearly, D.C. had substantial influence on the 
initial estimates, and we would probably leave it out of any further analysis.

 
 As Example 9.8 demonstrates, inspecting observations in trying to determine which 
are outliers, and even which ones have substantial influence on the OLS estimates, is a 
difficult endeavor. More advanced treatments allow more formal approaches to determine 
which observations are likely to be influential observations. Using matrix algebra, Belsley, 
Kuh, and Welsh (1980) define the leverage of an observation, which formalizes the notion 
that an observation has a large or small influence on the OLS estimates. These authors also 
provide a more in-depth discussion of standardized and studentized residuals.
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9.6 Least Absolute Deviations Estimation
Rather than trying to determine which observations, if any, have undue influence on the 
OLS estimates, a different approach to guarding against outliers is to use an estimation 
method that is less sensitive to outliers than OLS. One such method, which has become 
popular among applied econometricians, is called least absolute deviations (LAD). The 
LAD estimators of the �

j
 in a linear model minimize the sum of the absolute values of 

the residuals,

   min     
b

0
, b

1
, ..., b

k
 
  ∑ 
i�1

   
n

    �y
i
 � b

0
 � b

1
x

i1
 � … � b

k
x

ik
�. 9.45

Unlike OLS, which minimizes the sum of squared residuals, the LAD estimates are not 
available in closed form—that is, we cannot write down formulas for them. In fact, his-
torically, solving the problem in equation (9.45) was computationally difficult, especially 
with large sample sizes and many explanatory variables. But with the vast improvements 
in computational speed over the past two decades, LAD estimates are fairly easy to obtain 
even for large data sets.
 Because LAD does not give increasing weight to larger residuals, it is much less sensi-
tive to changes in the extreme values of the data than OLS. In fact, it is known that LAD 
is designed to estimate the parameters of the conditional median of y given x

1
, x

2
, ..., x

k
 

rather than the conditional mean. Because the median is not affected by large changes in 
the extreme observations, it follows that the LAD parameter estimates are more resilient 
to outlying observations. (See Section A.1 for a brief discussion of the sample median.) In 
choosing the estimates, OLS squares each residual, and so the OLS estimates can be very 
sensitive to outlying observations, as we saw in Examples 9.8 and 9.10.
 In addition to LAD being more computationally intensive than OLS, a second draw-
back of LAD is that all statistical inference involving the LAD estimators is justified only 
as the sample size grows. [The formulas are somewhat complicated and require matrix 
algebra, and we do not need them here. Koenker (2005) provides a comprehensive treat-
ment.] Recall that, under the classical linear model assumptions, the OLS t statistics have 
exact t distributions, and F statistics have exact F distributions. While asymptotic versions 
of these statistics are available for LAD—and reported routinely by software packages that 
compute LAD estimates—these are justified only in large samples. Like the additional 
computational burden involved in computing LAD estimates, the lack of exact inference for 
LAD is only of minor concern, because most applications of LAD involve several hundred, 
if not several thousand, observations. Of course, we might be pushing it if we apply large-
sample approximations in an example such as Example 9.8, with n � 32. In a sense, this is 
not very different from OLS because, more often than not, we must appeal to large sample 
approximations to justify OLS inference whenever any of the CLM assumptions fail.
 A more subtle but important drawback to LAD is that it does not always consistently 
estimate the parameters appearing in the conditional mean function, E(y�x

1
, ..., x

k
). As men-

tioned earlier, LAD is intended to estimate the effects on the conditional median. Generally, 
the mean and median are the same only when the distribution of y given the covariates x

1
, ..., 

x
k
 is symmetric about �

0
 � �

1
x

1
 � ... � �

k
x

k
. (Equivalently, the population error term, u, 

is symmetric about zero.) Recall that OLS produces unbiased and consistent estimators of 
the parameters in the conditional mean whether or not the error distribution is symmetric; 
symmetry does not appear among the Gauss-Markov assumptions. When LAD and OLS 
are applied to cases with asymmetric distributions, the estimated partial effect of, say, x

1
, 
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obtained from LAD can be very different from the partial effect obtained from OLS. But 
such a difference could just reflect the difference between the median and the mean and 
might not have anything to do with outliers. See Computer Exercise C9.9 for an example.
 If we assume that the population error u in model (9.2) is independent of (x

1
, ..., x

k
), 

then the OLS and LAD slope estimates should differ only by sampling error whether or 
not the distribution of u is symmetric. The intercept estimates generally will be different 
to reflect the fact that, if the mean of u is zero, then its median is different from zero under 
asymmetry. Unfortunately, independence between the error and the explanatory variables is 
often unrealistically strong when LAD is applied. In particular, independence rules out het-
eroskedasticity, a problem that often arises in applications with asymmetric distributions.
 Least absolute deviations is a special case of what is often called robust regression. 
Unfortunately, the way “robust” is used here can be confusing. In the statistics literature, 
a robust regression estimator is relatively insensitive to extreme observations. Effectively, 
observations with large residuals are given less weight than in least squares. [Berk (1990) 
contains an introductory treatment of estimators that are robust to outlying observations.] 
Based on our earlier discussion, in econometric parlance, LAD is not a robust estimator 
of the conditional mean because it requires extra assumptions in order to consistently esti-
mate the conditional mean parameters. In equation (9.2), either the distribution of u given 
(x

1
, ..., x

k
) has to be symmetric about zero, or u must be independent of (x

1
, ..., x

k
). Neither 

of these is required for OLS.

S U M M A R Y

We have further investigated some important specification and data issues that often arise 
in empirical cross-sectional analysis. Misspecified functional form makes the estimated 
equation difficult to interpret. Nevertheless, incorrect functional form can be detected by 
adding quadratics, computing RESET, or testing against a nonnested alternative model 
using the Davidson-MacKinnon test. No additional data collection is needed.
 Solving the omitted variables problem is more difficult. In Section 9.2, we discussed a 
possible solution based on using a proxy variable for the omitted variable. Under reason-
able assumptions, including the proxy variable in an OLS regression eliminates, or at least 
reduces, bias. The hurdle in applying this method is that proxy variables can be difficult 
to find. A general possibility is to use data on a dependent variable from a prior year.
 Applied economists are often concerned with measurement error. Under the classical 
errors-in-variables (CEV) assumptions, measurement error in the dependent variable has 
no effect on the statistical properties of OLS. In contrast, under the CEV assumptions for 
an independent variable, the OLS estimator for the coefficient on the mismeasured vari-
able is biased toward zero. The bias in coefficients on the other variables can go either way 
and is difficult to determine.
 Nonrandom samples from an underlying population can lead to biases in OLS. When 
sample selection is correlated with the error term u, OLS is generally biased and incon-
sistent. On the other hand, exogenous sample selection—which is either based on the 
explanatory variables or is otherwise independent of u—does not cause problems for OLS. 
Outliers in data sets can have large impacts on the OLS estimates, especially in small sam-
ples. It is important to at least informally identify outliers and to reestimate models with 
the suspected outliers excluded.
 Least absolute deviations estimation is an alternative to OLS that is less sensitive to 
outliers and that delivers consistent estimates of conditional median parameters.
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K E Y  T E R M S

Attenuation Bias
Average Partial Effect (APE)
Classical Errors-in-Variables 

(CEV)
Conditional Median
Davidson-MacKinnon Test
Endogenous Explanatory 

Variable
Endogenous Sample Selection
Exogenous Sample Selection
Functional Form 

Misspecification

Influential Observations
Lagged Dependent 

Variable
Least Absolute Deviations 

(LAD)
Measurement Error
Missing Data
Multiplicative Measurement 

Error
Nonnested Models
Nonrandom Sample
Outliers

Plug-In Solution to the 
Omitted Variables Problem

Proxy Variable
Random Coefficient (Slope) 

Model
Regression Specification Error 

Test (RESET)
Stratified Sampling
Studentized Residuals

P R O B L E M S

9.1 In Problem 4.11, the R-squared from estimating the model

 log(salary) � �
0
 � �

1
log(sales) � �

2
log(mktval) � �

3
 profmarg

 � �
4
ceoten � �

5
comten � u,

  using the data in CEOSAL2.RAW, was R2 � .353 (n � 177). When ceoten2 and 
comten2 are added, R2 � .375. Is there evidence of functional form misspecification in 
this model?

9.2  Let us modify Computer Exercise C8.4 by using voting outcomes in 1990 for incumbents 
who were elected in 1988. Candidate A was elected in 1988 and was seeking reelection 
in 1990; voteA90 is Candidate A’s share of the two-party vote in 1990. The 1988 voting 
share of Candidate A is used as a proxy variable for quality of the candidate. All other 
variables are for the 1990 election. The following equations were estimated, using the 
data in VOTE2.RAW:

 2voteA90 � 75.71 � .312 prtystrA � 4.93 democA

 (9.25) (.046) (1.01)

 �.929 log(expendA) � 1.950 log(expendB)

 (.684) (.281)

 n � 186, R2 � .495,  
-

 R 2 � .483,

 and

 2voteA90 � 70.81 � .282 prtystrA � 4.52 democA

 (10.01) (.052) (1.06)

 �.839 log(expendA) � 1.846 log(expendB) � .067 voteA88

  (.687) (.292) (.053)

 n � 186, R2 � .499,  
-

 R 2 � .485.

 (i) Interpret the coefficient on voteA88 and discuss its statistical significance.
 (ii) Does adding voteA88 have much effect on the other coefficients?
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9.3  Let math10 denote the percentage of students at a Michigan high school receiving a 
passing score on a standardized math test (see also Example 4.2). We are interested in 
estimating the effect of per student spending on math performance. A simple model is

 math10 � �
0
 � �

1
log(expend) � �

2
log(enroll) � �

3
 poverty � u,

 where poverty is the percentage of students living in poverty.
 (i)  The variable lnchprg is the percentage of students eligible for the federally funded 

school lunch program. Why is this a sensible proxy variable for poverty?
 (ii)  The table that follows contains OLS estimates, with and without lnchprg as an 

explanatory variable.

Dependent Variable: math10

Independent Variables (1) (2)

log(expend)  11.13
 (3.30)

 7.75
 (3.04)

log(enroll)  .022
 (.615)

 –1.26
 (.58)

lnchprg  —  –.324
 (.036)

intercept  �69.24
 (26.72)

 �23.14
 (24.99)

Observations
R-squared

 428
 .0297

 428
  .1893

   Explain why the effect of expenditures on math10 is lower in column (2) than in 
column (1). Is the effect in column (2) still statistically greater than zero?

 (iii)  Does it appear that pass rates are lower at larger schools, other factors being equal? 
Explain.

 (iv) Interpret the coefficient on lnchprg in column (2).
 (v) What do you make of the substantial increase in R2 from column (1) to column (2)?

9.4  The following equation explains weekly hours of television viewing by a child in terms 
of the child’s age, mother’s education, father’s education, and number of siblings:

tvhours* � �
0
 � �

1
age � �

2
age2 � �

3
motheduc � �

4   
 fatheduc � �

5
sibs � u.

  We are worried that tvhours* is measured with error in our survey. Let tvhours denote the 
reported hours of television viewing per week.

 (i)  What do the classical errors-in-variables (CEV) assumptions require in this 
 application?

 (ii) Do you think the CEV assumptions are likely to hold? Explain.
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9.5  In Example 4.4, we estimated a model relating number of campus crimes to student 
enrollment for a sample of colleges. The sample we used was not a random sample of col-
leges in the United States, because many schools in 1992 did not report campus crimes. 
Do you think that college failure to report crimes can be viewed as exogenous sample 
selection? Explain.

9.6  In the model (9.17), show that OLS consistently estimates � and � if a
i
 is uncorrelated 

with x
i
 and b

i
 is uncorrelated with x

i
 and x 2   i  , which are weaker assumptions than (9.19). 

[Hint: Write the equation as in (9.18) and recall from Chapter 5 that sufficient for consis-
tency of OLS for the intercept and slope is E(u

i
) � 0 and Cov(x

i
, u

i
) � 0.]

9.7  Consider the simple regression model with classical measurement error, y � �
0
 � �

1
x* � u, 

where we have m measures on x*. Write these as z
h
 � x* � e

h
, h � 1, …, m. Assume that 

x* is uncorrelated with u, e
1
, ...., e

m
, that the measurement errors are pairwise uncorrelated, 

and have the same variance, � 2   e  . Let w � (z
1
 � … � z

m
)/m be the average of the measures 

on x*, so that, for each observation i, w
i
 � (z

i1
 � … � z

im
)/m is the average of the m mea-

sures. Let  
-

 � 
1
 be the OLS estimator from the simple regression y

i
 on 1, w

i
 , i � 1, …, n, using 

a random sample of data.
 (i) Show that

 plim(  
-

 � 
1
) � �

1�  � 2   x  * _____________  
[� 2   x  * � (� 2   e  �m)]

  �.

  [Hint: The plim of  
-

 � 
1
 is Cov(w, y)/Var(w).]

 (ii)  How does the inconsistency in  
-

 � 
1
 compare with that when only a single measure is 

available (that is, m � 1)? What happens as m grows? Comment.

C O M P U T E R  E X E R C I S E S

C9.1 (i)  Apply RESET from equation (9.3) to the model estimated in Computer Exercise 
C7.5. Is there evidence of functional form misspecification in the equation?

 (ii)  Compute a heteroskedasticity-robust form of RESET. Does your conclusion 
from part (i) change?

C9.2 Use the data set WAGE2.RAW for this exercise.
 (i)  Use the variable KWW (the “knowledge of the world of work” test score) as a 

proxy for ability in place of IQ in Example 9.3. What is the estimated return to 
education in this case?

 (ii)  Now, use IQ and KWW together as proxy variables. What happens to the estimated 
return to education?

 (iii)  In part (ii), are IQ and KWW individually significant? Are they jointly significant?

C9.3 Use the data from JTRAIN.RAW for this exercise.
 (i) Consider the simple regression model

log(scrap) � �
0
 � �

1
grant � u,

   where scrap is the firm scrap rate and grant is a dummy variable indicating 
whether a firm received a job training grant. Can you think of some reasons why 
the unobserved factors in u might be correlated with grant?
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 (ii)  Estimate the simple regression model using the data for 1988. (You should have 
54 observations.) Does receiving a job training grant significantly lower a firm’s 
scrap rate?

 (iii)  Now, add as an explanatory variable log(scrap
87

). How does this change the esti-
mated effect of grant? Interpret the coefficient on grant. Is it statistically signifi-
cant at the 5% level against the one-sided alternative H

1
: �

grant
 � 0?

 (iv)  Test the null hypothesis that the parameter on log(scrap
87

) is one against the two-
sided alternative. Report the p-value for the test.

 (v)  Repeat parts (iii) and (iv), using heteroskedasticity-robust standard errors, and 
briefly discuss any notable differences.

C9.4 Use the data for the year 1990 in INFMRT.RAW for this exercise.
 (i)  Reestimate equation (9.43), but now include a dummy variable for the observation 

on the District of Columbia (called DC). Interpret the coefficient on DC and com-
ment on its size and significance.

 (ii)  Compare the estimates and standard errors from part (i) with those from equa-
tion (9.44). What do you conclude about including a dummy variable for a single 
observation?

C9.5  Use the data in RDCHEM.RAW to further examine the effects of outliers on OLS esti-
mates and to see how LAD is less sensitive to outliers. The model is

rdintens � �
0
 � �

1
sales � �

2
sales2 � �

3
 profmarg � u,

  where you should first change sales to be in billions of dollars to make the estimates 
easier to interpret.

 (i)  Estimate the above equation by OLS, both with and without the firm having 
annual sales of almost $40 billion. Discuss any notable differences in the estimated 
coefficients.

 (ii)  Estimate the same equation by LAD, again with and without the largest firm. 
Discuss any important differences in estimated coefficients.

 (iii)  Based on your findings in (i) and (ii), would you say OLS or LAD is more resilient 
to outliers?

C9.6 Redo Example 4.10 by dropping schools where teacher benefits are less than 1% of salary.
 (i) How many observations are lost?
 (ii)  Does dropping these observations have any important effects on the estimated 

tradeoff?

C9.7 Use the data in LOANAPP.RAW for this exercise.
 (i)  How many observations have obrat � 40, that is, other debt obligations more than 

40% of total income?
 (ii)  Reestimate the model in part (iii) of Computer Exercise C7.8, excluding observa-

tions with obrat � 40. What happens to the estimate and t statistic on white?
 (iii) Does it appear that the estimate of �

white
 is overly sensitive to the sample used?

C9.8 Use the data in TWOYEAR.RAW for this exercise.
 (i)  The variable stotal is a standardized test variable, which can act as a proxy variable 

for unobserved ability. Find the sample mean and standard deviation of stotal.
 (ii)  Run simple regressions of jc and univ on stotal. Are both college education vari-

ables statistically related to stotal? Explain.
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 (iii)  Add stotal to equation (4.17) and test the hypothesis that the returns to two- and 
four-year colleges are the same against the alternative that the return to four-year 
colleges is greater. How do your findings compare with those from Section 4.4?

 (iv)  Add stotal2 to the equation estimated in part (iii). Does a quadratic in the test score 
variable seem necessary?

 (v)  Add the interaction terms stotal·jc and stotal·univ to the equation from part (iii). 
Are these terms jointly significant?

 (vi)  What would be your final model that controls for ability through the use of stotal? 
Justify your answer.

C9.9  In this exercise, you are to compare OLS and LAD estimates of the effects of 401(k) 
plan eligibility on net financial assets. The model is 

nettfa � �
0
 � �

1
inc � �

2
inc2 � �

3
age � �

4
age2 � �

5
male � �

6
e401k � u.

 (i)  Use the data in 401KSUBS.RAW to estimate the equation by OLS and report the 
results in the usual form. Interpret the coefficient on e401k.

 (ii)  Use the OLS residuals to test for heteroskedasticity using the Breusch-Pagan test. 
Is u independent of the explanatory variables?

 (iii)  Estimate the equation by LAD and report the results in the same form as for OLS. 
Interpret the LAD estimate of �

6
.

 (iv) Reconcile your findings from parts (i) and (iii).

C9.10  You need to use two data sets for this exercise, JTRAIN2.RAW and JTRAIN3.RAW. 
The former is the outcome of a job training experiment. The file JTRAIN3.RAW con-
tains observational data, where individuals themselves largely determine whether they 
participate in job training. The data sets cover the same time period.

 (i)  In the data set JTRAIN2.RAW, what fraction of the men received job training? 
What is the fraction in JTRAIN3.RAW? Why do you think there is such a big 
difference?

 (ii)  Using JTRAIN2.RAW, run a simple regression of re78 on train. What is the esti-
mated effect of participating in job training on real earnings?

 (iii)  Now add as controls to the regression in part (ii) the variables re74, re75, educ,
age, black, and hisp. Does the estimated effect of job training on re78 change 
much? How come? (Hint: Remember that these are experimental data.)

 (iv)  Do the regressions in parts (ii) and (iii) using the data in JTRAIN3.RAW, report-
ing only the estimated coefficients on train, along with their t statistics. What is 
the effect now of controlling for the extra factors, and why?

 (v)  Define avgre � (re74 � re75)/2. Find the sample averages, standard deviations, 
and minimum and maximum values in the two data sets. Are these data sets rep-
resentative of the same populations in 1978?

 (vi)  Almost 96% of men in the data set JTRAIN2.RAW have avgre less than $10,000. 
Using only these men, run the regression

 re78 on train,re74,re75,educ,age,black,hisp

   and report the training estimate and its t statistic. Run the same regression for 
JTRAIN3.RAW, using only men with avgre 
 10. For the subsample of low-
income men, how do the estimated training effects compare across the experimen-
tal and nonexperimental data sets?
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 (vii)  Now use each data set to run the simple regression re78 on train, but only for men who 
were unemployed in 1974 and 1975. How do the training estimates compare now?

 (viii)  Using your findings from the previous regressions, discuss the potential impor-
tance of having comparable populations underlying comparisons of experimental 
and nonexperimental estimates.

C9.11  Use the data for the year 1993 for this question, although you will need to first obtain 
the lagged murder rate, say mrdrte

�1
.

 (i)  Run the regression of mrdrte on exec, unem. What are the coefficient and t statistic 
on exec? Does this regression provide any evidence for a deterrent effect of capital 
punishment?

 (ii)  How many executions are reported for Texas during 1993? (Actually, this is the 
sum of executions for the current and past two years.) How does this compare with 
the other states? Add a dummy variable for Texas to the regression in part (i). Is 
its t statistic unusually large? From this, does it appear Texas is an “outlier”?

 (iii)  To the regression in part (i) add the lagged murder rate. What happens to  ̂  � 
exec

 and 
its statistical significance?

 (iv)  For the regression in part (iii), does it appear Texas is an outlier? What is the effect 
on  ̂  � 

exec
 from dropping Texas from the regression?

C9.12  Use the data in ELEM94_95 to answer this question. See also Computer Exercise C4.10.
 (i)  Using all of the data, run the regression lavgsal on bs, lenrol, lstaff, and lunch. 

Report the coefficient on bs along with its usual and heteroskedasticity-robust 
standard errors. What do you conclude about the economic and statistical signifi-
cance of  ̂  � 

bs
?

 (ii)  Now drop the four observations with bs �.5, that is, where average benefits are 
(supposedly) more than 50% of average salary. What is the coefficient on bs? Is it 
statistically significant using the heteroskedasticity-robust standard error?

 (iii)  Verify that the four observations with bs �.5 are 68, 1,127, 1,508, and 1,670. 
Define four dummy variables for each of these observations. (You might call 
them d68, d1127, d1508, and d1670.) Add these to the regression from part (i), 
and verify that the OLS coefficients and standard errors on the other variables are 
identical to those in part (ii). Which of the four dummies has a t statistic statisti-
cally different from zero at the 5% level?

 (iv)  Verify that, in this data set, the data point with the largest studentized residual 
(largest t statistic on the dummy variable) in part (iii) has a large influence on the 
OLS estimates. (That is, run OLS using all observations except the one with the 
large studentized residual.) Does dropping, in turn, each of the other observations 
with bs �.5 have important effects?

 (v)  What do you conclude about the sensitivity of OLS to a single observation, even 
with a large sample size?

 (vi)  Verify that the LAD estimator is not sensitive to the inclusion of the observation 
identified in part (iii).
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2
Regression Analysis with 

Time Series Data

Now that we have a solid understanding of how to use the multiple regression 
model for cross-sectional applications, we can turn to the econometric analy-
sis of time series data. Since we will rely heavily on the method of ordinary 
least squares, most of the work concerning mechanics and inference has 

already been done. However, as we noted in Chapter 1, time series data have certain 
characteristics that cross-sectional data do not, and these can require special attention 
when applying OLS.
 Chapter 10 covers basic regression analysis and gives attention to problems unique to 
time series data. We provide a set of Gauss-Markov and classical linear model assump-
tions for time series applications. The problems of functional form, dummy variables, 
trends, and seasonality are also discussed.
 Because certain time series models necessarily violate the Gauss-Markov assump-
tions, Chapter 11 describes the nature of these violations and presents the large sample 
properties of ordinary least squares. As we can no longer assume random sampling, we 
must cover conditions that restrict the temporal correlation in a time series in order to 
ensure that the usual asymptotic analysis is valid.
 Chapter 12 turns to an important new problem: serial correlation in the error terms 
in time series regressions. We discuss the consequences, ways of testing, and methods 
for dealing with serial correlation. Chapter 12 also contains an explanation of how het-
eroskedasticity can arise in time series models.
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C H A P T E R

In this chapter, we begin to study the properties of OLS for estimating linear regression 
models using time series data. In Section 10.1, we discuss some conceptual differences 
between time series and cross-sectional data. Section 10.2 provides some examples of 

time series regressions that are often estimated in the empirical social sciences. We then 
turn our attention to the finite sample properties of the OLS estimators and state the Gauss-
Markov assumptions and the classical linear model assumptions for time series regression. 
Although these assumptions have features in common with those for the cross-sectional 
case, they also have some significant differences that we will need to highlight.
 In addition, we return to some issues that we treated in regression with cross-sectional 
data, such as how to use and interpret the logarithmic functional form and dummy vari-
ables. The important topics of how to incorporate trends and account for seasonality in 
multiple regression are taken up in Section 10.5.

10.1 The Nature of Time Series Data
An obvious characteristic of time series data that distinguishes it from cross-sectional data 
is temporal ordering. For example, in Chapter 1, we briefly discussed a time series data set 
on employment, the minimum wage, and other economic variables for Puerto Rico. In this 
data set, we must know that the data for 1970 immediately precede the data for 1971. For 
analyzing time series data in the social sciences, we must recognize that the past can affect 
the future, but not vice versa (unlike in the Star Trek universe). To emphasize the proper 
ordering of time series data, Table 10.1 gives a partial listing of the data on U.S. inflation 
and unemployment rates from various editions of the Economic Report of the President, 
including the 2004 Report (Tables B-42 and B-64).
 Another difference between cross-sectional and time series data is more subtle. In 
Chapters 3 and 4, we studied statistical properties of the OLS estimators based on the 
notion that samples were randomly drawn from the appropriate population. Understanding 
why cross-sectional data should be viewed as random outcomes is fairly straightforward: 
a different sample drawn from the population will generally yield different values of the 
independent and dependent variables (such as education, experience, wage, and so on). 
Therefore, the OLS estimates computed from different random samples will generally dif-
fer, and this is why we consider the OLS estimators to be random variables.

10
Basic Regression Analysis with 
Time Series Data
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 How should we think about randomness in time series data? Certainly, economic 
time series satisfy the intuitive requirements for being outcomes of random variables. 
For example, today we do not know what the Dow Jones Industrial Average will be at its 
close at the end of the next trading day. We do not know what the annual growth in output 
will be in Canada during the coming year. Since the outcomes of these variables are not 
foreknown, they should clearly be viewed as random variables.
 Formally, a sequence of random variables indexed by time is called a stochastic process 
or a time series process. (“Stochastic” is a synonym for random.) When we collect a time 
series data set, we obtain one possible outcome, or realization, of the stochastic process. We 
can only see a single realization, because we cannot go back in time and start the process 
over again. (This is analogous to cross-sectional analysis where we can collect only one 
random sample.) However, if certain conditions in history had been different, we would 
generally obtain a different realization for the stochastic process, and this is why we think 
of time series data as the outcome of random variables. The set of all possible realizations 

TABLE  10 . 1

Partial Listing of Data on U.S. Inflation and Unemployment Rates, 1948–2003

Year Inflation Unemployment

1948 8.1 3.8

1949 �1.2 5.9

1950 1.3 5.3

1951 7.9 3.3

�
�
�

�
�
�

�
�
�

1998 1.6 4.5

1999 2.2 4.2

2000 3.4 4.0

2001 2.8 4.7

2002 1.6 5.8

2003 2.3 6.0



342 Part 2   Regression Analysis with Time Series Data

of a time series process plays the role of the population in cross-sectional analysis. The 
sample size for a time series data set is the number of time periods over which we observe 
the variables of interest.

10.2 Examples of Time Series 
Regression Models
In this section, we discuss two examples of time series models that have been useful in 
empirical time series analysis and that are easily estimated by ordinary least squares. We 
will study additional models in Chapter 11.

Static Models

Suppose that we have time series data available on two variables, say y and z, where y
t
 and 

z
t
 are dated contemporaneously. A static model relating y to z is

 y
t
 � �

0
 � �

1
z

t
 � u

t
, t � 1, 2, …, n. 10.1

The name “static model” comes from the fact that we are modeling a contemporaneous 
relationship between y and z. Usually, a static model is postulated when a change in z at 
time t is believed to have an immediate effect on y: �y

t
 � �

1
�z

t
, when �u

t
 � 0. Static 

regression models are also used when we are interested in knowing the tradeoff between 
y and z.
 An example of a static model is the static Phillips curve, given by

 inf
t
 � �

0
 � �

1
unem

t
 � u

t
 , 10.2

where inf
t
 is the annual inflation rate and unem

t
 is the unemployment rate. This form of the 

Phillips curve assumes a constant natural rate of unemployment and constant inflationary 
expectations, and it can be used to study the contemporaneous tradeoff between inflation 
and unemployment. [See, for example, Mankiw (1994, Section 11.2).] 
 Naturally, we can have several explanatory variables in a static regression model. Let 
mrdrte

t
 denote the murders per 10,000 people in a particular city during year t, let  convrte

t
 

denote the murder conviction rate, let unem
t
 be the local unemployment rate, and let 

 yngmle
t
 be the fraction of the population consisting of males between the ages of 18 and 25.

Then, a static multiple regression model explaining murder rates is

 mrdrte
t
 � �

0
 � �

1
convrte

t
 � �

2
unem

t
 � �

3
 yngmle

t
 � u

t
. 10.3

Using a model such as this, we can hope to estimate, for example, the ceteris paribus effect 
of an increase in the conviction rate on a particular criminal activity.

Finite Distributed Lag Models

In a finite distributed lag (FDL) model, we allow one or more variables to affect y with 
a lag. For example, for annual observations, consider the model

 gfr
t
 � �

0
 � �

0
 pe

t
 � �

1
 pe

t�1
 � �

2
 pe

t�2
 � u

t
, 10.4
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where gfr
t
 is the general fertility rate (children born per 1,000 women of childbearing age) 

and pe
t
 is the real dollar value of the personal tax exemption. The idea is to see whether, 

in the aggregate, the decision to have children is linked to the tax value of having a child. 
Equation (10.4) recognizes that, for both biological and behavioral reasons, decisions to 
have children would not immediately result from changes in the personal exemption.
 Equation (10.4) is an example of the model

 y
t
 � �

0
 � �

0
z

t
 � �

1
z

t�1
 � �

2
z

t�2
 � u

t
, 10.5

which is an FDL of order two. To interpret the coefficients in (10.5), suppose that z is a 
constant, equal to c, in all time periods before time t. At time t, z increases by one unit 
to c � 1 and then reverts to its previous level at time t � 1. (That is, the increase in z is 
temporary.) More precisely,

 …, z
t�2

 � c, z
t�1

 � c, z
t
 � c � 1, z

t�1
 � c, z

t�2
 � c, …. 

 To focus on the ceteris paribus effect of z on y, we set the error term in each time period 
to zero. Then,

 y
t�1

 � �
0
 � �

0
c � �

1
c � �

2
c,

 y
t
 � �

0
 � �

0
(c � 1) � �

1
c � �

2
c,

 y
t�1

 � �
0
 � �

0
c � �

1
(c � 1) � �

2
c,

 y
t�2

 � �
0
 � �

0
c � �

1
c � �

2
(c � 1),

 y
t�3

 � �
0
 � �

0
c � �

1
c � �

2
c,

and so on. From the first two equations, y
t
 � y

t�1
 � �

0
, which shows that �

0
 is the immedi-

ate change in y due to the one-unit increase in z at time t. �
0
 is usually called the impact 

propensity or impact multiplier.
 Similarly, �

1
 � y

t�1
 � y

t�1
 is the change in y one period after the temporary change, and 

�
2
 � y

t�2
 � y

t�1
 is the change in y two periods after the change. At time t � 3, y has reverted 

back to its initial level: y
t�3

 � y
t�1

. This is because we have assumed that only two lags of 
z appear in (10.5). When we graph the �

j
 as a function of j, we obtain the lag distribution, 

which summarizes the dynamic effect that a temporary increase in z has on y. A possible lag 
distribution for the FDL of order two is given in Figure 10.1. (Of course, we would never know 
the parameters �

j
; instead, we will estimate the �

j
 and then plot the estimated lag distribution.)

 The lag distribution in Figure 10.1 implies that the largest effect is at the first lag. The lag 
distribution has a useful interpretation. If we standardize the initial value of y at y

t�1
 � 0, the lag 

distribution traces out all subsequent values of y due to a one-unit, temporary increase in z.
 We are also interested in the change in y due to a permanent increase in z. Before time 
t, z equals the constant c. At time t, z increases permanently to c � 1: z

s
 � c, s � t and 

z
s
 � c � 1, s � t. Again, setting the errors to zero, we have

 y
t�1

 � �
0
 � �

0
c � �

1
c � �

2
c,

 y
t
 � �

0
 � �

0
(c � 1) � �

1
c � �

2
c,

 y
t�1

 � �
0
 � �

0
(c � 1) � �

1
(c � 1) � �

2
c,

 y
t�2

 � �
0
 � �

0
(c � 1) � �

1
(c � 1) � �

2
(c � 1),
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and so on. With the permanent increase in z, after one period, y has increased by �
0
 � 

�
1
, and after two periods, y has increased by �

0
 � �

1
 � �

2
. There are no further changes 

in y after two periods. This shows that the sum of the coefficients on current and lagged 
z, �

0
 � �

1
 � �

2
, is the long-run change in y given a permanent increase in z and is called 

the long-run propensity (LRP) or long-run multiplier. The LRP is often of interest in 
distributed lag models.
 As an example, in equation (10.4), �

0
 measures the immediate change in fertility due 

to a one-dollar increase in pe. As we mentioned earlier, there are reasons to believe that �
0
 

is small, if not zero. But �
1
 or �

2
, or both, might be positive. If pe permanently increases 

by one dollar, then, after two years, gfr will have changed by �
0
 � �

1
 � �

2
. This model 

assumes that there are no further changes after two years. Whether this is actually the case 
is an empirical matter.
 A finite distributed lag model of order q is written as

 y
t
 � �

0
 � �

0
z

t
 � �

1
z

t�1
 � … � �

q
z

t�q
 � u

t
 . 10.6

This contains the static model as a special case by setting �
1
, �

2
, …, �

q
 equal to zero. 

Sometimes, a primary purpose for estimating a distributed lag model is to test whether z 
has a lagged effect on y. The impact propensity is always the coefficient on the contempo-
raneous z, �

0
. Occasionally, we omit z

t
 from (10.6), in which case the impact propensity is 

zero. The lag distribution is again the �
j
 graphed as a function of j. The long-run propensity 

is the sum of all coefficients on the variables z
t�j

:

 LRP � �
0
 � �

1
 � … � �

q
. 10.7

F IGURE  10 . 1

A lag distribution with two nonzero lags.
The maximum effect is at the first lag.
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Because of the often substantial correlation in z at different lags—that is, due to multi-
collinearity in (10.6)—it can be difficult to obtain precise estimates of the individual �

j
. 

Interestingly, even when the �
j
 cannot be precisely estimated, we can often get good esti-

mates of the LRP. We will see an example later.
 We can have more than one explan-
atory variable appearing with lags, or 
we can add contemporaneous variables 
to an FDL model. For example, the 
average education level for women of 
childbearing age could be added to 
(10.4), which allows us to account for 
changing education levels for women.

A Convention about the Time Index

When models have lagged explanatory variables (and, as we will see in the next chapter, 
models with lagged y), confusion can arise concerning the treatment of initial observa-
tions. For example, if in (10.5) we assume that the equation holds starting at t � 1, then 
the explanatory variables for the first time period are z

1
, z

0
, and z

�1
. Our convention will 

be that these are the initial values in our sample, so that we can always start the time index 
at t � 1. In practice, this is not very important because regression packages automatically 
keep track of the observations available for estimating models with lags. But for this and 
the next two chapters, we need some convention concerning the first time period being 
represented by the regression equation.

10.3 Finite Sample Properties of OLS 
under Classical Assumptions
In this section, we give a complete listing of the finite sample, or small sample, properties 
of OLS under standard assumptions. We pay particular attention to how the assumptions 
must be altered from our cross-sectional analysis to cover time series regressions.

Unbiasedness of OLS

The first assumption simply states that the time series process follows a model that is linear 
in its parameters.

Q u e s t i o n  1 0 . 1
In an equation for annual data, suppose that

int
t
 � 1.6 � .48 inf

t
 � .15 inf

t�1
 � .32 inf

t�2
 � u

t 
,

where int is an interest rate and inf is the inflation rate, what are 
the impact and long-run propensities?

Assumption TS.1  (Linear in Parameters)

The stochastic process {(xt1, xt2, …, xtk, yt): t � 1, 2, …, n} follows the linear model

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

tk
 � u

t
, 10.8

where {ut: t � 1, 2, …, n} is the sequence of errors or disturbances. Here, n is the number of 
observations (time periods).
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 In the notation x
tj
, t denotes the time period, and j is, as usual, a label to indicate one 

of the k explanatory variables. The terminology used in cross-sectional regression applies 
here: y

t
 is the dependent variable, explained variable, or regressand; the x

tj
 are the inde-

pendent variables, explanatory variables, or regressors.
 We should think of Assumption TS.1 as being essentially the same as Assumption 
MLR.1 (the first cross-sectional assumption), but we are now specifying a linear model for 
time series data. The examples covered in Section 10.2 can be cast in the form of (10.8) 
by appropriately defining x

tj
. For example, equation (10.5) is obtained by setting x

t1
 � z

t
, 

x
t2
 � z

t�1
, and x

t3
 � z

t�2
.

 To state and discuss several of the remaining assumptions, we let x
t
 � (x

t1
, x

t2
, …, x

tk
) 

denote the set of all independent variables in the equation at time t. Further, X denotes 
the collection of all independent variables for all time periods. It is useful to think of X as 
being an array, with n rows and k columns. This reflects how time series data are stored in 
econometric software packages: the t  th row of X is x

t
, consisting of all independent vari-

ables for time period t. Therefore, the first row of X corresponds to t � 1, the second row 
to t � 2, and the last row to t � n. An example is given in Table 10.2, using n � 8 and the 
explanatory variables in equation (10.3).
 Naturally, as with cross-sectional regression, we need to rule out perfect collinearity 
among the regressors.

TABLE  10 . 2

Example of X for the Explanatory Variables in Equation (10.3)

t convrte unem yngmle

1 .46 .074 .12

2 .42 .071 .12

3 .42 .063 .11

4 .47 .062 .09

5 .48 .060 .10

6 .50 .059 .11

7 .55 .058 .12

8 .56 .059 .13

Assumption TS.2   (No Perfect Collinearity)

In the sample (and therefore in the underlying time series process), no independent variable is 
constant nor a perfect linear combination of the others.
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 We discussed this assumption at length in the context of cross-sectional data in 
Chapter 3. The issues are essentially the same with time series data. Remember, Assump-
tion TS.2 does allow the explanatory variables to be correlated, but it rules out perfect 
correlation in the sample.
 The final assumption for unbiasedness of OLS is the time series analog of Assumption 
MLR.4, and it also obviates the need for random sampling in Assumption MLR.2.

This is a crucial assumption, and we need to have an intuitive grasp of its meaning. As in 
the cross-sectional case, it is easiest to view this assumption in terms of uncorrelatedness: 
Assumption TS.3 implies that the error at time t, u

t
, is uncorrelated with each explana-

tory variable in every time period. The fact that this is stated in terms of the conditional 
expectation means that we must also correctly specify the functional relationship between 
y

t
 and the explanatory variables. If u

t
 is independent of X and E(u

t
) � 0, then Assumption 

TS.3 automatically holds.
 Given the cross-sectional analysis from Chapter 3, it is not surprising that we require u

t
 to 

be uncorrelated with the explanatory variables also dated at time t: in conditional mean terms,

 E(u
t
�x

t1
, …, x

tk
) � E(u

t
�x

t
) � 0. 10.10

When (10.10) holds, we say that the x
tj
 are contemporaneously exogenous. Equation (10.10) 

implies that u
t
 and the explanatory variables are contemporaneously uncorrelated: 

Corr(x
tj
,u

t
) � 0, for all j.

 Assumption TS.3 requires more than contemporaneous exogeneity: u
t
 must be uncorrelated 

with x
sj
, even when s 	 t. This is a strong sense in which the explanatory variables must be 

exogenous, and when TS.3 holds, we say that the explanatory variables are strictly exogenous. 
In Chapter 11, we will demonstrate that (10.10) is sufficient for proving consistency of the OLS 
estimator. But to show that OLS is unbiased, we need the strict exogeneity assumption.
 In the cross-sectional case, we did not explicitly state how the error term for, say, 
person i, u

i
, is related to the explanatory variables for other people in the sample. This 

was unnecessary because with random sampling (Assumption MLR.2), u
i
 is automatically 

independent of the explanatory variables for observations other than i. In a time series 
context, random sampling is almost never appropriate, so we must explicitly assume that 
the expected value of u

t
 is not related to the explanatory variables in any time periods.

 It is important to see that Assumption TS.3 puts no restriction on correlation in the 
independent variables or in the u

t
 across time. Assumption TS.3 only says that the average 

value of u
t
 is unrelated to the independent variables in all time periods.

 Anything that causes the unobservables at time t to be correlated with any of the 
explanatory variables in any time period causes Assumption TS.3 to fail. Two lead-
ing candidates for failure are omitted variables and measurement error in some of the 
regressors. But the strict exogeneity assumption can also fail for other, less obvious 
reasons. In the simple static regression model

 y
t
 � �

0
 � �

1
z

t
 � u

t  
,

Assumption TS.3  (Zero Conditional Mean)

For each t, the expected value of the error ut, given the explanatory variables for all time 
periods, is zero. Mathematically,

 E(u
t
�X) � 0, t � 1, 2, …, n. 10.9
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The proof of this theorem is essentially 
the same as that for Theorem 3.1 in 
Chapter 3, and so we omit it. When com-
paring Theorem 10.1 to Theorem 3.1, 
we have been able to drop the random 
sampling assumption by assuming that, 

Assumption TS.3 requires not only that u
t
 and z

t
 are uncorrelated, but that u

t
 is also uncor-

related with past and future values of z. This has two implications. First, z can have no 
lagged effect on y. If z does have a lagged effect on y, then we should estimate a distrib-
uted lag model. A more subtle point is that strict exogeneity excludes the possibility that 
changes in the error term today can cause future changes in z. This effectively rules out 
feedback from y to future values of z. For example, consider a simple static model to 
explain a city’s murder rate in terms of police officers per capita:

 mrdrte
t
 � �

0
 � �

1
polpc

t
 � u

t
.

It may be reasonable to assume that u
t
 is uncorrelated with polpc

t
 and even with past val-

ues of polpc
t
; for the sake of argument, assume this is the case. But suppose that the city 

adjusts the size of its police force based on past values of the murder rate. This means that, 
say, polpc

t�1
 might be correlated with u

t
 (since a higher u

t
 leads to a higher mrdrte

t
). If this 

is the case, Assumption TS.3 is generally violated.
 There are similar considerations in distributed lag models. Usually, we do not worry 
that u

t
 might be correlated with past z because we are controlling for past z in the model. 

But feedback from u to future z is always an issue.
 Explanatory variables that are strictly exogenous cannot react to what has happened to 
y in the past. A factor such as the amount of rainfall in an agricultural production function 
satisfies this requirement: rainfall in any future year is not influenced by the output during 
the current or past years. But something like the amount of labor input might not be strictly 
exogenous, as it is chosen by the farmer, and the farmer may adjust the amount of labor 
based on last year’s yield. Policy variables, such as growth in the money supply, expendi-
tures on welfare, and highway speed limits, are often influenced by what has happened to 
the outcome variable in the past. In the social sciences, many explanatory variables may 
very well violate the strict exogeneity assumption.
 Even though Assumption TS.3 can be unrealistic, we begin with it in order to conclude 
that the OLS estimators are unbiased. Most treatments of static and finite distributed lag 
models assume TS.3 by making the stronger assumption that the explanatory variables are 
nonrandom, or fixed in repeated samples. The nonrandomness assumption is obviously 
false for time series observations; Assumption TS.3 has the advantage of being more real-
istic about the random nature of the x

tj
, while it isolates the necessary assumption about 

how u
t
 and the explanatory variables are related in order for OLS to be unbiased.

Theorem 10.1   (Unbiasedness of OLS)

Under Assumptions TS.1, TS.2, and TS.3, the OLS estimators are unbiased conditional on X, 
and therefore unconditionally as well: E( ̂  � j) � �j, j � 0, 1, …, k.

Q u e s t i o n  1 0 . 2
In the FDL model yt � �0 � �0zt � �1zt�1 � ut , what do we 
need to assume about the sequence {z0, z1, …, zn} in order for 
Assumption TS.3 to hold?
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for each t, u
t
 has zero mean given the explanatory variables at all time periods. If this 

assumption does not hold, OLS cannot be shown to be unbiased.
 The analysis of omitted variables bias, which we covered in Section 3.3, is essentially 
the same in the time series case. In particular, Table 3.2 and the discussion surrounding it 
can be used as before to determine the directions of bias due to omitted variables.

The Variances of the OLS Estimators 

and the Gauss-Markov Theorem

We need to add two assumptions to round out the Gauss-Markov assumptions for time 
series regressions. The first one is familiar from cross-sectional analysis.

Assumption TS.4  (Homoskedasticity)

Conditional on X, the variance of ut is the same for all t: Var(ut�X) � Var(ut) � �2,
t � 1, 2, …, n.

This assumption means that Var(u
t
�X) cannot depend on X—it is sufficient that u

t
 and X 

are independent—and that Var(u
t
) must be constant over time. When TS.4 does not hold, 

we say that the errors are heteroskedastic, just as in the cross-sectional case. For example, 
consider an equation for determining three-month T-bill rates (i3

t
) based on the inflation 

rate (inf
t
) and the federal deficit as a percentage of gross domestic product (def

t
):

 i3
t
 � �

0
 � �

1
inf

t
 � �

2
def

t
 � u

t
. 10.11

Among other things, Assumption TS.4 requires that the unobservables affecting interest 
rates have a constant variance over time. Since policy regime changes are known to affect 
the variability of interest rates, this assumption might very well be false. Further, it could 
be that the variability in interest rates depends on the level of inflation or relative size of 
the deficit. This would also violate the homoskedasticity assumption.
 When Var(u

t
�X) does depend on X, it often depends on the explanatory variables at 

time t, x
t
. In Chapter 12, we will see that the tests for heteroskedasticity from Chapter 8 

can also be used for time series regressions, at least under certain assumptions.
 The final Gauss-Markov assumption for time series analysis is new.

Assumption TS.5  (No Serial Correlation)

Conditional on X, the errors in two different time periods are uncorrelated: Corr(ut,us�X) � 0, 
for all t 	 s.

The easiest way to think of this assumption is to ignore the conditioning on X. Then, 
Assumption TS.5 is simply

 Corr(u
t 
,u

s
) � 0, for all t 	 s. 10.12

(This is how the no serial correlation assumption is stated when X is treated as nonran-
dom.) When considering whether Assumption TS.5 is likely to hold, we focus on equa-
tion (10.12) because of its simple interpretation.
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 When (10.12) is false, we say that the errors in (10.8) suffer from serial correlation, or 
autocorrelation, because they are correlated across time. Consider the case of errors from 
adjacent time periods. Suppose that when u

t�1
 � 0 then, on average, the error in the next 

time period, u
t
, is also positive. Then, Corr(u

t
,u

t�1
) � 0, and the errors suffer from serial 

correlation. In equation (10.11), this means that if interest rates are unexpectedly high for 
this period, then they are likely to be above average (for the given levels of inflation and 
deficits) for the next period. This turns out to be a reasonable characterization for the error 
terms in many time series applications, which we will see in Chapter 12. For now, we 
assume TS.5.
 Importantly, Assumption TS.5 assumes nothing about temporal correlation in the 
independent variables. For example, in equation (10.11), inf

t
 is almost certainly correlated 

across time. But this has nothing to do with whether TS.5 holds.
 A natural question that arises is: In Chapters 3 and 4, why did we not assume that the 
errors for different cross-sectional observations are uncorrelated? The answer comes from 
the random sampling assumption: under random sampling, u

i
 and u

h
 are independent for 

any two observations i and h. It can also be shown that, under random sampling, the errors 
for different observations are independent conditional on the explanatory variables in the 
sample. Thus, for our purposes, we consider serial correlation only to be a potential prob-
lem for regressions with times series data. (In Chapters 13 and 14, the serial correlation 
issue will come up in connection with panel data analysis.)
 Assumptions TS.1 through TS.5 are the appropriate Gauss-Markov assumptions for time 
series applications, but they have other uses as well. Sometimes, TS.1 through TS.5 are satis-
fied in cross-sectional applications, even when random sampling is not a reasonable assump-
tion, such as when the cross-sectional units are large relative to the population. Suppose that 
we have a cross-sectional data set at the city level. It might be that correlation exists across 
cities within the same state in some of the explanatory variables, such as property tax rates 
or per capita welfare payments. Correlation of the explanatory variables across observations 
does not cause problems for verifying the Gauss-Markov assumptions, provided the error 
terms are uncorrelated across cities. However, in this chapter, we are primarily interested in 
applying the Gauss-Markov assumptions to time series regression problems.

Theorem 10.2  (OLS Sampling Variances)

Under the time series Gauss-Markov Assumptions TS.1 through TS.5, the variance of  ̂  � j, con-
ditional on X, is

 Var( ̂  � 
j
�X) � �2/[SST

j
(1 � R 2   j  )], j � 1, …, k, 10.13

where SSTj is the total sum of squares of xtj and R 2   
j
   is the R-squared from the regression of xj 

on the other independent variables.

 Equation (10.13) is the same variance we derived in Chapter 3 under the cross-sectional 
Gauss-Markov assumptions. Because the proof is very similar to the one for Theorem 3.2, 
we omit it. The discussion from Chapter 3 about the factors causing large variances, 
including multicollinearity among the explanatory variables, applies immediately to the 
time series case.
 The usual estimator of the error variance is also unbiased under Assumptions TS.1 
through TS.5, and the Gauss-Markov Theorem holds.
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Theorem 10.3   (Unbiased Estimation of �2)

Under Assumptions TS.1 through TS.5, the estimator  ̂  � 2 � SSR/df is an unbiased estimator of 
�2, where df � n � k � 1.

Theorem 10.4   (Gauss-Markov Theorem)

Under Assumptions TS.1 through TS.5, the OLS estimators are the best linear unbiased esti-
mators conditional on X.

Theorem 10.5  (Normal Sampling Distributions)

Under Assumptions TS.1 through TS.6, the CLM assumptions for time series, the OLS esti-
mators are normally distributed, conditional on X. Further, under the null hypothesis, each 
t statistic has a t distribution, and each F statistic has an F distribution. The usual construction 
of confidence intervals is also valid.

 The implications of Theorem 10.5 are of utmost importance. It implies that, when 
Assumptions TS.1 through TS.6 hold, everything we have learned about estimation and 
inference for cross-sectional regressions applies directly to time series regressions. Thus, 
t statistics can be used for testing statistical significance of individual explanatory vari-
ables, and F statistics can be used to test for joint significance.
 Just as in the cross-sectional case, the usual inference procedures are only as good as 
the underlying assumptions. The classical linear model assumptions for time series data 
are much more restrictive than those for cross-sectional data—in particular, the strict 

 The bottom line here is that OLS has 
the same desirable finite sample proper-
ties under TS.1 through TS.5 that it has 
under MLR.1 through MLR.5.

Inference under the Classical Linear Model Assumptions

In order to use the usual OLS standard errors, t statistics, and F statistics, we need to add a 
final assumption that is analogous to the normality assumption we used for cross-sectional 
analysis.

Q u e s t i o n  1 0 . 3
In the FDL model yt � �0 � �0zt � �1zt�1 � ut, explain the nature 
of any multicollinearity in the explanatory variables.

Assumption TS.6  (Normality)

The errors ut are independent of X and are independently and identically distributed as 
Normal(0,�2).

 Assumption TS.6 implies TS.3, TS.4, and TS.5, but it is stronger because of the inde-
pendence and normality assumptions.
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 exogeneity and no serial correlation assumptions can be unrealistic. Nevertheless, the 
CLM framework is a good starting point for many applications.

E x a m p l e  1 0 . 1

[Static Phillips Curve]

To determine whether there is a tradeoff, on average, between unemployment and inflation, we can 
test H

0
: �

1
 � 0 against H

1
: �

1
 � 0 in equation (10.2). If the classical linear model assumptions hold, 

we can use the usual OLS t statistic.
 We use the file PHILLIPS.RAW to estimate equation (10.2), restricting ourselves to the data 
through 1996. (In later exercises, for example, Computer Exercises C10.12 and C11.10, you are 
asked to use all years through 2003. In Chapter 18, we use the years 1997 through 2003 in various 
forecasting exercises.) The simple regression estimates are

 3inf
t
 � 1.42 � .468 unem

t

  (1.72) (.289) 10.14

 n � 49, R2 � .053,  
-

 R 2 � .033.

This equation does not suggest a tradeoff between unem and inf:  ̂  � 
1
 � 0. The t statistic for  ̂  � 

1
 is 

about 1.62, which gives a p-value against a two-sided alternative of about .11. Thus, if anything, 
there is a positive relationship between inflation and unemployment.
 There are some problems with this analysis that we cannot address in detail now. In Chapter 12, 
we will see that the CLM assumptions do not hold. In addition, the static Phillips curve is probably 
not the best model for determining whether there is a short-run tradeoff between inflation and unem-
ployment. Macroeconomists generally prefer the expectations augmented Phillips curve, a simple 
example of which is given in Chapter 11.

 
 As a second example, we estimate equation (10.11) using annual data on the 
U.S.  economy.

E x a m p l e  1 0 . 2

[Effects of Inflation and Deficits on Interest Rates]

The data in INTDEF.RAW come from the 2004 Economic Report of the President (Tables B-73 and 
B-79) and span the years 1948 through 2003. The variable i3 is the three-month T-bill rate, inf is the 
annual inflation rate based on the consumer price index (CPI), and def is the federal budget deficit 
as a percentage of GDP. The estimated equation is

 3i3
t
 � 1.73 � .606 inf

t
 � .513 def

t

 (0.43) (.082) (.118) 10.15

 n � 56, R2 � .602,  
-

 R 2 � .587.

These estimates show that increases in inflation or the relative size of the deficit increase short-term 
interest rates, both of which are expected from basic economics. For example, a ceteris paribus one 
percentage point increase in the inflation rate increases i3 by .606 points. Both inf and def are very 
statistically significant, assuming, of course, that the CLM assumptions hold.
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10.4 Functional Form, Dummy Variables, 
and Index Numbers
All of the functional forms we learned about in earlier chapters can be used in time series 
regressions. The most important of these is the natural logarithm: time series regressions 
with constant percentage effects appear often in applied work.

E x a m p l e  1 0 . 3

[Puerto Rican Employment and the Minimum Wage]

Annual data on the Puerto Rican employment rate, minimum wage, and other variables are used by 
Castillo-Freeman and Freeman (1992) to study the effects of the U.S. minimum wage on employ-
ment in Puerto Rico. A simplified version of their model is

 log( prepop
t
) � �

0
 � �

1
log(mincov

t
) � �

2
log(usgnp

t
) � u

t 
, 10.16

where prepop
t
 is the employment rate in Puerto Rico during year t (ratio of those working to total 

population), usgnp
t
 is real U.S. gross national product (in billions of dollars), and mincov measures 

the importance of the minimum wage relative to average wages. In particular, mincov � (avgmin/
avgwage)·avgcov, where avgmin is the average minimum wage, avgwage is the average overall 
wage, and avgcov is the average coverage rate (the proportion of workers actually covered by the 
minimum wage law).
 Using the data in PRMINWGE.RAW for the years 1950 through 1987 gives

 3log( prepop
t
) � �1.05 � .154 log(mincov

t
) � .012 log(usgnp

t
)

 (0.77) (.065) (.089) 10.17

 n � 38, R2 � .661,  
-

 R 2 � .641.

The estimated elasticity of prepop with respect to mincov is �.154, and it is statistically significant 
with t � �2.37. Therefore, a higher minimum wage lowers the employment rate, something that 
classical economics predicts. The GNP variable is not statistically significant, but this changes when 
we account for a time trend in the next section.

 
 We can use logarithmic functional forms in distributed lag models, too. For example, 
for quarterly data, suppose that money demand (M

t
) and gross domestic product (GDP

t
) 

are related by

 log(M
t
) � �

0
 � �

0
log(GDP

t
) � �

1
log(GDP

t�1
) � �

2
log(GDP

t�2
) 

   � �
3
log(GDP

t�3
) � �

4
log(GDP

t�4
) � u

t
.

The impact propensity in this equation, �
0
, is also called the short-run elasticity: it 

 measures the immediate percentage change in money demand given a 1% increase in GDP. 
The long-run propensity, �

0
 � �

1
 � … � �

4
, is sometimes called the long-run elasticity: 

it measures the percentage increase in money demand after four quarters given a perma-
nent 1% increase in GDP.
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 Binary or dummy independent variables are also quite useful in time series applica-
tions. Since the unit of observation is time, a dummy variable represents whether, in each 
time period, a certain event has occurred. For example, for annual data, we can indicate in 
each year whether a Democrat or a Republican is president of the United States by defin-
ing a variable democ

t
, which is unity if the president is a Democrat, and zero otherwise. 

Or, in looking at the effects of capital punishment on murder rates in Texas, we can define 
a dummy variable for each year equal to one if Texas had capital punishment during that 
year, and zero otherwise.
 Often, dummy variables are used to isolate certain periods that may be systematically 
different from other periods covered by a data set.

E x a m p l e  1 0 . 4

[Effects of Personal Exemption on Fertility Rates]

The general fertility rate (gfr) is the number of children born to every 1,000 women of childbearing 
age. For the years 1913 through 1984, the equation,

 gfr
t
 � �

0
 � �

1
pe

t
 � �

2
ww2

t
 � �

3 
pill

t
 � u

t
,

explains gfr in terms of the average real dollar value of the personal tax exemption (  pe) and two 
binary variables. The variable ww2 takes on the value unity during the years 1941 through 1945, 
when the United States was involved in World War II. The variable pill is unity from 1963 on, when 
the birth control pill was made available for contraception.
 Using the data in FERTIL3.RAW, which were taken from the article by Whittington, Alm, and 
Peters (1990), gives

 1gfr
t
 � 98.68 � .083 pe

t
 � 24.24 ww2

t
 � 31.59 pill

t

 (3.21) (.030) (7.46) (4.08) 10.18

 n � 72, R2 � .473,  
-

 R 2 � .450.

Each variable is statistically significant at the 1% level against a two-sided alternative. We see that 
the fertility rate was lower during World War II: given pe, there were about 24 fewer births for every 
1,000 women of childbearing age, which is a large reduction. (From 1913 through 1984, gfr ranged 
from about 65 to 127.) Similarly, the fertility rate has been substantially lower since the introduction 
of the birth control pill.
 The variable of economic interest is pe. The average pe over this time period is $100.40, ranging 
from zero to $243.83. The coefficient on pe implies that a 12-dollar increase in pe increases gfr by 
about one birth per 1,000 women of childbearing age. This effect is hardly trivial.
 In Section 10.2, we noted that the fertility rate may react to changes in pe with a lag. Estimating 
a distributed lag model with two lags gives

 1gfr
t
 � 95.87 � .073 pe

t
 � .0058 pe

t�1
 � .034 pe

t�2

 (3.28) (.126) (.1557) (.126)

 � 22.13 ww2
t
 � 31.30 pill

t
 10.19

 (10.73) (3.98)

 n � 70, R2 � .499,  
-

 R 2 � .459.
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In this regression, we only have 70 observations because we lose two when we lag pe twice. 
The coefficients on the pe variables are estimated very imprecisely, and each one is individually 
insignificant. It turns out that there is substantial correlation between pe

t
, pe

t�1
, and pe

t�2
, and this 

multicollinearity makes it difficult to estimate the effect at each lag. However, pe
t
, pe

t�1
, and pe

t�2
 

are jointly significant: the F statistic has a p-value � .012. Thus, pe does have an effect on gfr [as 
we already saw in (10.18)], but we do not have good enough estimates to determine whether it is 
contemporaneous or with a one- or two-year lag (or some of each). Actually, pe

t�1
 and pe

t�2
 are 

jointly insignificant in this equation (p-value � .95), so at this point, we would be justified in using 
the static model. But for illustrative purposes, let us obtain a confidence interval for the long-run 
propensity in this model.
 The estimated LRP in (10.19) is .073 � .0058 � .034 � .101. However, we do not have enough 
information in (10.19) to obtain the standard error of this estimate. To obtain the standard error of 
the estimated LRP, we use the trick suggested in Section 4.4. Let �

0
 � �

0
 � �

1
 � �

2
 denote the LRP 

and write �
0
 in terms of �

0
, �

1
, and �

2
 as �

0
 � �

0
 � �

1
 � �

2
. Next, substitute for �

0
 in the model

 gfr
t
 � �

0
 � �

0
 pe

t
 � �

1
pe

t�1
 � �

2 
pe

t�2
 � …

to get

 gfr
t
 � �

0
 � (�

0
 � �

1
 � �

2
)pe

t
 � �

1 
pe

t�1
 � �

2 
pe

t�2
 � …

 � �
0
 � �

0 
pe

t
 � �

1
( pe

t�1
 � pe

t
) � �

2
( pe

t�2
 � pe

t
) � ….

From this last equation, we can obtain  ̂  � 
0
 and its standard error by regressing gfr

t
 on pe

t
, 

( pe
t�1

 � pe
t
), ( pe

t�2
 � pe

t
), ww2

t
, and pill

t
. The coefficient and associated standard error on pe

t
 are 

what we need. Running this regression gives   ̂  � 
0
 � .101 as the coefficient on pe

t
 (as we already knew) 

and se( ̂  � 
0
) � .030 [which we could not compute from (10.19)]. Therefore, the t statistic for   ̂  � 

0
 is 

about 3.37, so  ̂  � 
0
 is statistically different from zero at small significance levels. Even though none 

of the  ̂  � 
j 
is individually significant, the LRP is very significant. The 95% confidence interval for the 

LRP is about .041 to .160.
 Whittington, Alm, and Peters (1990) allow for further lags but restrict the coefficients to help 
alleviate the multicollinearity problem that hinders estimation of the individual �

j
. (See Problem 10.6 

for an example of how to do this.) For estimating the LRP, which would seem to be of primary interest 
here, such restrictions are unnecessary. Whittington, Alm, and Peters also control for additional vari-
ables, such as average female wage and the unemployment rate.

 
 Binary explanatory variables are the key component in what is called an event study. 
In an event study, the goal is to see whether a particular event influences some outcome. 
Economists who study industrial organization have looked at the effects of certain events 
on firm stock prices. For example, Rose (1985) studied the effects of new trucking regula-
tions on the stock prices of trucking companies.
 A simple version of an equation used for such event studies is

 Rf
t
 � �

0
 � �

1 
R m 
  t   � �

2
d

t
 � u

t 
,

where Rf
t
 is the stock return for firm f during period t (usually a week or a month), R m 

  t   is 
the market return (usually computed for a broad stock market index), and d

t
 is a dummy 

variable indicating when the event occurred. For example, if the firm is an airline, d
t
 might 
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denote whether the airline experienced a publicized accident or near accident during week t. 
Including R m 

  t   in the equation controls for the possibility that broad market movements 
might coincide with airline accidents. Sometimes, multiple dummy variables are used. For 
example, if the event is the imposition of a new regulation that might affect a certain firm, 
we might include a dummy variable that is one for a few weeks before the regulation was 
publicly announced and a second dummy variable for a few weeks after the regulation was 
announced. The first dummy variable might detect the presence of inside information.
 Before we give an example of an event study, we need to discuss the notion of an 
index number and the difference between nominal and real economic variables. An 
index number typically aggregates a vast amount of information into a single quantity. 
Index numbers are used regularly in time series analysis, especially in macroeconomic 
applications. An example of an index number is the index of industrial production (IIP), 
computed monthly by the Board of Governors of the Federal Reserve. The IIP is a measure 
of production across a broad range of industries, and, as such, its magnitude in a particular 
year has no quantitative meaning. In order to interpret the magnitude of the IIP, we must 
know the base period and the base value. In the 1997 Economic Report of the President 
(ERP), the base year is 1987, and the base value is 100. (Setting IIP to 100 in the base 
period is just a convention; it makes just as much sense to set IIP � 1 in 1987, and some 
indexes are defined with 1 as the base value.) Because the IIP was 107.7 in 1992, we can 
say that industrial production was 7.7% higher in 1992 than in 1987. We can use the IIP 
in any two years to compute the percentage difference in industrial output during those 
two years. For example, because IIP � 61.4 in 1970 and IIP � 85.7 in 1979, industrial 
production grew by about 39.6% during the 1970s.
 It is easy to change the base period for any index number, and sometimes we must do 
this to give index numbers reported with different base years a common base year. For 
example, if we want to change the base year of the IIP from 1987 to 1982, we simply 
divide the IIP for each year by the 1982 value and then multiply by 100 to make the base 
period value 100. Generally, the formula is

 newindex
t
 � 100(oldindex

t 
/oldindex

newbase
), 10.20

where oldindex
newbase

 is the original value of the index in the new base year. For example, 
with base year 1987, the IIP in 1992 is 107.7; if we change the base year to 1982, the IIP 
in 1992 becomes 100(107.7/81.9) � 131.5 (because the IIP in 1982 was 81.9).
 Another important example of an index number is a price index, such as the consumer 
price index (CPI). We already used the CPI to compute annual inflation rates in Example 10.1. 
As with the industrial production index, the CPI is only meaningful when we  compare it 
across different years (or months, if we are using monthly data). In the 1997 ERP, CPI � 
38.8 in 1970, and CPI � 130.7 in 1990. Thus, the general price level grew by almost 237% 
over this 20-year period. (In 1997, the CPI is defined so that its average in 1982, 1983, and 
1984 equals 100; thus, the base period is listed as 1982�1984.)
 In addition to being used to compute inflation rates, price indexes are necessary for 
turning a time series measured in nominal dollars (or current dollars) into real dollars 
(or constant dollars). Most economic behavior is assumed to be influenced by real, not 
nominal, variables. For example, classical labor economics assumes that labor supply is 
based on the real hourly wage, not the nominal wage. Obtaining the real wage from the 
nominal wage is easy if we have a price index such as the CPI. We must be a little careful 
to first divide the CPI by 100, so that the value in the base year is 1. Then, if w denotes 
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the  average hourly wage in nominal dollars and p � CPI/100, the real wage is simply w/p. 
This wage is measured in dollars for the base period of the CPI. For example, in Table 
B-45 in the 1997 ERP, average hourly earnings are reported in nominal terms and in 
1982 dollars (which means that the CPI used in computing the real wage had the base year 
1982). This table reports that the nominal hourly wage in 1960 was $2.09, but measured 
in 1982 dollars, the wage was $6.79. The real hourly wage had peaked in 1973, at $8.55 in 
1982 dollars, and had fallen to $7.40 by 1995. Thus, there has been a nontrivial decline in 
real wages over the past 20 years. (If we compare nominal wages from 1973 and 1995, we 
get a very misleading picture: $3.94 in 1973 and $11.44 in 1995. Because the real wage 
has actually fallen, the increase in the nominal wage is due entirely to inflation.)
 Standard measures of economic output are in real terms. The most important of these 
is gross domestic product, or GDP. When growth in GDP is reported in the popular press, 
it is always real GDP growth. In the 1997 ERP, Table B-9, GDP is reported in billions 
of 1992 dollars. We used a similar measure of output, real gross national product, in 
Example 10.3.
 Interesting things happen when real dollar variables are used in combination with 
natural logarithms. Suppose, for example, that average weekly hours worked are related 
to the real wage as

 log(hours) � �
0
 � �

1
log(w/p) � u.

Using the fact that log(w/p) � log(w) � log(p), we can write this as

 log(hours) � �
0
 � �

1
log(w) � �

2
log(p) � u, 10.21

but with the restriction that �
2
 � ��

1
. Therefore, the assumption that only the real 

wage influences labor supply imposes a restriction on the parameters of model (10.21). If 
�

2 
	 ��

1
, then the price level has an effect on labor supply, something that can happen if 

workers do not fully understand the distinction between real and nominal wages.
 There are many practical aspects to the actual computation of index numbers, but it 
would take us too far afield to cover those here. Detailed discussions of price indexes can 
be found in most intermediate macroeconomic texts, such as Mankiw (1994, Chapter 2). 
For us, it is important to be able to use index numbers in regression analysis. As mentioned 
earlier, since the magnitudes of index numbers are not especially informative, they often 
appear in logarithmic form, so that regression coefficients have percentage change inter-
pretations.
 We now give an example of an event study that also uses index numbers.

E x a m p l e  1 0 . 5

[Antidumping Filings and Chemical Imports]

Krupp and Pollard (1996) analyzed the effects of antidumping filings by U.S. chemical industries 
on imports of various chemicals. We focus here on one industrial chemical, barium chloride, a 
cleaning agent used in various chemical processes and in gasoline production. The data are con-
tained in the file BARIUM.RAW. In the early 1980s, U.S. barium chloride producers believed that 
China was offering its U.S. imports at an unfairly low price (an action known as dumping), and the 
barium chloride industry filed a complaint with the U.S. International Trade Commission (ITC) in 
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October 1983. The ITC ruled in favor of the U.S. barium chloride industry in October 1984. There 
are several questions of interest in this case, but we will touch on only a few of them. First, are 
imports unusually high in the period immediately preceding the initial filing? Second, do imports 
change noticeably after an antidumping filing? Finally, what is the reduction in imports after a deci-
sion in favor of the U.S. industry?
 To answer these questions, we follow Krupp and Pollard by defining three dummy variables: 
befile6 is equal to 1 during the six months before filing, affile6 indicates the six months after filing, 
and afdec6 denotes the six months after the positive decision. The dependent variable is the volume 
of imports of barium chloride from China, chnimp, which we use in logarithmic form. We include as 
explanatory variables, all in logarithmic form, an index of chemical production, chempi (to control 
for overall demand for barium chloride), the volume of gasoline production, gas (another demand 
variable), and an exchange rate index, rtwex, which measures the strength of the dollar against 
several other currencies. The chemical production index was defined to be 100 in June 1977. The 
analysis here differs somewhat from Krupp and Pollard in that we use natural logarithms of all vari-
ables (except the dummy variables, of course), and we include all three dummy variables in the same 
regression.
 Using monthly data from February 1978 through December 1988 gives the following:

3log(chnimp) � �17.80 � 3.12 log(chempi) � .196 log(gas)

 (21.05) (.48) (.907)

 � .983 log(rtwex) � .060 befile6 � .032 affile6 � .565 afdec6 10.22

 (.400) (.261) (.264) (.286)

 n � 131, R2 � .305,  
-

 R 2 � .271.

The equation shows that befile6 is statistically insignificant, so there is no evidence that Chinese 
imports were unusually high during the six months before the suit was filed. Further, although the 
estimate on affile6 is negative, the coefficient is small (indicating about a 3.2% fall in Chinese 
imports), and it is statistically very insignificant. The coefficient on afdec6 shows a substantial 
fall in Chinese imports of barium chloride after the decision in favor of the U.S. industry, 
which is not surprising. Since the effect is so large, we compute the exact percentage change: 
100[exp(�.565) � 1] � �43.2%. The coefficient is statistically significant at the 5% level against 
a two-sided alternative.
 The coefficient signs on the control variables are what we expect: an increase in overall chemi-
cal production increases the demand for the cleaning agent. Gasoline production does not affect 
Chinese imports significantly. The coefficient on log(rtwex) shows that an increase in the value of 
the dollar relative to other currencies increases the demand for Chinese imports, as is predicted by 
economic theory. (In fact, the elasticity is not statistically different from 1. Why?)

 
 Interactions among qualitative and quantitative variables are also used in time series 
analysis. An example with practical importance follows.

E x a m p l e  1 0 . 6

[Election Outcomes and Economic Performance]

Fair (1996) summarizes his work on explaining presidential election outcomes in terms of 
economic performance. He explains the proportion of the two-party vote going to the Democratic 
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candidate using data for the years 1916 through 1992 (every four years) for a total of 20 observations. 
We estimate a simplified version of Fair’s model (using variable names that are more descriptive 
than his):

 demvote � �
0
 � �

1 
partyWH � �

2
incum � �

3 
partyWH·gnews 

 � �
4 
partyWH·inf � u,

where demvote is the proportion of the two-party vote going to the Democratic candidate. The explan-
atory variable partyWH is similar to a dummy variable, but it takes on the value 1 if a Democrat is 
in the White House and �1 if a Republican is in the White House. Fair uses this variable to impose 
the restriction that the effect of a Republican being in the White House has the same magnitude but 
opposite sign as a Democrat being in the White House. This is a natural restriction because the party 
shares must sum to one, by definition. It also saves two degrees of freedom, which is important with 
so few observations. Similarly, the variable incum is defined to be 1 if a Democratic incumbent is 
running, �1 if a Republican incumbent is running, and zero otherwise. The variable gnews is the 
number of quarters, during the current administration’s first 15 quarters, where the quarterly growth 
in real per capita output was above 2.9% (at an annual rate), and inf is the average annual inflation 
rate over the first 15 quarters of the administration. See Fair (1996) for precise definitions.
 Economists are most interested in the interaction terms partyWH·gnews and partyWH·inf. Since 
partyWH equals one when a Democrat is in the White House, �

3
 measures the effect of good eco-

nomic news on the party in power; we expect �
3
 � 0. Similarly, �

4
 measures the effect that inflation 

has on the party in power. Because inflation during an administration is considered to be bad news, 
we expect �

4
 � 0.

 The estimated equation using the data in FAIR.RAW is

2demvote � .481 � .0435 partyWH � .0544 incum

 (.012) (.0405) (.0234)

 � .0108 partyWH·gnews � .0077 partyWH·inf 10.23

 (.0041) (.0033)

 n � 20, R2 � .663,  
-

 R 2 � .573.

All coefficients, except that on partyWH, are statistically significant at the 5% level. Incumbency 
is worth about 5.4 percentage points in the share of the vote. (Remember, demvote is measured as 
a proportion.) Further, the economic news variable has a positive effect: one more quarter of good 
news is worth about 1.1 percentage points. Inflation, as expected, has a negative effect: if average 
annual inflation is, say, two percentage points higher, the party in power loses about 1.5 percentage 
points of the two-party vote.
 We could have used this equation to predict the outcome of the 1996 presidential election 
between Bill Clinton, the Democrat, and Bob Dole, the Republican. (The independent candidate, 
Ross Perot, is excluded because Fair’s equation is for the two-party vote only.) Because Clinton ran 
as an incumbent, partyWH � 1 and incum � 1. To predict the election outcome, we need the vari-
ables gnews and inf. During Clinton’s first 15 quarters in office, per capita real GDP exceeded 2.9% 
three times, so gnews � 3. Further, using the GDP price deflator reported in Table B-4 in the 1997 
ERP, the average annual inflation rate (computed using Fair’s formula) from the fourth quarter in 
1991 to the third quarter in 1996 was 3.019. Plugging these into (10.23) gives

 2demvote � .481 � .0435 � .0544 � .0108(3) � .0077(3.019) � .5011.
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Therefore, based on information known before the election in November, Clinton was predicted to 
receive a very slight majority of the two-party vote: about 50.1%. In fact, Clinton won more handily: 
his share of the two-party vote was 54.65%.

 

10.5 Trends and Seasonality
Characterizing Trending Time Series

Many economic time series have a common tendency of growing over time. We must 
recognize that some series contain a time trend in order to draw causal inference using 
time series data. Ignoring the fact that two sequences are trending in the same or oppo-
site directions can lead us to falsely conclude that changes in one variable are actually 
caused by changes in another variable. In many cases, two time series processes appear 
to be correlated only because they are both trending over time for reasons related to other 
unobserved factors.
 Figure 10.2 contains a plot of labor productivity (output per hour of work) in the 
United States for the years 1947 through 1987. This series displays a clear upward trend, 
which reflects the fact that workers have become more productive over time.
 Other series, at least over certain time periods, have clear downward trends. Because 
positive trends are more common, we will focus on those during our discussion.
 What kind of statistical models adequately capture trending behavior? One popular 
formulation is to write the series {y

t
} as

 y
t
 � �

0
 � �

1
t � e

t
, t � 1, 2, …, 10.24

F IGURE  10 . 2

Output per labor hour in the United States during the years 1947�1987; 1977 � 100.
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where, in the simplest case, {e
t
} is an independent, identically distributed (i.i.d.) sequence 

with E(e
t
) � 0, Var(e

t
) � � 2   e  . Note how the parameter �

1 
multiplies time, t, resulting in 

a linear time trend. Interpreting �
1
 in (10.24) is simple: holding all other factors (those 

in e
t
) fixed, �

1 
measures the change in y

t
 from one period to the next due to the passage of 

time: when �e
t
 � 0,

 ∆y
t
 � y

t
 � y

t�1
 � �

1
.

 Another way to think about a sequence that has a linear time trend is that its average 
value is a linear function of time:

 E(y
t
) � �

0
 � �

1
t. 10.25

If �
1
 � 0, then, on average, y

t
 is growing over time and therefore has an upward trend. If 

�
1
 � 0, then y

t
 has a downward trend. The values of y

t
 do not fall exactly on the line in 

(10.25) due to randomness, but the expected values are on the line. Unlike the mean, the 
variance of y

t
 is constant across time: Var(y

t
) � Var(e

t
) � � 2   e  .

 If {e
t
} is an i.i.d. sequence, then {y

t
} 

is an independent, though not identi-
cally, distributed sequence. A more 
realistic characterization of trending 
time series allows {e

t
} to be correlated 

over time, but this does not change the 
flavor of a linear time trend. In fact, 
what is important for regression analy-
sis under the classical linear model assumptions is that E(y

t
) is linear in t. When we cover 

large sample properties of OLS in Chapter 11, we will have to discuss how much temporal 
correlation in {e

t
} is allowed.

 Many economic time series are better approximated by an exponential trend, which 
follows when a series has the same average growth rate from period to period. Figure 10.3 
plots data on annual nominal imports for the United States during the years 1948 through 
1995 (ERP 1997, Table B-101).
 In the early years, we see that the change in imports over each year is relatively small, 
whereas the change increases as time passes. This is consistent with a constant average 
growth rate: the percentage change is roughly the same in each period.
 In practice, an exponential trend in a time series is captured by modeling the natural 
logarithm of the series as a linear trend (assuming that y

t
 � 0):

 log(y
t
) � �

0
 � �

1
t � e

t
, t � 1, 2, …. 10.26

Exponentiating shows that y
t
 itself has an exponential trend: y

t
 � exp(�

0
 � �

1
t � e

t
). 

Because we will want to use exponentially trending time series in linear regression models, 
(10.26) turns out to be the most convenient way for representing such series.
 How do we interpret �

1
 in (10.26)? Remember that, for small changes, ∆log(y

t
) � 

log(y
t
) � log(y

t�1
) is approximately the proportionate change in y

t
:

 ∆log( y
t
) � (y

t
 � y

t�1
)/y

t�1
. 10.27

Q u e s t i o n  1 0 . 4
In Example 10.4, we used the general fertility rate as the depen-
dent variable in a finite distributed lag model. From 1950 through 
the mid-1980s, the gfr has a clear downward trend. Can a linear 
trend with �1 � 0 be realistic for all future time periods? Explain.
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The right-hand side of (10.27) is also called the growth rate in y from period t � 1 to 
period t. To turn the growth rate into a percentage, we simply multiply by 100. If y

t
 follows 

(10.26), then, taking changes and setting ∆e
t
 � 0,

 ∆log(y
t
) � �

1
, for all t. 10.28

In other words, �
1
 is approximately the average per period growth rate in y

t
. For example, 

if t denotes year and �
1
 � .027, then y

t
 grows about 2.7% per year on average.

 Although linear and exponential trends are the most common, time trends can be more 
complicated. For example, instead of the linear trend model in (10.24), we might have a 
quadratic time trend:

 y
t
 � �

0
 � �

1
t � �

2
t2 � e

t
. 10.29

If �
1
 and �

2
 are positive, then the slope of the trend is increasing, as is easily seen by 

computing the approximate slope (holding e
t
 fixed):

   
∆y

t ___ 
∆t

   � �
1
 � 2�

2
t. 10.30

[If you are familiar with calculus, you recognize the right-hand side of (10.30) as the 
derivative of �

0
 � �

1
t � �

2
t2 with respect to t.] If �

1
 � 0, but �

2
 � 0, the trend has a hump 

shape. This may not be a very good description of certain trending series because it requires 
an increasing trend to be followed, eventually, by a decreasing trend. Nevertheless, over a 
given time span, it can be a flexible way of modeling time series that have more compli-
cated trends than either (10.24) or (10.26).

F I GURE  10 . 3

Nominal U.S. imports during the years 1948�1995 (in billions of U.S. dollars).
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Using Trending Variables in Regression Analysis

Accounting for explained or explanatory variables that are trending is fairly straightfor-
ward in regression analysis. First, nothing about trending variables necessarily violates the 
classical linear model assumptions TS.1 through TS.6. However, we must be careful to 
allow for the fact that unobserved, trending factors that affect y

t
 might also be correlated 

with the explanatory variables. If we ignore this possibility, we may find a spurious rela-
tionship between y

t
 and one or more explanatory variables. The phenomenon of finding a 

relationship between two or more trending variables simply because each is growing over 
time is an example of a spurious regression problem. Fortunately, adding a time trend 
eliminates this problem.
 For concreteness, consider a model where two observed factors, x

t1
 and x

t2
, affect y

t
. 

In addition, there are unobserved factors that are systematically growing or shrinking over 
time. A model that captures this is

 y
t
 � �

0
 � �

1
x

t1
 � �

2
x

t2
 � �

3
t � u

t
. 10.31

This fits into the multiple linear regression framework with x
t3
 � t. Allowing for the 

trend in this equation explicitly recognizes that y
t
 may be growing (�

3
 � 0) or shrink-

ing (�
3
 � 0) over time for reasons essentially unrelated to x

t1
 and x

t2
. If (10.31) satisfies 

assumptions TS.1, TS.2, and TS.3, then omitting t from the regression and regressing 
y

t
 on x

t1
, x

t2
 will generally yield biased estimators of �

1
 and �

2
: we have effectively omitted 

an important variable, t, from the regression. This is especially true if x
t1
 and x

t2
 are them-

selves trending, because they can then be highly correlated with t. The next example shows 
how omitting a time trend can result in spurious regression.

E x a m p l e  1 0 . 7

[Housing Investment and Prices]

The data in HSEINV.RAW are annual observations on housing investment and a housing price index 
in the United States for 1947 through 1988. Let invpc denote real per capita housing investment 
(in thousands of dollars) and let price denote a housing price index (equal to 1 in 1982). A simple 
regression in constant elasticity form, which can be thought of as a supply equation for housing 
stock, gives

 2log(invpc) � �.550 � 1.241 log( price)

 (.043) (.382) 10.32

 n � 42, R2 � .208,  
-

 R 2 � .189.

The elasticity of per capita investment with respect to price is very large and statistically significant; 
it is not statistically different from one. We must be careful here. Both invpc and price have upward 
trends. In particular, if we regress log(invpc) on t, we obtain a coefficient on the trend equal to .0081 
(standard error � .0018); the regression of log(price) on t yields a trend coefficient equal to .0044 
(standard error � .0004). Although the standard errors on the trend coefficients are not necessarily 
reliable—these regressions tend to contain substantial serial correlation—the coefficient estimates 
do reveal upward trends.
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 To account for the trending behavior of the variables, we add a time trend:

 2log(invpc) � �.913 � .381 log(price) � .0098 t

 (.136) (.679) (.0035) 10.33

 n � 42, R2 � .341,  
-

 R 2 � .307.

The story is much different now: the estimated price elasticity is negative and not statistically differ-
ent from zero. The time trend is statistically significant, and its coefficient implies an approximate 
1% increase in invpc per year, on average. From this analysis, we cannot conclude that real per capita 
housing investment is influenced at all by price. There are other factors, captured in the time trend, 
that affect invpc, but we have not modeled these. The results in (10.32) show a spurious relationship 
between invpc and price due to the fact that price is also trending upward over time.

 
 In some cases, adding a time trend can make a key explanatory variable more signifi-
cant. This can happen if the dependent and independent variables have different kinds of 
trends (say, one upward and one downward), but movement in the independent variable 
about its trend line causes movement in the dependent variable away from its trend line.

E x a m p l e  1 0 . 8

[Fertility Equation]

If we add a linear time trend to the fertility equation (10.18), we obtain

 1gfr
t
 � 111.77 � .279 pe

t
 � 35.59 ww2

t
 � .997 pill

t
 � 1.15 t

 (3.36) (.040) (6.30) (6.626) (.19) 10.34

 n � 72, R2 � .662,  
-

 R 2 � .642.

The coefficient on pe is more than triple the estimate from (10.18), and it is much more statistically 
significant. Interestingly, pill is not significant once an allowance is made for a linear trend. As can 
be seen by the estimate, gfr was falling, on average, over this period, other factors being equal.
 Since the general fertility rate exhibited both upward and downward trends during the period 
from 1913 through 1984, we can see how robust the estimated effect of pe is when we use a quad-
ratic trend:

 1gfr
t
 � 124.09 � .348 pe

t
 � 35.88 ww2

t
 � 10.12 pill

t

 (4.36) (.040) (5.71) (6.34)

 � 2.53 t � .0196 t2 10.35

 (.39) (.0050)

 n � 72, R2 � .727,  
-

 R 2 � .706.

The coefficient on pe is even larger and more statistically significant. Now, pill has the expected 
negative effect and is marginally significant, and both trend terms are statistically significant. The 
quadratic trend is a flexible way to account for the unusual trending behavior of gfr.

 



 Chapter 10   Basic Regression Analysis with Time Series Data 365

 You might be wondering in Example 10.8: Why stop at a quadratic trend? Nothing 
prevents us from adding, say, t3 as an independent variable, and, in fact, this might be 
warranted (see Computer Exercise C10.6). But we have to be careful not to get carried 
away when including trend terms in a model. We want relatively simple trends that cap-
ture broad movements in the dependent variable that are not explained by the independent 
variables in the model. If we include enough polynomial terms in t, then we can track 
any series pretty well. But this offers little help in finding which explanatory variables 
affect y

t
.

A Detrending Interpretation of Regressions 

with a Time Trend

Including a time trend in a regression model creates a nice interpretation in terms of 
detrending the original data series before using them in regression analysis. For concrete-
ness, we focus on model (10.31), but our conclusions are much more general.
 When we regress y

t
 on x

t1
, x

t2
, and t, we obtain the fitted equation

  ̂  y 
t
 �  ̂  � 

0
 �  ̂  � 

1
x

t1
 �  ̂  � 

2
x

t2
 �  ̂  � 

3
t. 10.36

We can extend the results on the partialling out interpretation of OLS that we covered in 
Chapter 3 to show that  ̂  � 

1
 and  ̂  � 

2
 can be obtained as follows.

 (i) Regress each of y
t
, x

t1
, and x

t2
 on a constant and the time trend t and save the 

 residuals, say, ẏ̇
t
, ẋ̇

t1
, ẋ̇

t2
, t � 1, 2, …, n. For example,

 ẏ̇
t
 � y

t
 �  ̂  � 

0
 �  ̂  � 

1
t.

Thus, we can think of ẏ̇
t
 as being linearly detrended. In detrending y

t
, we have estimated 

the model

 y
t
 � �

0
 � �

1
t � e

t

by OLS; the residuals from this regression,  ̂  e 
t
 � ẏ̇

t
, have the time trend removed (at least 

in the sample). A similar interpretation holds for ẋ̇
t1
 and ẋ̇

t2
.

 (ii) Run the regression of

 ẏ̇
t
 on ẋ̇

t1
, ẋ̇

t2
. 10.37

(No intercept is necessary, but including an intercept affects nothing: the intercept will 
be estimated to be zero.) This regression exactly yields  ̂  � 

1 
and  ̂  � 

2
 from (10.36).

 This means that the estimates of primary interest,  ̂  � 
1
 and  ̂  � 

2
, can be interpreted as com-

ing from a regression without a time trend, but where we first detrend the dependent vari-
able and all other independent variables. The same conclusion holds with any number of 
independent variables and if the trend is quadratic or of some other polynomial degree.
 If t is omitted from (10.36), then no detrending occurs, and y

t 
might seem to be related 

to one or more of the x
tj
 simply because each contains a trend; we saw this in Example 10.7. 

If the trend term is statistically significant, and the results change in important ways when 
a time trend is added to a regression, then the initial results without a trend should be 
treated with suspicion.
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 The interpretation of  ̂  � 
1
 and  ̂  � 

2
 shows that it is a good idea to include a trend in the 

regression if any independent variable is trending, even if y
t 
is not. If y

t
 has no noticeable 

trend, but, say, x
t1
 is growing over time, then excluding a trend from the regression may 

make it look as if x
t1
 has no effect on y

t
, even though movements of x

t1
 about its trend may 

affect y
t
. This will be captured if t is included in the regression.

E x a m p l e  1 0 . 9

[Puerto Rican Employment]

When we add a linear trend to equation (10.17), the estimates are

 3log(prepop
t
) � �8.70 � .169 log(mincov

t 
) � 1.06 log(usgnp

t
)

 (1.30) (.044) (0.18)

 � .032 t 10.38

 (.005)

 n � 38, R2 � .847,  
-

 R 2 � .834.

The coefficient on log(usgnp) has changed dramatically: from �.012 and insignificant to 1.06 and 
very significant. The coefficient on the minimum wage has changed only slightly, although the 
standard error is notably smaller, making log(mincov) more significant than before.
 The variable prepop

t
 displays no clear upward or downward trend, but log(usgnp) has an 

upward, linear trend. [A regression of log(usgnp) on t gives an estimate of about .03, so that usgnp is 
growing by about 3% per year over the period.] We can think of the estimate 1.06 as follows: when 
usgnp increases by 1% above its long-run trend, prepop increases by about 1.06%.

 

Computing R-Squared when the 

Dependent Variable Is Trending

R-squareds in time series regressions are often very high, especially compared with typi-
cal R-squareds for cross-sectional data. Does this mean that we learn more about factors 
affecting y from time series data? Not necessarily. On one hand, time series data often 
come in aggregate form (such as average hourly wages in the U.S. economy), and aggre-
gates are often easier to explain than outcomes on individuals, families, or firms, which 
is often the nature of cross-sectional data. But the usual and adjusted R-squareds for 
time series regressions can be artificially high when the dependent variable is trending. 
Remember that R2 is a measure of how large the error variance is relative to the variance 
of y. The formula for the adjusted R-squared shows this directly:

  
-

 R 2 � 1 � ( ̂  �  2   u    /   ̂  �  2   y  ),

where  ̂  �    2   u   is the unbiased estimator of the error variance,  ̂  �    2   y   � SST/(n � 1), and SST �  

∑ 
t�1

  
n
    (y

t
 �  - y )2. Now, estimating the error variance when y

t
 is trending is no problem, pro-

vided a time trend is included in the regression. However, when E(y
t
) follows, say, a linear 

time trend [see (10.24)], SST/(n � 1) is no longer an unbiased or consistent estimator of 
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Var(y
t
). In fact, SST/(n � 1) can substantially overestimate the variance in y

t
, because it 

does not account for the trend in y
t
.

 When the dependent variable satisfies linear, quadratic, or any other polynomial 
trends, it is easy to compute a goodness-of-fit measure that first nets out the effect of any 
time trend on y

t
. The simplest method is to compute the usual R-squared in a regression 

where the dependent variable has already been detrended. For example, if the model is 
(10.31), then we first regress y

t
 on t and obtain the residuals ẏ̇

t
. Then, we regress

 ẏ̇
t
 on x

t1
, x

t2
, and t. 10.39

The R-squared from this regression is

 1 �   SSR _____ 

 ∑ 
t�1

   
n 

    ẏ̇2
t

  , 10.40

where SSR is identical to the sum of squared residuals from (10.36). Since  ∑ 
t�1

  
n
    ẏ̇  2   t   
  

∑ 
t�1

  
n
    (y

t
 �  - y )2 (and usually the inequality is strict), the R-squared from (10.40) is no greater 

than, and usually less than, the R-squared from (10.36). (The sum of squared residuals is 
identical in both regressions.) When y

t
 contains a strong linear time trend, (10.40) can be 

much less than the usual R-squared.
 The R-squared in (10.40) better reflects how well x

t1
 and x

t2
 explain y

t
 because it nets 

out the effect of the time trend. After all, we can always explain a trending variable with 
some sort of trend, but this does not mean we have uncovered any factors that cause move-
ments in y

t
. An adjusted R-squared can also be computed based on (10.40): divide SSR by 

(n � 4) because this is the df in (10.36) and divide  ∑ 
t�1

  
n
    ẏ̇  2   t   by (n � 2), as there are two 

trend parameters estimated in detrending y
t
. In general, SSR is divided by the df in the 

usual regression (that includes any time trends), and  ∑ 
t�1

  
n
    ẏ̇  2   t    is divided by (n� p), where 

p is the number of trend parameters estimated in detrending y
t
. See Wooldridge (1991a) 

for further discussion on computing goodness-of-fit measures with trending variables.

E x a m p l e  1 0 . 1 0

[Housing Investment]

In Example 10.7, we saw that including a linear time trend along with log( price) in the housing 
investment equation had a substantial effect on the price elasticity. But the R-squared from regres-
sion (10.33), taken literally, says that we are “explaining” 34.1% of the variation in log(invpc). This 
is misleading. If we first detrend log(invpc) and regress the detrended variable on log( price) and t, 
the R-squared becomes .008, and the adjusted R-squared is actually negative. Thus, movements in 
log(price) about its trend have virtually no explanatory power for movements in log(invpc) about 
its trend. This is consistent with the fact that the t statistic on log(price) in equation (10.33) is very 
small.

 

 Before leaving this subsection, we must make a final point. In computing the 
R-squared form of an F statistic for testing multiple hypotheses, we just use the usual 
R-squareds without any detrending. Remember, the R-squared form of the F statistic is just 
a computational device, and so the usual formula is always appropriate.
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Seasonality

If a time series is observed at monthly or quarterly intervals (or even weekly or daily), it 
may exhibit seasonality. For example, monthly housing starts in the Midwest are strongly 
influenced by weather. Although weather patterns are somewhat random, we can be sure 
that the weather during January will usually be more inclement than in June, and so hous-
ing starts are generally higher in June than in January. One way to model this phenomenon 
is to allow the expected value of the series, y

t
, to be different in each month. As another 

example, retail sales in the fourth quarter are typically higher than in the previous three 
quarters because of the Christmas holiday. Again, this can be captured by allowing the 
average retail sales to differ over the course of a year. This is in addition to possibly allow-
ing for a trending mean. For example, retail sales in the most recent first quarter were 
higher than retail sales in the fourth quarter from 30 years ago, because retail sales have 
been steadily growing. Nevertheless, if we compare average sales within a typical year, the 
seasonal holiday factor tends to make sales larger in the fourth quarter.
 Even though many monthly and quarterly data series display seasonal patterns, not 
all of them do. For example, there is no noticeable seasonal pattern in monthly interest or 
inflation rates. In addition, series that do display seasonal patterns are often seasonally 
adjusted before they are reported for public use. A seasonally adjusted series is one that, 
in principle, has had the seasonal factors removed from it. Seasonal adjustment can be 
done in a variety of ways, and a careful discussion is beyond the scope of this text. [See 
Harvey (1990) and Hylleberg (1992) for detailed treatments.]
 Seasonal adjustment has become so common that it is not possible to get seasonally 
unadjusted data in many cases. Quarterly U.S. GDP is a leading example. In the annual 
Economic Report of the President, many macroeconomic data sets reported at monthly 
frequencies (at least for the most recent years) and those that display seasonal patterns 
are all seasonally adjusted. The major sources for macroeconomic time series, including 
Citibase, also seasonally adjust many of the series. Thus, the scope for using our own 
seasonal adjustment is often limited.
 Sometimes, we do work with seasonally unadjusted data, and it is useful to know that 
simple methods are available for dealing with seasonality in regression models. Generally, 
we can include a set of seasonal dummy variables to account for seasonality in the 
dependent variable, the independent variables, or both.
 The approach is simple. Suppose that we have monthly data, and we think that sea-
sonal patterns within a year are roughly constant across time. For example, since Christmas 
always comes at the same time of year, we can expect retail sales to be, on average, higher 
in months late in the year than in earlier months. Or, since weather patterns are broadly 
similar across years, housing starts in the Midwest will be higher on average during the 
summer months than the winter months. A general model for monthly data that captures 
these phenomena is

 y
t
 � �

0
 � �

1 
feb

t
 � �

2
mar

t
 � �

3
apr

t
 � … � �

11
dec

t
 �

  10.41 �
1
x

t1
 � … � �

k
x

tk
 � u

t
,

where feb
t
, mar

t
, …, dec

t
 are dummy 

variables indicating whether time period
t corresponds to the appropriate month. 
In this formulation, January is the base 
month, and �

0
 is the intercept for January.

Q u e s t i o n  1 0 . 5
In equation (10.41), what is the intercept for March? Explain 
why seasonal dummy variables satisfy the strict exogeneity 
assumption.



 Chapter 10   Basic Regression Analysis with Time Series Data 369

If there is no seasonality in y
t
, once the x

t j
 have been controlled for, then �

1
 through �

11 
are 

all zero. This is easily tested via an F test.

E x a m p l e  1 0 . 1 1

[Effects of Antidumping Filings]

In Example 10.5, we used monthly data that have not been seasonally adjusted. Therefore, we should 
add seasonal dummy variables to make sure none of the important conclusions changes. It could 
be that the months just before the suit was filed are months where imports are higher or lower, on 
average, than in other months. When we add the 11 monthly dummy variables as in (10.41) and test 
their joint significance, we obtain p-value � .59, and so the seasonal dummies are jointly insignifi-
cant. In addition, nothing important changes in the estimates once statistical significance is taken 
into account. Krupp and Pollard (1996) actually used three dummy variables for the seasons (fall, 
spring, and summer, with winter as the base season), rather than a full set of monthly dummies; the 
outcome is essentially the same.

 

 If the data are quarterly, then we would include dummy variables for three of the four 
quarters, with the omitted category being the base quarter. Sometimes, it is useful to inter-
act seasonal dummies with some of the x

tj
 to allow the effect of x

tj
 on y

t
 to differ across the 

year.
 Just as including a time trend in a regression has the interpretation of initially detrend-
ing the data, including seasonal dummies in a regression can be interpreted as deseason-
alizing the data. For concreteness, consider equation (10.41) with k � 2. The OLS slope 
coefficients  ̂  � 

1
 and  ̂  � 

2
 on x

1
 and x

2
 can be obtained as follows:

 (i) Regress each of y
t
, x

t1
, and x

t2
 on a constant and the monthly dummies, feb

t
, 

mar
t
, …, dec

t
, and save the residuals, say, ẏ̇

t
, ẋ̇

t1
, and ẋ̇

t2
, for all t � 1, 2 …, n. For example,

 ẏ̇
t
 � y

t
 �  ̂  � 

0
 �  ̂  � 

1 
feb

t
 �  ̂  � 

2 
mar

t
 � … �  ̂  � 

11
dec

t
.

This is one method of deseasonalizing a monthly time series. A similar interpretation holds 
for ẋ̇

t1
 and ẋ̇

t2
.

 (ii) Run the regression, without the monthly dummies, of ẏ̇
t
 on ẋ̇

t1
 and ẋ̇

t2 
[ just as in 

(10.37)]. This gives  ̂  � 
1
 and  ̂  � 

2
.

 In some cases, if y
t
 has pronounced seasonality, a better goodness-of-fit measure is an 

R-squared based on the deseasonalized y
t
. This nets out any seasonal effects that are not 

explained by the x
tj
. Specific degrees of freedom adjustments are discussed in Wooldridge 

(1991a).
 Time series exhibiting seasonal patterns can be trending as well, in which case we 
should estimate a regression model with a time trend and seasonal dummy variables. The 
regressions can then be interpreted as regressions using both detrended and deseasonal-
ized series. Goodness-of-fit statistics are discussed in Wooldridge (1991a): essentially, 
we detrend and deseasonalize y

t
 by regressing on both a time trend and seasonal dummies 

before computing R-squared.
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S U M M A R Y

In this chapter, we have covered basic regression analysis with time series data. Under assump-
tions that parallel those for cross-sectional analysis, OLS is unbiased (under TS.1 through 
TS.3), OLS is BLUE (under TS.1 through TS.5), and the usual OLS standard errors, t statistics, 
and F statistics can be used for statistical inference (under TS.1 through TS.6). Because of the 
temporal correlation in most time series data, we must explicitly make assumptions about how 
the errors are related to the explanatory variables in all time periods and about the temporal 
correlation in the errors themselves. The classical linear model assumptions can be pretty 
restrictive for time series applications, but they are a natural starting point. We have applied 
them to both static regression and finite distributed lag models.
 Logarithms and dummy variables are used regularly in time series applications and in event 
studies. We also discussed index numbers and time series measured in terms of nominal and 
real dollars.
 Trends and seasonality can be easily handled in a multiple regression framework by includ-
ing time and seasonal dummy variables in our regression equations. We presented problems 
with the usual R-squared as a goodness-of-fit measure and suggested some simple alternatives 
based on detrending or deseasonalizing.

Classical Linear Model Assumptions 
for Time Series Regression

Following is a summary of the six classical linear model (CLM) assumptions for time series 
regression applications. Assumptions TS.1 through TS.5 are the time series versions of the 
Gauss-Markov assumptions (which implies that OLS is BLUE and has the usual sampling 
variances). We only needed TS.1, TS.2, and TS.3 to establish unbiasedness of OLS. As in the 
case of cross-sectional regression, the normality assumption, TS.6, was used so that we could 
perform exact statistical inference for any sample size.

Assumption TS.1 (Linear in Parameters)

The stochastic process {(x
t1
, x

t2
, …, x

tk
, y

t
): t � 1, 2, …, n} follows the linear model

y
t
 � �

0
 � �

1
x

t1
 � �

2
x

t2
 � … � �

k
x

tk
 � u

t
, 

where {u
t 
: t � 1, 2, …, n} is the sequence of errors or disturbances. Here, n is the number of 

observations (time periods).

Assumption TS.2 (No Perfect Collinearity)

In the sample (and therefore in the underlying time series process), no independent variable is 
constant nor a perfect linear combination of the others. 

Assumption TS.3 (Zero Conditional Mean)

For each t, the expected value of the error u
t
, given the explanatory variables for all time peri-

ods, is zero. Mathematically, E(u
t
�X) � 0, t � 1, 2, …, n.

 Assumption TS.3 replaces MLR.4 for cross-sectional regression, and it also means we 
do not have to make the random sampling assumption MLR.2. Remember, Assumption TS.3 
implies that the error in each time period t is uncorrelated with all explanatory variables in all 
time periods (including, of course, time period t).
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Assumption TS.4 (Homoskedasticity)

Conditional on X, the variance of u
t
 is the same for all t: Var(u

t
�X) � Var(u

t
) � �  2, 

t � 1, 2, …, n.

Assumption TS.5 (No Serial Correlation)

Conditional on X, the errors in two different time periods are uncorrelated: Corr(u
t
, u

s
�X) � 0,

for all t 	 s.
 Recall that we added the no serial correlation, along with the homoskedasticity assump-
tion, to obtain the same variance formulas that we derived for cross-sectional regression under 
random sampling. As we will see in Chapter 12, Assumption TS.5 is often violated in ways that 
can make the usual statistical inference very unreliable.

Assumption TS.6 (Normality)

The errors u
t
 are independent of X and are independently and identically distributed as 

Normal (0, �  2).

K E Y  T E R M S

Autocorrelation
Base Period
Base Value
Contemporaneously 

Exogenous
Deseasonalizing 
Detrending
Event Study
Exponential Trend
Finite Distributed Lag 

(FDL) Model

Growth Rate
Impact Multiplier
Impact Propensity
Index Number
Lag Distribution
Linear Time Trend
Long-Run Elasticity
Long-Run Multiplier
Long-Run Propensity 

(LRP)
Seasonal Dummy Variables

Seasonality
Seasonally Adjusted
Serial Correlation
Short-Run Elasticity
Spurious Regression 

Problem
Static Model
Stochastic Process
Strictly Exogenous
Time Series Process
Time Trend

P R O B L E M S

10.1  Decide if you agree or disagree with each of the following statements and give a brief 
explanation of your decision:

 (i)  Like cross-sectional observations, we can assume that most time series observa-
tions are independently distributed.

 (ii)  The OLS estimator in a time series regression is unbiased under the first three 
Gauss-Markov assumptions.

 (iii)  A trending variable cannot be used as the dependent variable in multiple regres-
sion analysis.

 (iv) Seasonality is not an issue when using annual time series observations.

10.2  Let gGDP
t
 denote the annual percentage change in gross domestic product and let int

t
 

denote a short-term interest rate. Suppose that gGDP
t 
is related to interest rates by
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gGDP
t
 � �

0
 � �

0 
int

t
 � �

1
int

t�1
 � u

t
,

  where u
t
 is uncorrelated with int

t
, int

t�1
, and all other past values of interest rates. 

Suppose that the Federal Reserve follows the policy rule:

int
t
 � �

0
 � �

1
(gGDP

t�1
 � 3) � v

t
,

  where �
1
 � 0. (When last year’s GDP growth is above 3%, the Fed increases interest 

rates to prevent an “overheated” economy.) If v
t
 is uncorrelated with all past values 

of int
t
 and u

t
, argue that int

t
 must be correlated with u

t�1
. (Hint: Lag the first equation 

for one time period and substitute for gGDP
t�1

 in the second equation.) Which Gauss-
Markov assumption does this violate?

10.3 Suppose y
t
 follows a second order FDL model:

y
t
 � �

0
 � �

0
z

t
 � �

1
z

t�1
 � �

2
z

t�2
 � u

t
.

  Let z* denote the equilibrium value of z
t
 and let y* be the equilibrium value of y

t
, such 

that

y* � �
0
 � �

0
z* � �

1
z* � �

2
z*.

  Show that the change in y*, due to a change in z*, equals the long-run propensity times 
the change in z*:

∆y* � LRP�∆z*.

 This gives an alternative way of interpreting the LRP.

10.4  When the three event indicators befile6, affile6, and afdec6 are dropped from equation 
(10.22), we obtain R2 � .281 and  

-
 R 2 � .264. Are the event indicators jointly significant 

at the 10% level?

10.5  Suppose you have quarterly data on new housing starts, interest rates, and real per capita 
income. Specify a model for housing starts that accounts for possible trends and season-
ality in the variables.

10.6  In Example 10.4, we saw that our estimates of the individual lag coefficients in a distrib-
uted lag model were very imprecise. One way to alleviate the multicollinearity problem 
is to assume that the �

j
 follow a relatively simple pattern. For concreteness, consider a 

model with four lags:

y
t
 � �

0
 � �

0
z

t
 � �

1
z

t�1
 � �

2
z

t�2
 � �

3
z

t�3
 � �

4
z

t�4
 � u

t
.

 Now, let us assume that the �
j
 follow a quadratic in the lag, j:

�
j
 � �

0
 � �

1 
j � �

2 
j 2,

  for parameters �
0
, �

1
, and �

2
. This is an example of a polynomial distributed lag (PDL) 

model.
 (i)  Plug the formula for each �

j
 into the distributed lag model and write the model in 

terms of the parameters �
h
, for h � 0,1,2.

 (ii)  Explain the regression you would run to estimate the �
h
.

 (iii)  The polynomial distributed lag model is a restricted version of the general model. 
How many restrictions are imposed? How would you test these? (Hint: Think 
F test.)
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10.7  In Example 10.4, we wrote the model that explicitly contains the long-run propensity, 
�

0
, as

gfr
t
 � �

0
 � �

0 
pe

t
 � �

1
(  pe

t�1
 � pe

t
  ) � �

2
(  pe

t�2
 � pe

t
  ) � u

t
,

  where we omit the other explanatory variables for simplicity. As always with mul-
tiple regression analysis, �

0
 should have a ceteris paribus interpretation. Namely, if 

pe
t
  increases by one (dollar) holding (  pe

t�1
 � pe

t
  ) and (  pe

t�2
 � pe

t
  ) fixed, gfr

t
 should 

change by �
0
.

 (i)  If (  pe
t�1

 � pe
t
  ) and (  pe

t�2
 � pe

t
  ) are held fixed but pe

t
 is increasing, what must be 

true about changes in pe
t�1

 and pe
t�2

?
 (ii)  How does your answer in part (i) help you to interpret �

0
 in the above equation as 

the LRP?

10.8  In the linear model given in equation (10.8), the explanatory variables x
t
 � (x

t1
, ..., x

tk
) 

are said to be sequentially exogenous (sometimes called weakly exogenous) if 

E(u
t
�x

t
, x

t�1
, …, x

1
)

 
�

 
0, t

 
�

 
1, 2, …,

  so that the errors are unpredictable given current and all past values of the explanatory 
variables.

 (i)  Explain why sequential exogeneity is implied by strict exogeneity.
 (ii)  Explain why contemporaneous exogeneity is implied by sequential exogeneity.
 (iii)  Are the OLS estimators generally unbiased under the sequential exogeneity 

assumption? Explain.
 (iv)  Consider a model to explain the annual rate of HIV infections as a distributed lag 

of per capita condom usage for a state, region, or province:

E(HIVrate
t
�pccon

t
, pccont

t�1
, …,) � �

0
 � �

0 
pccon

t
 � �

1 
pccon

t�1 

 � �
2 
pccon

t�2
 � �

3 
pccon

t�3
.

   Explain why this model satisfies the sequential exogeneity assumption. Does it 
seem likely that strict exogeneity holds too?

C O M P U T E R  E X E R C I S E S

C10.1  In October 1979, the Federal Reserve changed its policy of targeting the money sup-
ply and instead began to focus directly on short-term interest rates. Using the data in 
INTDEF.RAW, define a dummy variable equal to 1 for years after 1979. Include this 
dummy in equation (10.15) to see if there is a shift in the interest rate equation after 
1979. What do you conclude?

C10.2 Use the data in BARIUM.RAW for this exercise.
 (i)  Add a linear time trend to equation (10.22). Are any variables, other than the 

trend, statistically significant?
 (ii)  In the equation estimated in part (i), test for joint significance of all variables 

except the time trend. What do you conclude?
 (iii)  Add monthly dummy variables to this equation and test for seasonality. Does 

including the monthly dummies change any other estimates or their standard 
errors in important ways?
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C10.3  Add the variable log( prgnp) to the minimum wage equation in (10.38). Is this variable 
significant? Interpret the coefficient. How does adding log( prgnp) affect the estimated 
minimum wage effect?

C10.4  Use the data in FERTIL3.RAW to verify that the standard error for the LRP in equa-
tion (10.19) is about .030.

C10.5  Use the data in EZANDERS.RAW for this exercise. The data are on monthly unem-
ployment claims in Anderson Township in Indiana, from January 1980 through 
November 1988. In 1984, an enterprise zone (EZ) was located in Anderson (as well 
as other cities in Indiana). [See Papke (1994) for details.]

 (i)  Regress log(uclms) on a linear time trend and 11 monthly dummy variables. 
What was the overall trend in unemployment claims over this period? (Interpret 
the coefficient on the time trend.) Is there evidence of seasonality in unemploy-
ment claims?

 (ii)  Add ez, a dummy variable equal to 1 in the months Anderson had an EZ, to the 
regression in part (i). Does having the enterprise zone seem to decrease unemploy-
ment claims? By how much? [You should use formula (7.10) from Chapter 7.]

 (iii)  What assumptions do you need to make to attribute the effect in part (ii) to the 
creation of an EZ?

C10.6 Use the data in FERTIL3.RAW for this exercise.
 (i)  Regress gfr

t
 on t and t2 and save the residuals. This gives a detrended gfr

t
, 

say, g f
··
t
 .

 (ii)  Regress g f
··
t
 on all of the variables in equation (10.35), including t and t2. 

Compare the R-squared with that from (10.35). What do you conclude?
 (iii)  Reestimate equation (10.35) but add t3 to the equation. Is this additional term 

statistically significant?

C10.7 Use the data set CONSUMP.RAW for this exercise.
 (i)  Estimate a simple regression model relating the growth in real per capita con-

sumption (of nondurables and services) to the growth in real per capita dispos-
able income. Use the change in the logarithms in both cases. Report the results 
in the usual form. Interpret the equation and discuss statistical significance.

 (ii)  Add a lag of the growth in real per capita disposable income to the equation from 
part (i). What do you conclude about adjustment lags in consumption growth?

 (iii)  Add the real interest rate to the equation in part (i). Does it affect consumption 
growth?

C10.8 Use the data in FERTIL3.RAW for this exercise.
 (i)  Add pe

t�3
 and pe

t�4
 to equation (10.19). Test for joint significance of these 

lags.
 (ii)  Find the estimated long-run propensity and its standard error in the model from 

part (i). Compare these with those obtained from equation (10.19).
 (iii)  Estimate the polynomial distributed lag model from Problem 10.6. Find the 

estimated LRP and compare this with what is obtained from the unrestricted 
model.

C10.9  Use the data in VOLAT.RAW for this exercise. The variable rsp500 is the monthly 
return on the Standard & Poor’s 500 stock market index, at an annual rate. (This 
includes price changes as well as dividends.) The variable i3 is the return on  
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three-month T-bills, and pcip is the percentage change in industrial production; these 
are also at an annual rate.

 (i) Consider the equation

rsp500
t
 � �

0
 � �

1
pcip

t
 � �

2
i3

t
 � u

t
.

 What signs do you think �
1
 and �

2
 should have?

 (ii)  Estimate the previous equation by OLS, reporting the results in standard form. 
Interpret the signs and magnitudes of the coefficients.

 (iii)  Which of the variables is statistically significant?
 (iv)  Does your finding from part (iii) imply that the return on the S&P 500 is predict-

able? Explain.

C10.10 Consider the model estimated in (10.15); use the data in INTDEF.RAW.
 (i)  Find the correlation between inf and def over this sample period and comment.
 (ii)  Add a single lag of inf and def to the equation and report the results in the usual 

form.
 (iii)  Compare the estimated LRP for the effect of inflation with that in equa-

tion (10.15). Are they vastly different?
 (iv)  Are the two lags in the model jointly significant at the 5% level?

C10.11  The file TRAFFIC2.RAW contains 108 monthly observations on automobile acci-
dents, traffic laws, and some other variables for California from January 1981 through 
December 1989. Use this data set to answer the following questions.

 (i)  During what month and year did California’s seat belt law take effect? When did 
the highway speed limit increase to 65 miles per hour?

 (ii)  Regress the variable log(totacc) on a linear time trend and 11 monthly dummy 
variables, using January as the base month. Interpret the coefficient estimate on 
the time trend. Would you say there is seasonality in total accidents?

 (iii)  Add to the regression from part (ii) the variables wkends, unem, spdlaw, and 
beltlaw. Discuss the coefficient on the unemployment variable. Does its sign and 
magnitude make sense to you?

 (iv)  In the regression from part (iii), interpret the coefficients on spdlaw and beltlaw. 
Are the estimated effects what you expected? Explain.

 (v)  The variable prcfat is the percentage of accidents resulting in at least one fatality. 
Note that this variable is a percentage, not a proportion. What is the average of 
prcfat over this period? Does the magnitude seem about right?

 (vi)  Run the regression in part (iii) but use prcfat as the dependent variable in place 
of log(totacc). Discuss the estimated effects and significance of the speed and 
seat belt law variables.

C10.12 (i)  Estimate equation (10.2) using all the data in PHILLIPS.RAW and report the 
results in the usual form. How many observations do you have now?

 (ii)  Compare the estimates from part (i) with those in equation (10.14). In particular, 
does adding the extra years help in obtaining an estimated tradeoff between 
inflation and unemployment? Explain.

 (iii)  Now run the regression using only the years 1997 through 2003. How do 
these estimates differ from those in equation (10.14)? Are the estimates using 
the most recent seven years precise enough to draw any firm conclusions? 
Explain.
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 (iv)  Consider a simple regression setup in which we start with n time series observa-
tions and then split them into an early time period and a later time period. In the 
first time period we have n

1
 observations and in the second period n

2
 observa-

tions. Draw on the previous parts of this exercise to evaluate the following state-
ment: “Generally, we can expect the slope estimate using all n observations to 
be roughly equal to a weighted average of the slope estimates on the early and 
later subsamples, where the weights are n

1
/n and n

2
/n, respectively.”

C10.13  Use the data in MINWAGE.RAW for this exercise. In particular, use the employ-
ment and wage series for sector 232 (Men’s and Boy’s Furnishings). The variable 
gwage232 is the monthly growth (change in logs) in the average wage in sector 232, 
gemp232 is the growth in employment in sector 232, gmwage is the growth in the 
federal minimum wage, and gcpi is the growth in the (urban) Consumer Price Index. 

 (i)  Run the regression gwage232 on gmwage, gcpi. Do the sign and magnitude of 
 ̂  � 

gmwage
 make sense to you? Explain. Is gmwage statistically significant?

 (ii)  Add lags 1 through 12 of gmwage to the equation in part (i). Do you think it 
is necessary to include these lags to estimate the long-run effect of minimum 
wage growth on wage growth in sector 232? Explain.

 (iii)  Run the regression gemp232 on gmwage,gcpi. Does minimum wage growth 
appear to have a contemporaneous effect on gemp232?

 (iv)  Add lags 1 through 12 to the employment growth equation. Does growth in the 
minimum wage have a statistically significant effect on employment growth, 
either in the short run or long run? Explain.
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In Chapter 10, we discussed the finite sample properties of OLS for time series data 
under increasingly stronger sets of assumptions. Under the full set of classical lin-
ear model assumptions for time series, TS.1 through TS.6, OLS has exactly the same 

 desirable properties that we derived for cross-sectional data. Likewise, statistical inference 
is carried out in the same way as it was for cross-sectional analysis.
 From our cross-sectional analysis in Chapter 5, we know that there are good reasons 
for studying the large sample properties of OLS. For example, if the error terms are not 
drawn from a normal distribution, then we must rely on the central limit theorem to justify 
the usual OLS test statistics and confidence intervals.
 Large sample analysis is even more important in time series contexts. (This is some-
what ironic given that large time series samples can be difficult to come by; but we often 
have no choice other than to rely on large sample approximations.) In Section 10.3, we 
explained how the strict exogeneity assumption (TS.3) might be violated in static and 
distributed lag models. As we will show in Section 11.2, models with lagged dependent 
variables must violate Assumption TS.3.
 Unfortunately, large sample analysis for time series problems is fraught with many 
more difficulties than it was for cross-sectional analysis. In Chapter 5, we obtained the 
large sample properties of OLS in the context of random sampling. Things are more 
complicated when we allow the observations to be correlated across time. Nevertheless, 
the major limit theorems hold for certain, although not all, time series processes. The key 
is whether the correlation between the variables at different time periods tends to zero 
quickly enough. Time series that have substantial temporal correlation require special 
attention in regression analysis. This chapter will alert you to certain issues pertaining to 
such series in regression analysis.

11.1 Stationary and Weakly Dependent 
Time Series
In this section, we present the key concepts that are needed to apply the usual large sample 
approximations in regression analysis with time series data. The details are not as impor-
tant as a general understanding of the issues.

Further Issues in Using OLS 
with Time Series Data

11C H A P T E R
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Stationary and Nonstationary Time Series

Historically, the notion of a stationary process has played an important role in the analy-
sis of time series. A stationary time series process is one whose probability distributions 
are stable over time in the following sense: if we take any collection of random variables 
in the sequence and then shift that sequence ahead h time periods, the joint probability 
distribution must remain unchanged. A formal definition of stationarity follows.

Stationary Stochastic Process. The stochastic process {xt: t � 1, 2, …} is stationary 
if for every collection of time indices 1 
 t1 � t2 � … � tm, the joint distribution of 
( x  t 1     ,  x  t 2  , …,  x  t m  ) is the same as the joint distribution of ( x  t 1   � h ,  x  t 2  �h, …,  x  t m  �h) for all integers 
h � 1.
 This definition is a little abstract, but its meaning is pretty straightforward. One impli-
cation (by choosing m � 1 and t1 � 1) is that xt has the same distribution as x1 for all t � 2, 
3, …. In other words, the sequence {xt: t � 1, 2, …} is identically distributed. Stationarity 
requires even more. For example, the joint distribution of (x1, x2) (the first two terms in 
the sequence) must be the same as the joint distribution of (xt, xt�1) for any t � 1. Again, 
this places no restrictions on how xt and xt�1 are related to one another; indeed, they may 
be highly correlated. Stationarity does require that the nature of any correlation between 
adjacent terms is the same across all time periods.
 A stochastic process that is not stationary is said to be a nonstationary process. 
Since stationarity is an aspect of the underlying stochastic process and not of the available 
single realization, it can be very difficult to determine whether the data we have collected 
were generated by a stationary process. However, it is easy to spot certain sequences that 
are not stationary. A process with a time trend of the type covered in Section 10.5 is clearly 
nonstationary: at a minimum, its mean changes over time.
 Sometimes, a weaker form of stationarity suffices. If {xt: t � 1, 2, …} has a finite 
second moment, that is, E(xt

2) �  for all t, then the following definition applies.

Covariance Stationary Process. A stochastic process {xt: t � 1, 2, …} with a finite 
second moment [E(xt

2) � ] is covariance stationary if (i) E(xt) is constant; (ii) Var(xt) is 
constant; and (iii) for any t, h � 1, Cov(xt, xt�h) depends only on h and not on t.

 Covariance stationarity focuses only 
on the first two moments of a stochas-
tic process: the mean and variance of 
the process are constant across time, 
and the covariance between x

t
 and xt�h 

depends only on the distance between 
the two terms, h, and not on the location 
of the initial time period, t. It follows 

immediately that the correlation between xt and xt�h also depends only on h.
 If a stationary process has a finite second moment, then it must be covariance station-
ary, but the converse is certainly not true. Sometimes, to emphasize that stationarity is 
a stronger requirement than covariance stationarity, the former is referred to as strict 
 stationarity. Because strict stationarity simplifies the statements of some of our subsequent 
assumptions, “stationarity” for us will always mean the strict form.
 How is stationarity used in time series econometrics? On a technical level, stationarity 
simplifies statements of the law of large numbers and the central limit theorem, although 

Q u e s t i o n  1 1 . 1
Suppose that {yt: t � 1, 2, …} is generated by yt � �0 � �1t � et, 
where �1 	 0, and {et: t � 1, 2, …} is an i.i.d. sequence with mean 
zero and variance �e

2. (i) Is {yt } covariance stationary? (ii) Is yt � E(yt) 
covariance stationary? 
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we will not worry about formal statements in this chapter. On a practical level, if we want 
to understand the relationship between two or more variables using regression analysis, we 
need to assume some sort of stability over time. If we allow the relationship between two 
variables (say, yt and xt) to change arbitrarily in each time period, then we cannot hope to 
learn much about how a change in one variable affects the other variable if we only have 
access to a single time series realization.
 In stating a multiple regression model for time series data, we are assuming a certain 
form of stationarity in that the �j do not change over time. Further, Assumptions TS.4 and 
TS.5 imply that the variance of the error process is constant over time and that the cor-
relation between errors in two adjacent periods is equal to zero, which is clearly constant 
over time.

Weakly Dependent Time Series

Stationarity has to do with the joint distributions of a process as it moves through time. 
A very different concept is that of weak dependence, which places restrictions on how 
strongly related the random variables xt and xt�h can be as the time distance between them, 
h, gets large. The notion of weak dependence is most easily discussed for a stationary 
time series: loosely speaking, a stationary time series process {xt: t � 1, 2, …} is said 
to be weakly dependent if xt and xt�h are “almost independent” as h increases without 
bound. A similar statement holds true if the sequence is nonstationary, but then we must 
assume that the concept of being almost independent does not depend on the starting 
point, t.
 The description of weak dependence given in the previous paragraph is necessarily 
vague. We cannot formally define weak dependence because there is no definition 
that covers all cases of interest. There are many specific forms of weak depen-
dence that are formally defined, but these are well beyond the scope of this text. [See 
White (1984), Hamilton (1994), and Wooldridge (1994b) for advanced treatments of 
these concepts.]
 For our purposes, an intuitive notion of the meaning of weak dependence is sufficient. 
Covariance stationary sequences can be characterized in terms of correlations: a covari-
ance stationary time series is weakly dependent if the correlation between xt and xt�h goes 
to zero “sufficiently quickly” as h → . (Because of covariance stationarity, the correla-
tion does not depend on the starting point, t.) In other words, as the variables get farther 
apart in time, the correlation between them becomes smaller and smaller. Covariance 
stationary sequences where Corr(xt, xt�h) → 0 as h →  are said to be asymptotically 
uncorrelated. Intuitively, this is how we will usually characterize weak dependence. 
Technically, we need to assume that the correlation converges to zero fast enough, but we 
will gloss over this.
 Why is weak dependence important for regression analysis? Essentially, it replaces 
the assumption of random sampling in implying that the law of large numbers (LLN) 
and the central limit theorem (CLT) hold. The most well known central limit theorem for 
time series data requires stationarity and some form of weak dependence: thus, stationary, 
weakly dependent time series are ideal for use in multiple regression analysis. In 
Section 11.2, we will argue that OLS can be justified quite generally by appealing to the 
LLN and the CLT. Time series that are not weakly dependent—examples of which we will 
see in Section 11.3—do not generally satisfy the CLT, which is why their use in multiple 
regression analysis can be tricky.
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 The simplest example of a weakly dependent time series is an independent, identically 
distributed sequence: a sequence that is independent is trivially weakly dependent. A more 
interesting example of a weakly dependent sequence is

 xt � et � �1et�1, t � 1, 2, …,
  11.1

where {et: t � 0, 1, …} is an i.i.d. sequence with zero mean and variance � 2   e  . The process 
{xt} is called a moving average process of order one [MA(1)]: xt is a weighted average 
of et and et�1; in the next period, we drop et�1, and then xt�1 depends on et�1 and et. Setting 
the coefficient of et to 1 in (11.1) is without loss of generality. [In equation (11.1), we use 
x

t
 and e

t
 as generic labels for time series processes. They need have nothing to do with 

the explanatory variables or errors in a time series regression model, although both the 
explanatory variables and errors could be MA(1) processes.]
 Why is an MA(1) process weakly dependent? Adjacent terms in the sequence are cor-
related: because xt�1 � et�1 � �1et, Cov(xt, xt�1) � �1Var(et) � �1� 2   e  . Because Var(xt) � 
(1 � � 2   

1
 )� 2   e  , Corr(xt, xt�1) � �1/(1 � � 2   

1
 ). For example, if �1 � .5, then Corr(xt, xt�1) � .4. 

[The maximum positive correlation occurs when �1 � 1, in which case, Corr(xt, xt�1) � .5.]
However, once we look at variables in the sequence that are two or more time periods 
apart, these variables are uncorrelated because they are independent. For example, xt�2 � 
et�2 � �1et�1 is independent of xt because {et} is independent across t. Due to the identical 
distribution assumption on the et, {xt} in (11.1) is actually stationary. Thus, an MA(1) is a 
stationary, weakly dependent sequence, and the law of large numbers and the central limit 
theorem can be applied to {xt}.
 A more popular example is the process

 yt � �1yt�1 � et, t � 1, 2, …. 11.2

The starting point in the sequence is y0 (at t � 0), and {et: t � 1, 2, …} is an i.i.d. sequence 
with zero mean and variance � 2   e  . We also assume that the et are independent of y0 and that 
E(y0) � 0. This is called an autoregressive process of order one [AR(1)].
 The crucial assumption for weak dependence of an AR(1) process is the stability con-
dition ��1� � 1. Then, we say that {yt} is a stable AR(1) process.
 To see that a stable AR(1) process is asymptotically uncorrelated, it is useful to 
assume that the process is covariance stationary. (In fact, it can generally be shown 
that {yt} is strictly stationary, but the proof is somewhat technical.) Then, we know that 
E(yt) � E(yt�1), and from (11.2) with �1 	 1, this can happen only if E(yt) � 0. Taking 
the variance of (11.2) and using the fact that et and yt�1 are independent (and therefore 
uncorrelated), Var(yt) � �  2   

1
 Var(yt�1) � Var(et), and so, under covariance stationarity, 

we must have � 2   y   � �  2   
1
 �  y

2 � �  2   e  . Since �  2   
1
  � 1 by the stability condition, we can easily 

solve for � 2   y  :

 �   2   y   � �  2   e  /(1 � �  2   
1
 ). 11.3

 Now, we can find the covariance between yt and yt�h for h � 1. Using repeated 
substitution, 
 yt�h � �1yt�h�1 � et�h � �1

( �1yt�h�2 � et�h�1
) � et�h

 � �  2   
1
 yt�h�2 � �1et�h�1 � et�h � …

 � �  h   
1
 yt � �1

h–1et�1 � … � �1et�h�1 � et�h
.
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Because E(yt) � 0 for all t, we can multiply this last equation by yt and take expectations 
to obtain Cov(yt, yt�h). Using the fact that et�j is uncorrelated with yt for all j � 1 gives

 Cov(yt, yt�h) � E(ytyt�h) � � h   
1
 E(yt

2) � �1
h–1E(ytet�1) � … � E(ytet�h)

 � � h   
1
 E(y 2   t

  ) � � h   
1
 � 2   y  .

Because �y is the standard deviation of both yt and yt�h, we can easily find the correlation 
between yt and yt�h for any h � 1:

 Corr(yt, yt�h) � Cov(yt, yt�h)/(�y�y) � � h   
1
 . 11.4

In particular, Corr(yt, yt�1) � �1, so �1 is the correlation coefficient between any two adja-
cent terms in the sequence.
 Equation (11.4) is important because it shows that, although yt and yt�h are correlated for 
any h � 1, this correlation gets very small for large h: because ��1� � 1, � h   

1
  → 0 as h → . 

Even when �1 is large—say, .9, which implies a very high, positive correlation between 
adjacent terms—the correlation between yt and yt�h tends to zero fairly rapidly. For exam-
ple, Corr(yt, yt�5) � .591, Corr(yt, yt�10) � .349, and Corr(yt, yt�20) � .122. If t indexes 
year, this means that the correlation between the outcome of two y that are 20 years apart 
is about .122. When �1 is smaller, the correlation dies out much more quickly. (You might 
try �1 � .5 to verify this.)
 This analysis heuristically demonstrates that a stable AR(1) process is weakly  dependent. 
The AR(1) model is especially important in multiple regression analysis with time series 
data. We will cover additional applications in Chapter 12 and the use of it for forecasting in 
Chapter 18.
 There are many other types of weakly dependent time series, including hybrids of 
autoregressive and moving average processes. But the previous examples work well for 
our purposes.
 Before ending this section, we must emphasize one point that often causes confusion 
in time series econometrics. A trending series, though certainly nonstationary, can be 
weakly dependent. In fact, in the simple linear time trend model in Chapter 10 [see equa-
tion (10.24)], the series {yt} was actually independent. A series that is stationary about 
its time trend, as well as weakly dependent, is often called a trend-stationary process. 
(Notice that the name is not completely descriptive because we assume weak depen-
dence along with stationarity.) Such processes can be used in regression analysis just as in 
Chapter 10, provided appropriate time trends are included in the model.

11.2 Asymptotic Properties of OLS
In Chapter 10, we saw some cases in which the classical linear model assumptions 
are not satisfied for certain time series problems. In such cases, we must appeal to 
large sample properties of OLS, just as with cross-sectional analysis. In this section, 
we state the assumptions and main results that justify OLS more generally. The proofs 
of the theorems in this chapter are somewhat difficult and therefore omitted. See 
Wooldridge (1994b).
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Assumption TS.1�   (Linearity and Weak Dependence) 

We assume the model is exactly as in Assumption TS.1, but now we add the assumption that 
{(xt, yt): t � 1, 2, …} is stationary and weakly dependent. In particular, the law of large numbers 
and the central limit theorem can be applied to sample averages.

The linear in parameters requirement again means that we can write the model as

 yt � �0 � �1xt1 � … � �k xt  k � ut    ,  11.5

where the �j are the parameters to be estimated. Unlike in Chapter 10, the xt j can include 
lags of the dependent variable. As usual, lags of explanatory variables are also allowed.
 We have included stationarity in Assumption TS.1' for convenience in stating and 
interpreting assumptions. If we were carefully working through the asymptotic proper-
ties of OLS, as we do in Appendix E, stationarity would also simplify those derivations. 
But stationarity is not at all critical for OLS to have its standard asymptotic properties. 
(As mentioned in Section 11.1, by assuming the �j are constant across time, we are 
already assuming some form of stability in the distributions over time.) The important 
extra restriction in Assumption TS.1' as compared with Assumption TS.1 is the weak 
dependence assumption. In Section 11.1, we spent a fair amount of time discussing weak 
dependence because it is by no means an innocuous assumption. In the next section, we 
will present time series processes that clearly violate the weak dependence assumption and 
also discuss the use of such processes in multiple regression models.
 Naturally, we still rule out perfect collinearity.

Assumption TS.2�    (No Perfect Collinearity)

Same as Assumption TS.2.

Assumption TS.3�    (Zero Conditional Mean)

The explanatory variables xt � (xt1, xt 2, ..., xt k) are contemporaneously exogenous as in 
equation (10.10): E(ut�xt) � 0.

This is the most natural assumption concerning the relationship between ut and the explan-
atory variables. It is much weaker than Assumption TS.3 because it puts no restrictions on 
how ut is related to the explanatory variables in other time periods. We will see examples 
that satisfy TS.3' shortly. By stationarity, if contemporaneous exogeneity holds for one 
time period, it holds for them all. Relaxing stationarity would simply require us to assume 
the condition holds for all t � 1, 2, ….
 For certain purposes, it is useful to know that the following consistency result only 
requires ut to have zero unconditional mean and to be uncorrelated with each xt j:

 E(ut) � 0, Cov(xt j , ut) � 0, j � 1, …, k. 11.6

We will work mostly with the zero conditional mean assumption because it leads to the 
most straightforward asymptotic analysis.
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Theorem 11.1   (Consistency of OLS)

Under TS.1�, TS.2�, and TS.3�, the OLS estimators are consistent: plim  ̂  � j � �j, j � 0, 1, …, k.

 There are some key practical differences between Theorems 10.1 and 11.1. First, in 
Theorem 11.1, we conclude that the OLS estimators are consistent, but not necessarily 
unbiased. Second, in Theorem 11.1, we have weakened the sense in which the explana-
tory variables must be exogenous, but weak dependence is required in the underlying time 
series. Weak dependence is also crucial in obtaining approximate distributional results, 
which we cover later.

E x a m p l e  1 1 . 1

[Static Model]

Consider a static model with two explanatory variables:

 yt � �0 � �1zt1 � �2zt 2 � ut. 11.7

Under weak dependence, the condition sufficient for consistency of OLS is

 E(ut�zt1, z t2) � 0. 11.8

This rules out omitted variables that are in ut and are correlated with either zt1 or zt 2. Also, no func-
tion of zt1 or zt2 can be correlated with ut, and so Assumption TS.3' rules out misspecified functional 
form, just as in the cross-sectional case. Other problems, such as measurement error in the variables 
zt1 or zt2, can cause (11.8) to fail.
 Importantly, Assumption TS.3' does not rule out correlation between, say, ut�1 and zt1. This type 
of correlation could arise if zt1 is related to past yt�1, such as

 zt1 � �0 � �1yt�1 � vt. 11.9

For example, zt1 might be a policy variable, such as monthly percentage change in the money supply, 
and this change depends on last month’s rate of inflation (yt�1). Such a mechanism generally causes 
zt1 and ut�1 to be correlated (as can be seen by plugging in for yt�1). This kind of feedback is allowed 
under Assumption TS.3'.

 

E x a m p l e  1 1 . 2

[Finite Distributed Lag Model]

In the finite distributed lag model, 

 yt � �0 � �0zt � �1zt�1 � �2zt�2 � ut,  11.10

a very natural assumption is that the expected value of ut, given current and all past values of z, 
is zero:

 E(ut�zt, zt�1, zt�2, zt�3, …) � 0. 11.11
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This means that, once zt, zt�1, and zt�2 are included, no further lags of z affect E(yt�zt, zt�1, zt�2, zt�3, …);
if this were not true, we would put further lags into the equation. For example, yt could be the annual 
percentage change in investment and zt a measure of interest rates during year t. When we set xt � 
(zt, zt�1, zt�2), Assumption TS.3' is then satisfied: OLS will be consistent. As in the previous example, 
TS.3' does not rule out feedback from y to future values of z.

 
 The previous two examples do not necessarily require asymptotic theory because the 
explanatory variables could be strictly exogenous. The next example clearly violates the strict 
exogeneity assumption; therefore, we can only appeal to large sample properties of OLS.

E x a m p l e  1 1 . 3

[AR(1) Model]

Consider the AR(1) model, 

 yt � �0 � �1yt�1 � ut,  11.12

where the error ut has a zero expected value, given all past values of y:

 E(ut�yt�1, yt�2, …) � 0. 11.13

Combined, these two equations imply that

 E(yt�yt�1, yt�2, …) � E(yt�yt�1) � �0 � �1yt�1. 11.14

This result is very important. First, it means that, once y lagged one period has been controlled for, 
no further lags of y affect the expected value of yt. (This is where the name “first order” originates.) 
Second, the relationship is assumed to be linear.
 Because xt contains only yt�1, equation (11.13) implies that Assumption TS.3' holds. By contrast, 
the strict exogeneity assumption needed for unbiasedness, Assumption TS.3, does not hold. Since 
the set of explanatory variables for all time periods includes all of the values on y except the last, 
(y0, y1, …, yn�1), Assumption TS.3 requires that, for all t, ut is uncorrelated with each of y0, y1, …, 
yn�1. This cannot be true. In fact, because ut is uncorrelated with yt�1 under (11.13), ut and yt must be 
correlated. In fact, it is easily seen that Cov(yt, ut) � Var(ut) > 0. Therefore, a model with a lagged 
dependent variable cannot satisfy the strict exogeneity assumption TS.3.
 For the weak dependence condition to hold, we must assume that ��1� � 1, as we discussed in 
Section 11.1. If this condition holds, then Theorem 11.1 implies that the OLS estimator from the 
regression of yt on yt�1 produces consistent estimators of �0 and �1. Unfortunately,  ̂  � 1 is biased, 
and this bias can be large if the sample size is small or if �1 is near 1. (For �1 near 1,  ̂  � 1 can have a 
severe downward bias.) In moderate to large samples,  ̂  � 1 should be a good estimator of �1.

 
 When using the standard inference procedures, we need to impose versions of the 
homoskedasticity and no serial correlation assumptions. These are less restrictive than 
their classical linear model counterparts from Chapter 10.

Assumption TS.4'    (Homoskedasticity)

The errors are contemporaneously homoskedastic, that is, Var(ut�xt) � �2.
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Assumption TS.5'    (No Serial Correlation)

For all t 	 s, E(utus�xt , xs ) � 0.

In TS.4', note how we condition only on the explanatory variables at time t (compare to 
TS.4). In TS.5', we condition only on the explanatory variables in the time periods coin-
ciding with ut and us. As stated, this assumption is a little difficult to interpret, but it is the 
right condition for studying the large sample properties of OLS in a variety of time series 
regressions. When considering TS.5', we often ignore the conditioning on xt and xs, and 
we think about whether ut and us are uncorrelated, for all t 	 s.
 Serial correlation is often a problem in static and finite distributed lag regression mod-
els: nothing guarantees that the unobservables ut are uncorrelated over time. Importantly, 
Assumption TS.5' does hold in the AR(1) model stated in equations (11.12) and (11.13). 
Since the explanatory variable at time t is yt�1, we must show that E(utus�yt�1, ys�1) � 0 
for all t 	 s. To see this, suppose that s � t. (The other case follows by symmetry.) 
Then, since us � ys – �0 – �1ys�1, us is a function of y dated before time t. But by (11.13), 
E(ut�us, yt�1, ys�1) � 0, and so E(utus�us,  y t�1, ys�1) � usE(ut�yt�1, ys�1) � 0. By the law of 
iterated expectations (see Appendix B), E(utus�yt�1, ys�1) � 0. This is very important: as 
long as only one lag belongs in (11.12), the errors must be serially uncorrelated. We will 
discuss this feature of dynamic models more generally in Section 11.4.
 We now obtain an asymptotic result that is practically identical to the cross-sectional 
case.

Theorem 11.2   (Asymptotic Normality of OLS)

Under TS.1’ through TS.5’, the OLS estimators are asymptotically normally distributed. Further, 
the usual OLS standard errors, t statistics, F statistics, and LM statistics are asymptotically 
valid.

This theorem provides additional justification for at least some of the examples estimated 
in Chapter 10: even if the classical linear model assumptions do not hold, OLS is still 
consistent, and the usual inference procedures are valid. Of course, this hinges on TS.1' 
through TS.5' being true. In the next section, we discuss ways in which the weak depen-
dence assumption can fail. The problems of serial correlation and heteroskedasticity are 
treated in Chapter 12.

E x a m p l e  1 1 . 4

[Efficient Markets Hypothesis]

We can use asymptotic analysis to test a version of the efficient markets hypothesis (EMH). Let yt be 
the weekly percentage return (from Wednesday close to Wednesday close) on the New York Stock 
Exchange composite index. A strict form of the efficient markets hypothesis states that information 
observable to the market prior to week t should not help to predict the return during week t. If we 
use only past information on y, the EMH is stated as

 E(yt�yt�1, yt�2, …) � E(yt). 11.15
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If (11.15) is false, then we could use information on past weekly returns to predict the current return. 
The EMH presumes that such investment opportunities will be noticed and will disappear almost 
instantaneously.
 One simple way to test (11.15) is to specify the AR(1) model in (11.12) as the alternative model. 
Then, the null hypothesis is easily stated as H0: �1 � 0. Under the null hypothesis, Assumption TS.3' 
is true by (11.15), and, as we discussed earlier, serial correlation is not an issue. The homoskedastic-
ity assumption is Var(yt�yt�1) � Var(yt) � � 2, which we just assume is true for now. Under the null 
hypothesis, stock returns are serially uncorrelated, so we can safely assume that they are weakly 
dependent. Then, Theorem 11.2 says we can use the usual OLS t statistic for  ̂  � 1 to test H0: �1 � 0 
against H1: �1 	 0.
 The weekly returns in NYSE.RAW are computed using data from January 1976 through 
March 1989. In the rare case that Wednesday was a holiday, the close at the next trading day was 
used. The average weekly return over this period was .196 in percentage form, with the largest 
weekly return being 8.45% and the smallest being �15.32% (during the stock market crash of 
October 1987). Estimation of the AR(1) model gives

 2returnt � .180 � .059 returnt�1

  (.081) (.038) 11.16

 n � 689, R2 � .0035,  
-

 R 2 � .0020.

The t statistic for the coefficient on returnt�1 is about 1.55, and so H0: �1 � 0 cannot be rejected 
against the two-sided alternative, even at the 10% significance level. The estimate does suggest a 
slight positive correlation in the NYSE return from one week to the next, but it is not strong enough 
to warrant rejection of the efficient markets hypothesis.

 
 In the previous example, using an AR(1) model to test the EMH might not detect cor-
relation between weekly returns that are more than one week apart. It is easy to estimate 
models with more than one lag. For example, an autoregressive model of order two, or 
AR(2) model, is

 yt � �0 � �1yt�1 � �2yt�2 � ut

 E(ut�yt�1, yt�2, …) � 0. 
11.17

There are stability conditions on �1 and �2 that are needed to ensure that the AR(2) process 
is weakly dependent, but this is not an issue here because the null hypothesis states that 
the EMH holds:

 H0: �1 � �2 � 0. 11.18

 If we add the homoskedasticity assumption Var(ut�yt�1, yt�2
) � � 2, we can use a stan-

dard F statistic to test (11.18). If we estimate an AR(2) model for returnt, we obtain

 2returnt � .186 � .060 returnt�1 � .038 returnt�2

  (.081) (.038) (.038)

 n � 688, R2 � .0048,  
-

 R 2 � .0019
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(where we lose one more observation because of the additional lag in the equation). The 
two lags are individually insignificant at the 10% level. They are also jointly insignificant: 
using R2 � .0048, the F statistic is approximately F � 1.65; the p-value for this F statistic 
(with 2 and 685 degrees of freedom) is about .193. Thus, we do not reject (11.18) at even 
the 15% significance level.

E x a m p l e  1 1 . 5

[Expectations Augmented Phillips Curve]

A linear version of the expectations augmented Phillips curve can be written as

inft � inf et � �1(unemt � 
0) � et , 

where 
0 is the natural rate of unemployment and inf et is the expected rate of inflation formed in 
year t � 1. This model assumes that the natural rate is constant, something that macroeconomists 
question. The difference between actual unemployment and the natural rate is called cyclical unem-
ployment, while the difference between actual and expected inflation is called unanticipated infla-
tion. The error term, et, is called a supply shock by macroeconomists. If there is a tradeoff between 
unanticipated inflation and cyclical unemployment, then �1 � 0. [For a detailed discussion of the 
expectations augmented Phillips curve, see Mankiw (1994, Section 11.2).]
 To complete this model, we need to make an assumption about inflationary expectations. Under 
adaptive expectations, the expected value of current inflation depends on recently observed infla-
tion. A particularly simple formulation is that expected inflation this year is last year’s inflation: 
inf et � inft�1. (See Section 18.1 for an alternative formulation of adaptive expectations.) Under this 
assumption, we can write

 inft � inft�1 � �0 � �1unemt � et

or

 �inft � �0 � �1unemt � et, 

where �inft � inft � inft�1 and �0 � ��1
0. (�0 is expected to be positive, since �1 � 0 and 
0 � 0.) 
Therefore, under adaptive expectations, the expectations augmented Phillips curve relates the change 
in inflation to the level of unemployment and a supply shock, et. If et is uncorrelated with unemt, as is 
typically assumed, then we can consistently estimate �0 and �1 by OLS. (We do not have to assume 
that, say, future unemployment rates are unaffected by the current supply shock.) We assume that 
TS.1' through TS.5' hold. Using the data through 1996 in PHILLIPS.RAW we estimate

�1inft � 3.03 � .543 unemt

 (1.38) (.230) 11.19

 n � 48, R2 � .108,  
-

 R 2 � .088. 

The tradeoff between cyclical unemployment and unanticipated inflation is pronounced in equa-
tion (11.19): a one-point increase in unem lowers unanticipated inflation by over one-half of a point. 
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The effect is statistically significant (two-sided p-value 
 .023). We can contrast this with the static 
Phillips curve in Example 10.1, where we found a slightly positive relationship between inflation 
and unemployment.
 Because we can write the natural rate as 
0 � �0 /(��1), we can use (11.19) to obtain our own 
estimate of the natural rate:  ̂  
 0 �  ̂  � 0 /(� ̂  � 1) � 3.03/.543 
 5.58. Thus, we estimate the natural rate 
to be about 5.6, which is well within the range suggested by macroeconomists: historically, 5% to 
6% is a common range cited for the natural rate of unemployment. A standard error of this estimate 
is difficult to obtain because we have a nonlinear function of the OLS estimators. Wooldridge 
(2002, Chapter 3) contains the theory for general nonlinear functions. In the current application, the 
standard error is .657, which leads to an asymptotic 95% confidence interval (based on the standard 
normal distribution) of about 4.29 to 6.87 for the natural rate.

 

 Under Assumptions TS.1' through 
TS.5', we can show that the OLS esti-
mators are asymptotically efficient in 
the class of estimators described in 
Theorem 5.3, but we replace the cross-
sectional observation index i with the 
time series index t. Finally, models with 

trending explanatory variables can effectively satisfy Assumptions TS.1' through TS.5', 
provided they are trend stationary. As long as time trends are included in the equations 
when needed, the usual inference procedures are asymptotically valid.

11.3 Using Highly Persistent Time Series 
in Regression Analysis
The previous section shows that, provided the time series we use are weakly dependent, 
usual OLS inference procedures are valid under assumptions weaker than the classical 
linear model assumptions. Unfortunately, many economic time series cannot be character-
ized by weak dependence. Using time series with strong dependence in regression analysis 
poses no problem, if the CLM assumptions in Chapter 10 hold. But the usual inference 
procedures are very susceptible to violation of these assumptions when the data are not 
weakly dependent, because then we cannot appeal to the law of large numbers and the 
central limit theorem. In this section, we provide some examples of highly persistent (or 
strongly dependent) time series and show how they can be transformed for use in regres-
sion analysis.

Highly Persistent Time Series

In the simple AR(1) model (11.2), the assumption ��1� � 1 is crucial for the series to be 
weakly dependent. It turns out that many economic time series are better characterized by 
the AR(1) model with �1 � 1. In this case, we can write

 yt � yt�1 � et , t � 1, 2, …,  11.20

Q u e s t i o n  1 1 . 2
Suppose that expectations are formed as inf et � (1/2)inft�1 � 
(1/2)inft�2. What regression would you run to estimate the expec-
tations augmented Phillips curve?
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where we again assume that {et: t � 1, 2, …} is independent and identically distributed 
with mean zero and variance �e

2. We assume that the initial value, y0, is independent of et 
for all t � 1.
 The process in (11.20) is called a random walk. The name comes from the fact that y 
at time t is obtained by starting at the previous value, yt�1, and adding a zero mean random 
variable that is independent of yt�1. Sometimes, a random walk is defined differently by 
assuming different properties of the innovations, et (such as lack of correlation rather than 
independence), but the current definition suffices for our purposes.
 First, we find the expected value of yt. This is most easily done by using repeated 
substitution to get

yt � et � et�1 � … � e1 � y0.

 Taking the expected value of both sides gives

E(yt) � E(et) � E(et�1) � … � E(e1) � E(y0)

 � E(y0), for all t � 1.

Therefore, the expected value of a random walk does not depend on t. A popular assump-
tion is that y0 � 0—the process begins at zero at time zero—in which case, E(yt) � 0 for 
all t.
 By contrast, the variance of a random walk does change with t. To compute the vari-
ance of a random walk, for simplicity we assume that y0 is nonrandom so that Var(y0) � 0; 
this does not affect any important conclusions. Then, by the i.i.d. assumption for {et}, 

 Var(yt) � Var(et) � Var(et�1) � … � Var(e1) � � e
2t. 11.21

In other words, the variance of a random walk increases as a linear function of time. This 
shows that the process cannot be stationary.
 Even more importantly, a random walk displays highly persistent behavior in the sense 
that the value of y today is important for determining the value of y in the very distant 
future. To see this, write for h periods hence, 

yt�h � et�h � et�h�1 � … � et�1 � yt.

Now, suppose at time t, we want to compute the expected value of yt�h given the current 
value yt. Since the expected value of et�j, given yt , is zero for all j � 1, we have

 E(yt�h�yt) � yt, for all h � 1. 11.22

This means that, no matter how far in the future we look, our best prediction of yt�h is 
today’s value, yt. We can contrast this with the stable AR(1) case, where a similar argu-
ment can be used to show that

E(yt�h�yt) � �1
h yt, for all h � 1.
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Under stability, ��1� � 1, and so E( yt�h�yt) approaches zero as h → : the value of yt 
becomes less and less important, and E( yt�h�yt) gets closer and closer to the unconditional 
expected value, E(yt) � 0.
 When h � 1, equation (11.22) is reminiscent of the adaptive expectations assumption 
we used for the inflation rate in Example 11.5: if inflation follows a random walk, then the 
expected value of inft, given past values of inflation, is simply inft�1. Thus, a random walk 
model for inflation justifies the use of adaptive expectations.
 We can also see that the correlation between yt and yt�h is close to 1 for large t when 
{yt} follows a random walk. If Var(  y0) � 0, it can be shown that

Corr(yt, yt�h) �  �
________

 t/(t � h)   .

Thus, the correlation depends on the starting point, t (so that {yt} is not covariance station-
ary). Further, although for fixed t the correlation tends to zero as h → , it does not do 
so very quickly. In fact, the larger t is, the more slowly the correlation tends to zero as h 
gets large. If we choose h to be something large—say, h � 100—we can always choose 
a large enough t such that the correlation between yt and yt�h is arbitrarily close to one. (If 
h � 100 and we want the correlation to be greater than .95, then t � 1,000 does the trick.) 
Therefore, a random walk does not satisfy the requirement of an asymptotically uncor-
related sequence.
 Figure 11.1 plots two realizations of a random walk with initial value y0 � 0 and
et 	 Normal(0,1). Generally, it is not easy to look at a time series plot and determine 
whether it is a random walk. Next, we will discuss an informal method for making the 
distinction between weakly and highly dependent sequences; we will study formal statisti-
cal tests in Chapter 18.
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F I GURE  11 . 1

Two realizations of the random walk yt � yt�1 � et , with y0 � 0, 
et  � Normal(0,1), and n � 50.
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 A series that is generally thought to be well characterized by a random walk is the three-
month T-bill rate. Annual data are plotted in Figure 11.2 for the years 1948 through 1996.
 A random walk is a special case of what is known as a unit root process. The name 
comes from the fact that �1 � 1 in the AR(1) model. A more general class of unit root pro-
cesses is generated as in (11.20), but {et} is now allowed to be a general, weakly dependent 
series. [For example, {et} could itself follow an MA(1) or a stable AR(1) process.] When 
{et} is not an i.i.d. sequence, the properties of the random walk we derived earlier no 
longer hold. But the key feature of {yt} is preserved: the value of y today is highly cor-
related with y even in the distant future.
 From a policy perspective, it is often important to know whether an economic time 
series is highly persistent or not. Consider the case of gross domestic product in the United 
States. If GDP is asymptotically uncorrelated, then the level of GDP in the coming year 
is at best weakly related to what GDP was, say, 30 years ago. This means a policy that 
affected GDP long ago has very little lasting impact. On the other hand, if GDP is strongly 
dependent, then next year’s GDP can be highly correlated with the GDP from many years 
ago. Then, we should recognize that a policy that causes a discrete change in GDP can 
have long-lasting effects.
 It is extremely important not to confuse trending and highly persistent behaviors. A 
series can be trending but not highly persistent, as we saw in Chapter 10. Further, factors 
such as interest rates, inflation rates, and unemployment rates are thought by many to be 
highly persistent, but they have no obvious upward or downward trend. However, it is 

F I GURE  11 . 2

The U.S. three-month T-bill rate, for the years 1948–1996.
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often the case that a highly persistent series also contains a clear trend. One model that 
leads to this behavior is the random walk with drift:

 yt � �0 � yt�1 � et, t � 1, 2, …,   11.23

where {et: t � 1, 2, …} and y0 satisfy the same properties as in the random walk model. 
What is new is the parameter �0, which is called the drift term. Essentially, to generate yt, the 
constant �0 is added along with the random noise et to the previous value yt�1. We can show 
that the expected value of yt follows a linear time trend by using repeated substitution:

yt � �0t � et � et�1 � … � e1 � y0.

Therefore, if y0 � 0, E( yt) � �0t: the expected value of yt is growing over time if �0 � 0
and shrinking over time if �0 � 0. By reasoning as we did in the pure random walk case, 
we can show that E( yt�h�yt) � �0h � yt, and so the best prediction of yt�h at time t is yt plus 
the drift �0h. The variance of yt is the same as it was in the pure random walk case.
 Figure 11.3 contains a realization of a random walk with drift, where n � 50, y0� 0, 
�0 � 2, and the et are Normal(0, 9) random variables. As can be seen from this graph, yt 
tends to grow over time, but the series does not regularly return to the trend line.
 A random walk with drift is another example of a unit root process, because it is the 
special case �1 � 1 in an AR(1) model with an intercept:

yt � �0 � �1yt�1 � et.

F I GURE  11 . 3

A realization of the random walk with drift, yt � 2 � yt�1 � et, with y0 � 0, et � 
Normal(0, 9), and n � 50. The dashed line is the expected value of yt , E(yt   ) � 2t.
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When �1 � 1 and {et} is any weakly dependent process, we obtain a whole class of highly 
persistent time series processes that also have linearly trending means.

Transformations on Highly Persistent Time Series

Using time series with strong persistence of the type displayed by a unit root process in 
a regression equation can lead to very misleading results if the CLM assumptions are 
violated. We will study the spurious regression problem in more detail in Chapter 18, but 
for now we must be aware of potential problems. Fortunately, simple transformations are 
available that render a unit root process weakly dependent.
 Weakly dependent processes are said to be integrated of order zero, or I(0). 
Practically, this means that nothing needs to be done to such series before using them 
in regression analysis: averages of such sequences already satisfy the standard limit 
theorems. Unit root processes, such as a random walk (with or without drift), are said to 
be integrated of order one, or I(1). This means that the first difference of the process 
is weakly dependent (and often stationary). A time series that is I(1) is often said to 
be a difference-stationary process, although the name is somewhat misleading with 
its emphasis on stationarity after differencing rather than weak dependence in the 
 differences.
 The concept of an I(1) process is easiest to see for a random walk. With {yt} generated 
as in (11.20) for t � 1, 2, …, 

 �yt � yt � yt�1 � et, t � 2, 3, …; 11.24

therefore, the first-differenced series {�yt: t � 2, 3, …} is actually an i.i.d. sequence. More 
generally, if {yt} is generated by (11.24) where {et} is any weakly dependent process, then 
{�yt} is weakly dependent. Thus, when we suspect processes are integrated of order one, 
we often first difference in order to use them in regression analysis; we will see some 
examples later.
 Many time series yt that are strictly positive are such that log( yt) is integrated of order 
one. In this case, we can use the first difference in the logs, �log( yt) � log( yt) – log( yt�1), 
in regression analysis. Alternatively, since

 �log(yt) 
 (yt � yt�1)/yt�1,  11.25

we can use the proportionate or percentage change in yt directly; this is what we did in 
Example 11.4 where, rather than stating the efficient markets hypothesis in terms of the 
stock price, pt, we used the weekly percentage change, returnt � 100[( pt � pt�1)/pt�1].
 Differencing time series before using them in regression analysis has another benefit: it 
removes any linear time trend. This is easily seen by writing a linearly trending variable as

 yt � �0 � �1t � vt, 

where vt has a zero mean. Then, �yt � �1 � �vt, and so E(�yt) � �1 � E(�vt) � �1. In 
other words, E(�yt ) is constant. The same argument works for �log( yt ) when log( yt  ) 
 follows a linear time trend. Therefore, rather than including a time trend in a regression, 
we can instead difference those variables that show obvious trends.
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Deciding Whether a Time Series Is I(1)

Determining whether a particular time series realization is the outcome of an I(1) versus an 
I(0) process can be quite difficult. Statistical tests can be used for this purpose, but these 
are more advanced; we provide an introductory treatment in Chapter 18.
 There are informal methods that provide useful guidance about whether a time series 
process is roughly characterized by weak dependence. A very simple tool is motivated 
by the AR(1) model: if ��1� � 1, then the process is I(0), but it is I(1) if �1 � 1. Earlier, 
we showed that, when the AR(1) process is stable, �1 � Corr( yt, yt�1). Therefore, we can 
estimate �1 from the sample correlation between yt and yt�1. This sample correlation coef-
ficient is called the first order autocorrelation of {yt}; we denote this by  ̂  � 1. By apply-
ing the law of large numbers,  ̂  � 1 can be shown to be consistent for �1 provided ��1� � 1. 
(However,  ̂  � 1 is not an unbiased estimator of �1.)
 We can use the value of  ̂  � 1 to help decide whether the process is I(1) or I(0). 
Unfortunately, because  ̂  � 1 is an estimate, we can never know for sure whether �1 � 1. 
Ideally, we could compute a confidence interval for �1 to see if it excludes the value �1 � 1, 
but this turns out to be rather difficult: the sampling distributions of the estimator of  ̂  � 1 are 
extremely different when �1 is close to one and when �1 is much less than one. (In fact, 
when �1 is close to one,  ̂  � 1 can have a severe downward bias.)
 In Chapter 18, we will show how to test H0: �1 � 1 against H0: �1 � 1. For now, we can 
only use  ̂  � 1 as a rough guide for determining whether a series needs to be differenced. No 
hard and fast rule exists for making this choice. Most economists think that differencing is 
warranted if  ̂  � 1 � .9; some would difference when  ̂  � 1 � .8.

E x a m p l e  1 1 . 6

[Fertility Equation]

In Example 10.4, we explained the general fertility rate, g fr, in terms of the value of the personal 
exemption, pe. The first order autocorrelations for these series are very large:  ̂  � 1�.977 for g fr and  
ˆ � 1 � .964 for pe. These autocorrelations are highly suggestive of unit root behavior, and they raise 
serious questions about our use of the usual OLS t statistics for this example back in Chapter 10. 
Remember, the t statistics only have exact t distributions under the full set of classical linear model 
assumptions. To relax those assumptions in any way and apply asymptotics, we generally need the 
underlying series to be I(0) processes.
 We now estimate the equation using first differences (and drop the dummy variable, for 
simplicity):

 �3g fr � �.785 � .043 �pe

  (.502) (.028) 11.26

 n � 71, R2 � .032,  
-

 R 2 � .018.

Now, an increase in pe is estimated to lower g fr contemporaneously, although the estimate is not 
statistically different from zero at the 5% level. This gives very different results than when we esti-
mated the model in levels, and it casts doubt on our earlier analysis.



 Chapter 11  Further Issues in Using OLS with Time Series Data 395

 If we add two lags of �pe, things improve:

 �3g fr � �.964 � .036 �pe � .014 �pe�1 � .110 �pe�2

  (.468) (.027) (.028) (.027) 11.27

 n � 69, R2 � .233,  
-

 R 2 � .197.

Even though �pe and �pe�1 have negative coefficients, their coefficients are small and jointly 
insignificant (p-value � .28). The second lag is very significant and indicates a positive relationship 
between changes in pe and subsequent changes in g fr two years hence. This makes more sense than 
having a contemporaneous effect. See Computer Exercise C11.5 for further analysis of the equation 
in first differences.

 
 When the series in question has an obvious upward or downward trend, it makes 
more sense to obtain the first order autocorrelation after detrending. If the data are not 
detrended, the autoregressive correlation tends to be overestimated, which biases toward 
finding a unit root in a trending process.

E x a m p l e  1 1 . 7

[Wages and Productivity]

The variable hrwage is average hourly wage in the U.S. economy, and outphr is output per hour. 
One way to estimate the elasticity of hourly wage with respect to output per hour is to estimate the 
equation, 

log(hrwaget) � �0 � �1log(outphrt) � �2t � ut, 

where the time trend is included because log(hrwaget) and log(outphrt) both display clear, upward, 
linear trends. Using the data in EARNS.RAW for the years 1947 through 1987, we obtain

 3log(hrwaget) � �5.33 � 1.64 log(outphrt) � .018 t

  (.37) (.09) (.002) 11.28

 n � 41, R2 � .971,  
-

 R 2 � .970.

(We have reported the usual goodness-of-fit measures here; it would be better to report those based on 
the detrended dependent variable, as in Section 10.5.) The estimated elasticity seems too large: a 1% 
increase in productivity increases real wages by about 1.64%. Because the standard error is so small, 
the 95% confidence interval easily excludes a unit elasticity. U.S. workers would probably have trou-
ble believing that their wages increase by more than 1.5% for every 1% increase in productivity.
 The regression results in (11.28) must be viewed with caution. Even after linearly detrending 
log(hrwage), the first order autocorrelation is .967, and for detrended log(outphr),  ̂  � 1 � .945. These 
suggest that both series have unit roots, so we reestimate the equation in first differences (and we no 
longer need a time trend):

�3log(hrwaget) � �.0036 � .809 �log(outphr)

  (.0042) (.173) 11.29

 n � 40, R2 � .364,  
-

 R 2 � .348.
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Now, a 1% increase in productivity is estimated to increase real wages by about .81%, and the 
estimate is not statistically different from one. The adjusted R-squared shows that the growth in 
output explains about 35% of the growth in real wages. See Computer Exercise C11.2 for a simple 
distributed lag version of the model in first differences.

 
 In the previous two examples, both the dependent and independent variables appear 
to have unit roots. In other cases, we might have a mixture of processes with unit roots 
and those that are weakly dependent (though possibly trending). An example is given in 
Computer Exercise C11.1.

11.4 Dynamically Complete Models 
and the Absence of Serial Correlation
In the AR(1) model in (11.12), we showed that, under assumption (11.13), the errors {ut} 
must be serially uncorrelated in the sense that Assumption TS.5� is satisfied: assuming 
that no serial correlation exists is practically the same thing as assuming that only one lag 
of y appears in E(yt�yt�1, yt�2, …).
 Can we make a similar statement for other regression models? The answer is yes. 
Consider the simple static regression model

 yt � �0 � �1zt � ut,  11.30

where yt and zt are contemporaneously dated. For consistency of OLS, we only need 
E(ut�zt) � 0. Generally, the {ut} will be serially correlated. However, if we assume that

 E(ut�zt, yt�1, zt�1, …) � 0,  11.31

then (as we will show generally later) Assumption TS.5� holds. In particular, the {ut} are 
serially uncorrelated. Naturally, assumption (11.31) implies that z t is contemporaneously 
exogenous, that is, E(ut�zt) � 0.
 To gain insight into the meaning of (11.31), we can write (11.30) and (11.31) equiva-
lently as

 E( yt�zt, yt�1, zt�1, …) � E( yt�zt) � �0 � �1z t,  11.32

where the first equality is the one of current interest. It says that, once z t has been con-
trolled for, no lags of either y or z help to explain current y. This is a strong requirement; 
if it is false, then we can expect the errors to be serially correlated.
 Next, consider a finite distributed lag model with two lags:

 yt � �0 � �1zt � �2zt�1 � �3zt�2 � ut. 11.33

Since we are hoping to capture the lagged effects that z has on y, we would naturally 
assume that (11.33) captures the distributed lag dynamics:

 E( yt�zt, zt�1, zt�2, zt�3, …) � E( yt�zt, zt�1, zt�2); 11.34
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that is, at most two lags of z matter. If (11.31) holds, we can make further statements: 
once we have controlled for z and its two lags, no lags of y or additional lags of z affect 
current y:

 E( yt�zt, yt�1, zt�1, …) � E( yt�zt, zt�1, zt�2). 11.35

Equation (11.35) is more likely than (11.32), but it still rules out lagged y affecting 
current y.
 Next, consider a model with one lag of both y and z:

yt � �0 � �1zt � �2 yt�1 � �3zt�1 � ut.

Since this model includes a lagged dependent variable, (11.31) is a natural assumption, as 
it implies that

E( yt�zt, yt�1, zt�1, yt�2, …) � E( yt�zt, yt�1, zt�1);

in other words, once zt, yt�1, and zt�1 have been controlled for, no further lags of either y 
or z affect current y.
 In the general model

 yt � �0 � �1xt1 � … � �k xtk � ut,  11.36

where the explanatory variables xt � (xt1, …, xtk) may or may not contain lags of y or z, 
(11.31) becomes

 E(ut�xt, yt�1, xt�1, …) � 0.  11.37

Written in terms of yt , 

 E( yt�xt, yt�1, xt�1, …) � E( yt�xt). 11.38

In other words, whatever is in xt, enough lags have been included so that further lags of y 
and the explanatory variables do not matter for explaining yt. When this condition holds, 
we have a dynamically complete model. As we saw earlier, dynamic completeness can 
be a very strong assumption for static and finite distributed lag models.
 Once we start putting lagged y as explanatory variables, we often think that the model 
should be dynamically complete. We will touch on some exceptions to this claim in 
Chapter 18.
 Since (11.37) is equivalent to

 E(ut�xt, ut�1, xt�1, ut�2, …) � 0,  11.39

we can show that a dynamically complete model must satisfy Assumption TS.5'. (This 
derivation is not crucial and can be skipped without loss of continuity.) For concreteness, 
take s � t. Then, by the law of iterated expectations (see Appendix B), 

E(utus�xt, xs) � E[E(utus�xt, xs, us)�xt, xs]

 � E[usE(ut�xt, xs, us)�xt, xs], 
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where the second equality follows from E(utus�xt, xs, us) � usE(ut�xt, xs, us). Now, since 
s � t, (xt, xs, us) is a subset of the conditioning set in (11.39). Therefore, (11.39) implies 
that E(ut�xt, xs, us) � 0, and so 

E(utus�xt, xs) � E(us·0�xt, xs) � 0, 

which says that Assumption TS.5' holds.
 Since specifying a dynamically complete model means that there is no serial cor-
relation, does it follow that all models should be dynamically complete? As we will see 
in Chapter 18, for forecasting purposes, the answer is yes. Some think that all models 
should be dynamically complete and that serial correlation in the errors of a model is a 
sign of misspecification. This stance is too rigid. Sometimes, we really are interested in a 

static model (such as a Phillips curve) 
or a finite distributed lag model (such 
as measuring the long-run percentage 
change in wages given a 1% increase 
in productivity). In the next chapter, we 
will show how to detect and correct for 
serial correlation in such models.

E x a m p l e  1 1 . 8

[Fertility Equation]

In equation (11.27), we estimated a distributed lag model for �g fr on � pe, allowing for two lags 
of �pe. For this model to be dynamically complete in the sense of (11.38), neither lags of �gfr nor 
further lags of �pe should appear in the equation. We can easily see that this is false by adding 
�g fr�1: the coefficient estimate is .300, and its t statistic is 2.84. Thus, the model is not dynamically 
complete in the sense of (11.38).
 What should we make of this? We will postpone an interpretation of general models with lagged 
dependent variables until Chapter 18. But the fact that (11.27) is not dynamically complete suggests 
that there may be serial correlation in the errors. We will see how to test and correct for this in 
Chapter 12.

 
 The notion of dynamic completeness should not be confused with a weaker assumption 
concerning including the appropriate lags in a model. In the model (11.36), the explanatory 
variables xt are said to be sequentially exogenous if

 E(ut�xt, xt�1, …) � E(ut) � 0, t � 1, 2, … .  11.40

As discussed in Problem 10.8, sequential exogeneity is implied by strict exogeneity and 
sequential exogeneity implies contemporaneous exogeneity. Further, because (xt, xt�1, …)
is a subset of (xt, yt�1, xt�1, …), sequential exogeneity is implied by dynamic complete-
ness. If xt contains yt�1, the dynamic completeness and sequential exogeneity are the same 
condition. The key point is that, when xt does not contain yt�1, sequential exogeneity 
allows for the possibility that the dynamics are not complete in the sense of capturing the 
relationship between yt and all past values of y and other explanatory variables. But in 
finite distributed lag models—such as that estimated in equation (11.27)—we may not care 

Q u e s t i o n  1 1 . 3
If (11.33) holds where ut � et � �1et�1 and where {et } is an i.i.d. 
sequence with mean zero and variance �e

2, can equation (11.33) 
be dynamically complete?
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whether past y has predictive power for current y. We are primarily interested in whether 
we have included enough lags of the explanatory variables to capture the distributed lag 
dynamics. For example, if we assume E( yt�zt, zt�1, zt�2, zt�3, …) � E(yt�zt, zt�1, zt�2) � 
�0 � �0zt � �1zt�1 � �2zt�2, then the regressors xt � (zt, zt�1, zt�2) are sequentially  
exogenous because we have assumed that two lags suffice for the distributed lag 
dynamics. But typically the model would not be dynamically complete in the sense that 
E(yt�zt, yt�1, zt�1, yt�2, zt�2, …) � E( yt�zt, zt�1, zt�2), and we may not care. In addition, the 
explanatory variables in an FDL model may or may not be strictly exogenous.

11.5 The Homoskedasticity Assumption 
for Time Series Models
The homoskedasticity assumption for time series regressions, particularly TS.4', looks 
very similar to that for cross-sectional regressions. However, since xt can contain lagged 
y as well as lagged explanatory variables, we briefly discuss the meaning of the homoske-
dasticity assumption for different time series regressions.
 In the simple static model, say, 

 yt � �0 � �1zt � ut,  11.41

Assumption TS.4' requires that

Var(ut�zt) � �2.

Therefore, even though E( yt�zt) is a linear function of z
t
, Var( yt�zt) must be constant. This 

is pretty straightforward.
 In Example 11.4, we saw that, for the AR(1) model in (11.12), the homoskedasticity 
assumption is

Var(ut�yt�1) � Var( yt�yt�1) � �2;

even though E(yt�yt�1) depends on yt�1, Var( yt�yt�1) does not. Thus, the spread in the distri-
bution of yt cannot depend on yt�1.
 Hopefully, the pattern is clear now. If we have the model

yt � �0 � �1z t � �2  yt�1 � �3zt�1 � ut , 

the homoskedasticity assumption is

Var(ut�zt, yt�1, zt�1) � Var(yt�zt, yt�1, zt�1) � �  2, 

so that the variance of ut cannot depend on zt, yt�1, or zt�1 (or some other function of time). 
Generally, whatever explanatory variables appear in the model, we must assume that the 
variance of yt given these explanatory variables is constant. If the model contains lagged y or 
lagged explanatory variables, then we are explicitly ruling out dynamic forms of heteroske-
dasticity (something we study in Chapter 12). But, in a static model, we are only concerned 
with Var( yt�zt). In equation (11.41), no direct restrictions are placed on, say, Var( yt�yt�1).
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S U M M A R Y

In this chapter, we have argued that OLS can be justified using asymptotic analysis, provided 
certain conditions are met. Ideally, the time series processes are stationary and weakly depen-
dent, although stationarity is not crucial. Weak dependence is necessary for applying the stan-
dard large sample results, particularly the central limit theorem.

Processes with deterministic trends that are weakly dependent can be used directly in 
regression analysis, provided time trends are included in the model (as in Section 10.5). A 
similar statement holds for processes with seasonality.

When the time series are highly persistent (they have unit roots), we must exercise extreme 
caution in using them directly in regression models (unless we are convinced the CLM assump-
tions from Chapter 10 hold). An alternative to using the levels is to use the first differences of 
the variables. For most highly persistent economic time series, the first difference is weakly 
dependent. Using first differences changes the nature of the model, but this method is often as 
informative as a model in levels. When data are highly persistent, we usually have more faith 
in first-difference results. In Chapter 18, we will cover some recent, more advanced methods 
for using I(1) variables in multiple regression analysis.

When models have complete dynamics in the sense that no further lags of any variable 
are needed in the equation, we have seen that the errors will be serially uncorrelated. This is 
useful because certain models, such as autoregressive models, are assumed to have complete 
dynamics. In static and distributed lag models, the dynamically complete assumption is often 
false, which generally means the errors will be serially correlated. We will see how to address 
this problem in Chapter 12.

The “Asymptotic” Gauss-Markov Assumptions 
for Time Series Regression

Following is a summary of the five assumptions that we used in this chapter to perform 
large-sample inference for time series regressions. Recall that we introduced this new set 
of assumptions because the time series versions of the classical linear model assumptions 
are often violated, especially the strict exogeneity, no serial correlation, and normality 
assumptions. A key point in this chapter is that some sort of weak dependence is required 
to ensure that the central limit theorem applies. We only used Assumptions TS.1' through 
TS.3' for consistency (not unbiasedness) of OLS. When we add TS.4' and TS.5', we can use 
the usual confidence intervals, t statistics, and F statistics as being approximately valid in 
large samples. Unlike the Gauss-Markov and classical linear model assumptions, there is 
no historically significant name attached to Assumptions TS.1' to TS.5'. Nevertheless, the 
assumptions are the analogs to the Gauss-Markov assumptions that allow us to use standard 
inference. As usual for large-sample analysis, we dispense with the normality assumption 
entirely.

Assumption TS.1' (Linearity and Weak Dependence)

The stochastic process {(xt1, xt2, …, xtk    , yt ): t � 1, 2, …, n} follows the linear model

yt � �0 � �1xt1 � �2xt2 � … � �k     xtk � ut, 

where {ut: t � 1, 2, …, n} is the sequence of errors or disturbances. Here, n is the number 
of observations (time periods). 
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Assumption TS.2� (No Perfect Collinearity)

In the sample (and therefore in the underlying time series process), no independent vari-
able is constant nor a perfect linear combination of the others.

Assumption TS.3� (Zero Conditional Mean)

The explanatory variables are contemporaneously exogenous, that is, E(ut�xt1, …, xtk) � 0. 
Remember, TS.3' is notably weaker than the strict exogeneity assumption TS.3'.

Assumption TS.4� (Homoskedasticity)

The errors are contemporaneously homoskedastic, that is, Var(ut�xt) � � 2, where xt is shorthand 
for (xt1, xt2, …, xtk).

Assumption TS.5 (No Serial Correlation)

For all t 	 s, E(ut, us�xt, xs) � 0.

P R O B L E M S

11.1  Let {xt: t � 1, 2, …} be a covariance stationary process and define �h � Cov(xt, xt�h) for 
h � 0. [Therefore, �0 � Var(xt).] Show that Corr(xt, xt�h) � �h  

/�0.

11.2  Let {et: t � �1, 0, 1, …} be a sequence of independent, identically distributed random 
variables with mean zero and variance one. Define a stochastic process by

xt � et � (1/2)et�1 � (1/2)et�2, t � 1, 2, ….

 (i) Find E(xt) and Var(xt). Do either of these depend on t?
 (ii)  Show that Corr(xt, xt�1) � �1/2 and Corr(xt, xt�2) � 1/3. (Hint: It is easiest to use 

the formula in Problem 11.1.)
 (iii) What is Corr(xt, xt�h) for h � 2?
 (iv) Is {xt} an asymptotically uncorrelated process?

11.3  Suppose that a time series process {yt} is generated by yt � z � et, for all t � 1, 2, …, 
where {et} is an i.i.d. sequence with mean zero and variance �e

2. The random variable z 

Asymptotically Uncorrelated
Autoregressive Process of 

Order One [AR(1)]
Contemporaneously Exogenous
Contemporaneously 

Homoskedastic
Covariance Stationary
Difference-Stationary Process
Dynamically Complete Model

First Difference
First Order Autocorrelation
Highly Persistent
Integrated of Order One [I(1)]
Integrated of Order Zero [I(0)]
Moving Average Process of 

Order One [MA(1)]
Nonstationary Process
Random Walk

Random Walk with Drift
Sequentially Exogenous
Serially Uncorrelated
Stable AR(1) Process
Stationary Process
Strongly Dependent
Trend-Stationary Process
Unit Root Process
Weakly Dependent

K E Y  T E R M S
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does not change over time; it has mean zero and variance � 2   z  . Assume that each et is 
uncorrelated with z.

 (i) Find the expected value and variance of yt. Do your answers depend on t?
 (ii) Find Cov(yt, yt�h) for any t and h. Is {yt} covariance stationary?
 (iii) Use parts (i) and (ii) to show that Corr(yt, yt�h) � � 2   z  /(� 2   z   � � 2   e  ) for all t and h.
 (iv)  Does yt satisfy the intuitive requirement for being asymptotically uncorrelated? 

Explain.

11.4  Let {yt: t � 1, 2, …} follow a random walk, as in (11.20), with y0 � 0. Show that 
Corr(yt, yt�h) �  �

_______
 t/(t � h)   for t � 1, h � 0.

11.5  For the U.S. economy, let gprice denote the monthly growth in the overall price level 
and let gwage be the monthly growth in hourly wages. [These are both obtained as 
differences of logarithms: gprice � �log( price) and gwage � �log(wage).] Using the 
monthly data in WAGEPRC.RAW, we estimate the following distributed lag model:

3gprice � �.00093 � .119 gwage � .097 gwage�1 � .040 gwage�2

 (.00057) (.052) (.039) (.039)

 � .038 gwage�3 � .081 gwage�4 � .107 gwage�5 � .095 gwage�6

  (.039) (.039) (.039) (.039)

 � .104 gwage�7 � .103 gwage�8 � .159 gwage�9 � .110 gwage�10

  (.039) (.039) (.039) (.039)

   � .103 gwage�11 � .016 gwage�12

   (.039) (.052)

 n � 273, R2 � .317,  
-

 R 2 � .283.

 (i)  Sketch the estimated lag distribution. At what lag is the effect of gwage on gprice 
largest? Which lag has the smallest coefficient?

 (ii) For which lags are the t statistics less than two?
 (iii)  What is the estimated long-run propensity? Is it much different than one? Explain 

what the LRP tells us in this example.
 (iv) What regression would you run to obtain the standard error of the LRP directly?
 (v)  How would you test the joint significance of six more lags of gwage? What would 

be the dfs in the F distribution? (Be careful here; you lose six more observations.)

11.6  Let hy6t denote the three-month holding yield (in percent) from buying a six-month 
T-bill at time (t – 1) and selling it at time t (three months hence) as a three-month 
T-bill. Let hy3t�1 be the three-month holding yield from buying a three-month T-bill 
at time (t – 1). At time (t – 1), hy3t�1 is known, whereas hy6t is unknown because 
p3t (the price of three-month T-bills) is unknown at time (t – 1). The expectations 
hypothesis (EH) says that these two different three-month investments should be the 
same, on average. Mathematically, we can write this as a conditional expectation:

E(hy6t�It�1) � hy3t�1, 

  where It�1 denotes all observable information up through time t – 1. This suggests 
 estimating the model

hy6t � �0 � �1hy3t�1 � ut, 
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  and testing H0: �1 � 1. (We can also test H0: �0 � 0, but we often allow for a term 
premium for buying assets with different maturities, so that �0 	 0.)

 (i)  Estimating the previous equation by OLS using the data in INTQRT.RAW (spaced 
every three months) gives

3hy6t � �.058 � 1.104 hy3t�1

  (.070) (.039)

   n � 123, R2 � .866.

   Do you reject H0: �1 � 1 against H0: �1 	 1 at the 1% significance level? Does the 
estimate seem practically different from one?

 (ii)  Another implication of the EH is that no other variables dated as t � 1 or earlier 
should help explain hy6t, once hy3t�1 has been controlled for. Including one lag of 
the spread between six-month and three-month T-bill rates gives

3hy6t � �.123 � 1.053 hy3t�1 � .480 (r6t�1 � r3t�1)

 (.067) (.039) (.109)

 n � 123, R2 � .885.

   Now, is the coefficient on hy3t�1 statistically different from one? Is the lagged 
spread term significant? According to this equation, if, at time t � 1, r6 is above 
r3, should you invest in six-month or three-month T-bills?

 (iii)  The sample correlation between hy3t and hy3t�1 is .914. Why might this raise 
some concerns with the previous analysis?

 (iv) How would you test for seasonality in the equation estimated in part (ii)?

11.7 A partial adjustment model is

yt* � �0 � �1xt � et

 yt � yt�1 � �(yt* � yt�1) � at, 

  where yt* is the desired or optimal level of y, and yt is the actual (observed) level. For 
example, yt* is the desired growth in firm inventories, and xt is growth in firm sales. The 
parameter �1 measures the effect of xt on yt*. The second equation describes how the actual 
y adjusts depending on the relationship between the desired y in time t and the actual y in 
time t � 1. The parameter � measures the speed of adjustment and satisfies 0 � � � 1.

 (i)  Plug the first equation for yt* into the second equation and show that we can 
write

yt � �0 � �1yt�1 � �2xt � ut.

  In particular, find the �j in terms of the �j and � and find ut in terms of et and at. 
Therefore, the partial adjustment model leads to a model with a lagged dependent vari-
able and a contemporaneous x.

 (ii)  If E(et�xt, yt�1, xt�1, …) � E(at�xt, yt�1, xt�1, …) � 0 and all series are weakly depen-
dent, how would you estimate the �j?

 (iii) If  ̂  � 1 � .7 and  ̂  � 2 � .2, what are the estimates of �1 and �?
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11.8 Suppose that the equation

yt � � � �t � �1xt1 � … � �k xtk � ut

 satisfies the sequential exogeneity assumption in equation (11.40).
 (i) Suppose you difference the equation to obtain

�yt � � � �1�xt1 � … � �k �xtk � �ut.

   How come applying OLS on the differenced equation does not generally result in 
consistent estimators of the �j?

 (ii)  What assumption on the explanatory variables in the original equation would 
ensure that OLS on the differences consistently estimates the �j?

 (iii)  Let zt1, …, ztk be a set of explanatory variables dated contemporaneously with yt. If 
we specify the static regression model yt � �0 � �1zt1 � … � �k

z
tk � ut, describe 

what we need to assume for xt � zt to be sequentially exogenous. Do you think the 
assumptions are likely to hold in economic applications?

C O M P U T E R  E X E R C I S E S

C11.1 Use the data in HSEINV.RAW for this exercise.
 (i)  Find the first order autocorrelation in log(invpc). Now, find the autocorrelation 

after linearly detrending log(invpc). Do the same for log( price). Which of the 
two series may have a unit root?

 (ii) Based on your findings in part (i), estimate the equation

log(invpct) � �0 � �1�log(pricet) � �2t � ut

   and report the results in standard form. Interpret the coefficient  ̂  � 1 and determine 
whether it is statistically significant.

 (iii)  Linearly detrend log(invpct) and use the detrended version as the dependent vari-
able in the regression from part (ii) (see Section 10.5). What happens to R2?

 (iv)  Now use �log(invpct) as the dependent variable. How do your results change 
from part (ii)? Is the time trend still significant? Why or why not?

C11.2  In Example 11.7, define the growth in hourly wage and output per hour as the change 
in the natural log: ghrwage � �log(hrwage) and goutphr � �log(outphr). Consider a 
simple extension of the model estimated in (11.29):

ghrwaget � �0 � �1goutphrt � �2goutphrt�1 � ut.

  This allows an increase in productivity growth to have both a current and lagged effect 
on wage growth.

 (i)  Estimate the equation using the data in EARNS.RAW and report the results in 
standard form. Is the lagged value of goutphr statistically significant?

 (ii)  If �1 � �2 � 1, a permanent increase in productivity growth is fully passed on 
in higher wage growth after one year. Test H0: �1 � �2 � 1 against the two-
sided alternative. Remember, one way to do this is to write the equation so that 
� � �1 � �2 appears directly in the model, as in Example 10.4 from Chapter 10.

 (iii) Does goutphrt�2 need to be in the model? Explain.
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C11.3 (i)  In Example 11.4, it may be that the expected value of the return at time t, given 
past returns, is a quadratic function of returnt�1. To check this possibility, use the 
data in NYSE.RAW to estimate

returnt � �0 � �1returnt�1 � �2returnt
2
�1 � ut;

  report the results in standard form.
 (ii)  State and test the null hypothesis that E(returnt�returnt�1) does not depend on 

returnt�1. (Hint: There are two restrictions to test here.) What do you conclude?
 (iii)  Drop returnt

2
�1 from the model, but add the interaction term returnt�1·returnt�2. 

Now test the efficient markets hypothesis.
 (iv)  What do you conclude about predicting weekly stock returns based on past stock 

returns?

C11.4 Use the data in PHILLIPS.RAW for this exercise, but only through 1996.
 (i)  In Example 11.5, we assumed that the natural rate of unemployment is con-

stant. An alternative form of the expectations augmented Phillips curve allows 
the natural rate of unemployment to depend on past levels of unemployment. In 
the simplest case, the natural rate at time t equals unemt�1. If we assume adap-
tive expectations, we obtain a Phillips curve where inflation and unemployment 
are in first differences:

�inf � �0 � �1�unem � u.

   Estimate this model, report the results in the usual form, and discuss the sign, 
size, and statistical significance of  ̂  � 1.

 (ii) Which model fits the data better, (11.19) or the model from part (i)? Explain.

C11.5 (i)  Add a linear time trend to equation (11.27). Is a time trend necessary in the first-
difference equation?

 (ii)  Drop the time trend and add the variables ww2 and pill to (11.27) (do not differ-
ence these dummy variables). Are these variables jointly significant at the 5% 
level?

 (iii)  Using the model from part (ii), estimate the LRP and obtain its standard error. 
Compare this to (10.19), where gfr and pe appeared in levels rather than in first 
differences.

C11.6  Let invent be the real value inventories in the United States during year t, let GDPt 
denote real gross domestic product, and let r3t denote the (ex post) real interest rate 
on three-month T-bills. The ex post real interest rate is (approximately) r3t � i3t – inft, 
where i3t is the rate on three-month T-bills and inft is the annual inflation rate [see 
Mankiw (1994, Section 6.4)]. The change in inventories, �invent, is the inventory 
investment for the year. The accelerator model of inventory investment is

�invent � �0 � �1�GDPt � ut, 

 where �1 � 0. [See, for example, Mankiw (1994), Chapter 17.]
 (i)  Use the data in INVEN.RAW to estimate the accelerator model. Report the results 

in the usual form and interpret the equation. Is  ̂  � 1 statistically greater than zero?
 (ii)  If the real interest rate rises, then the opportunity cost of holding inventories 

rises, and so an increase in the real interest rate should decrease inventories. Add 
the real interest rate to the accelerator model and discuss the results. 
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 (iii)  Does the level of the real interest rate work better than the first difference, 
�r3t?

C11.7  Use CONSUMP.RAW for this exercise. One version of the permanent income 
hypothesis (PIH) of consumption is that the growth in consumption is unpredictable. 
[Another version is that the change in consumption itself is unpredictable; see Mankiw 
(1994, Chapter 15) for discussion of the PIH.] Let gct � log(ct) � log(ct�1) be the 
growth in real per capita consumption (of nondurables and services). Then the PIH 
implies that E(gct�It�1) � E(gct), where It�1 denotes information known at time (t � 1); 
in this case, t denotes a year.

 (i)  Test the PIH by estimating gct � �0 � �1gct�1 � ut. Clearly state the null and 
alternative hypotheses. What do you conclude?

 (ii)  To the regression in part (i), add gyt�1 and i3t�1, where gyt is the growth in real 
per capita disposable income and i3t is the interest rate on three-month T-bills; 
note that each must be lagged in the regression. Are these two additional vari-
ables jointly significant?

C11.8 Use the data in PHILLIPS.RAW for this exercise.
 (i)  Estimate an AR(1) model for the unemployment rate. Use this equation to pre-

dict the unemployment rate for 2004. Compare this with the actual unemploy-
ment rate for 2004. (You can find this information in a recent Economic Report 
of the President.)

 (ii)  Add a lag of inflation to the AR(1) model from part (i). Is inft�1
 statistically 

significant?
 (iii)  Use the equation from part (ii) to predict the unemployment rate for 2004. Is the 

result better or worse than in the model from part (i)?
 (iv)  Use the method from Section 6.4 to construct a 95% prediction interval for the 

2004 unemployment rate. Is the 2004 unemployment rate in the interval?

C11.9  Use the data in TRAFFIC2.RAW for this exercise. Computer Exercise C10.11 previ-
ously asked for an analysis of these data.

 (i)  Compute the first order autocorrelation coefficient for the variable prcfat. Are 
you concerned that prcfat contains a unit root? Do the same for the unemploy-
ment rate.

 (ii)  Estimate a multiple regression model relating the first difference of prcfat, 
�prcfat, to the same variables in part (vi) of Computer Exercise C10.11, except 
you should first difference the unemployment rate, too. Then, include a linear 
time trend, monthly dummy variables, the weekend variable, and the two policy 
variables; do not difference these. Do you find any interesting results?

 (iii)  Comment on the following statement: “We should always first difference any 
time series we suspect of having a unit root before doing multiple regression 
because it is the safe strategy and should give results similar to using the levels.” 
[In answering this, you may want to do the regression from part (vi) of Computer 
Exercise C10.11, if you have not already.]

C11.10  Use all the data in PHILLIPS.RAW to answer this question. You should now use 
56 years of data.

 (i)  Reestimate equation (11.19) and report the results in the usual form. Do the inter-
cept and slope estimates change notably when you add the recent years of data?
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 (ii)  Obtain a new estimate of the natural rate of unemployment. Compare this new 
estimate with that reported in Example 11.5.

 (iii)  Compute the first order autocorrelation for unem. In your opinion, is the root 
close to one?

 (iv)  Use �unem as the explanatory variable instead of unem. Which explanatory vari-
able gives a higher R-squared?

C11.11  Okun’s Law—for example, Mankiw (1994, Chapter 2)—implies the following rela-
tionship between the annual percentage change in real GDP, pcrgdp, and the change 
in the annual unemployment rate, �unem:

pcrgdp � 3 � 2 � �unem.

  If the unemployment rate is stable, real GDP grows at 3% annually. For each per-
centage point increase in the unemployment rate, real GDP grows by two percentage 
points less. (This should not be interpreted in any causal sense; it is more like a statisti-
cal description.)

   To see if the data on the U.S. economy support Okun’s Law, we specify a model 
that allows deviations via an error term, pcrgdpt � �0 � �1�unemt � ut.

 (i)  Use the data in OKUN.RAW to estimate the equation. Do you get exactly 3 for 
the intercept and −2 for the slope? Did you expect to?

 (ii)  Find the t statistic for testing H0: �1 � −2. Do you reject H0 against the two-sided 
alternative at any reasonable significance level?

 (iii)  Find the t statistic for testing H0: �0 � 3. Do you reject H0 at the 5% level against 
the two-sided alternative? Is it a “strong” rejection?

 (iv)  Find the F statistic and p-value for testing H
0
: �

0
 � 3, �

1
 � �2 against the 

 alternative that H
0
 is false. Overall, would you say the data reject or tend to sup-

port Okun’s law?

C11.12  Use the data in MINWAGE.RAW for this exercise, focusing on the wage and employ-
ment series for sector 232 (Men’s and Boys’ Furnishings). The variable gwage232 is 
the monthly growth (change in logs) in the average wage in sector 232; gemp232 is the 
growth in employment in sector 232; gmwage is the growth in the federal minimum 
wage; and gcpi is the growth in the (urban) Consumer Price Index.

 (i)  Find the first order autocorrelation in gwage232. Does this series appear to be 
weakly dependent?

 (ii) Estimate the dynamic model

gwage232t � �0 � �1gwage232t−1 � �2gmwaget � �3gcpit � ut

   by OLS. Holding fixed last month’s growth in wage and the growth in the CPI, 
does an increase in the federal minimum result in a contemporaneous increase in 
gwage232t? Explain.

 (iii)  Now add the lagged growth in employment, gemp232t−1, to the equation in part (ii). 
Is it statistically significant?

 (iv)  Compared with the model without gwage232t−1 and gemp232t−1, does adding the 
two lagged variables have much of an effect on the gmwage coefficient?

 (v)  Run the regression of gmwaget on gwage232t−1 and gemp232t−1, and report the 
R-squared. Comment on how the value of R-squared helps explain your answer 
to part (iv).
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Serial Correlation 
and Heteroskedasticity 
in Time Series Regressions

C H A P T E R 12

In this chapter, we discuss the critical problem of serial correlation in the error terms 
of a multiple regression model. We saw in Chapter 11 that when, in an appropriate 
sense, the dynamics of a model have been completely specified, the errors will not 

be serially correlated. Thus, testing for serial correlation can be used to detect dynamic 
misspecification. Furthermore, static and finite distributed lag models often have serially 
correlated errors even if there is no underlying misspecification of the model. Therefore, it 
is important to know the consequences and remedies for serial correlation for these useful 
classes of models.
 In Section 12.1, we present the properties of OLS when the errors contain serial cor-
relation. In Section 12.2, we demonstrate how to test for serial correlation. We cover tests 
that apply to models with strictly exogenous regressors and tests that are asymptotically 
valid with general regressors, including lagged dependent variables. Section 12.3 explains 
how to correct for serial correlation under the assumption of strictly exogenous explana-
tory variables, while Section 12.4 shows how using differenced data often eliminates 
serial correlation in the errors. Section 12.5 covers more recent advances on how to adjust 
the usual OLS standard errors and test statistics in the presence of very general serial 
 correlation.
 In Chapter 8, we discussed testing and correcting for heteroskedasticity in cross-
sectional applications. In Section 12.6, we show how the methods used in the cross-sectional 
case can be extended to the time series case. The mechanics are essentially the same, but 
there are a few subtleties associated with the temporal correlation in time series observa-
tions that must be addressed. In addition, we briefly touch on the consequences of dynamic 
forms of heteroskedasticity.

12.1 Properties of OLS with Serially 
Correlated Errors
Unbiasedness and Consistency

In Chapter 10, we proved unbiasedness of the OLS estimator under the first three Gauss-
Markov assumptions for time series regressions (TS.1 through TS.3). In particular, 



 Chapter 12   Serial Correlation and Heteroskedasticity in Time Series Regressions 409

Theorem 10.1 assumed nothing about serial correlation in the errors. It follows that, as 
long as the explanatory variables are strictly exogenous, the  ̂  � 

j
 are unbiased, regardless 

of the degree of serial correlation in the errors. This is analogous to the observation that 
heteroskedasticity in the errors does not cause bias in the  ̂  � 

j
.

 In Chapter 11, we relaxed the strict exogeneity assumption to E(u
t
�x

t
) � 0 and showed 

that, when the data are weakly dependent, the  ̂  � 
j
 are still consistent (although not neces-

sarily unbiased). This result did not hinge on any assumption about serial correlation in 
the errors.

Effi ciency and Inference

Because the Gauss-Markov Theorem (Theorem 10.4) requires both homoskedasticity and 
serially uncorrelated errors, OLS is no longer BLUE in the presence of serial correlation. 
Even more importantly, the usual OLS standard errors and test statistics are not valid, even 
asymptotically. We can see this by computing the variance of the OLS estimator under the 
first four Gauss-Markov assumptions and the AR(1) serial correlation model for the error 
terms. More precisely, we assume that

 u
t
 � �u

t�1
 � e

t
, t � 1, 2, …, n 12.1

 �� � � 1, 12.2

where the e
t
 are uncorrelated random variables with mean zero and variance � 2   e  ; recall from 

Chapter 11 that assumption (12.2) is the stability condition.
 We consider the variance of the OLS slope estimator in the simple regression model

y
t
 � �

0
 � �

1
x

t
 � u

t
,

and, just to simplify the formula, we assume that the sample average of the x
t
 is zero 

( - x  � 0). Then, the OLS estimator  ̂  � 
1
 of �

1
 can be written as

  ̂  � 
1
 � �

1
 � SST �1

   x    ∑ 
t�1

   
n

    x
t
u

t
, 12.3

where SST
x
 �  ∑ 

t�1
  

n
    x 2   t  . Now, in computing the variance of   ̂  � 

1
 (conditional on X), we must 

account for the serial correlation in the u
t
:

 Var(  ̂  � 
1
) � SST �2

   x  Var  �  ∑ 
t�1

   
n

    x
t
u

t
 �  

� SST �2
   x    �  ∑ 

t�1

   
n

    x 2   t  Var(u
t
) � 2  ∑ 

t�1

   
n�1

     ∑ 
j�1

   
n�t

     x
t 
x

t�j 
E(u

t
u

t�j
) �  12.4

 � �2/SST
x
 � 2(�2/SST 2  x  )  ∑ 

t�1

   
n�1

     ∑ 
j�1

   
n�t

    � jx
t 
x

t�j
,

where �2 � Var(u
t
) and we have used the fact that E(u

t
u

t�j
) � Cov(u

t
, u

t�j
) � � j�2 

[see equation (11.4)]. The first term in equation (12.4), �2/SST
x
, is the variance of  ̂  � 

1
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when � � 0, which is the familiar OLS variance under the Gauss-Markov assumptions. 
If we ignore the serial correlation and estimate the variance in the usual way, the vari-
ance estimator will usually be biased when � 	 0 because it ignores the second term in 
(12.4). As we will see through later examples, � � 0 is most common, in which case, 
� j � 0 for all j. Further, the independent variables in regression models are often positively 
correlated over time, so that x

t
x

t�j
 is positive for most pairs t and t � j. Therefore, in 

most economic applications, the term  ∑ 
t�1

  n�1    ∑ 
j�1

  
n�t

   
 
� jx

t
x

t�j
 is positive, and so the usual 

OLS variance formula �2/SST
x
 understates the true variance of the OLS estimator. If � is 

large or x
t
 has a high degree of positive serial correlation—a common case—the bias in 

the usual OLS variance estimator can be substantial. We will tend to think the OLS slope 
estimator is more precise than it actually is.
 When � � 0, � j is negative when j is odd and positive when j is even, and so it is 
difficult to determine the sign of  ∑ 

t�1
  n�1    ∑ 

j�1
  

n�t
   
 
� jx

t
x

t�j
. In fact, it is possible that the usual 

OLS variance formula actually overstates the true variance of  ̂  � 
1
. In either case, the usual 

variance estimator will be biased for Var( ̂  � 
1
) in the presence of serial correlation.

 Because the standard error of  ̂  � 
1
 is 

an estimate of the standard deviation 
of  ̂  � 

1
, using the usual OLS standard 

error in the presence of serial correla-
tion is invalid. Therefore, t statistics 
are no longer valid for testing single 
hypotheses. Since a smaller standard 
error means a larger t statistic, the usual 

t statistics will often be too large when � � 0. The usual F and LM statistics for testing 
multiple hypotheses are also invalid.

Goodness-of-Fit

Sometimes, one sees the claim that serial correlation in the errors of a time series regression 
model invalidates our usual goodness-of-fit measures, R-squared, and adjusted R-squared. 
Fortunately, this is not the case, provided the data are stationary and weakly dependent. 
To see why these measures are still valid, recall that we defined the population R-squared 
in a cross-sectional context to be 1 � � 2   u /� 2   y  (see Section 6.3). This definition is still 
appropriate in the context of time series regressions with stationary, weakly dependent 
data: the variances of both the errors and the dependent variable do not change over 
time. By the law of large numbers, R2 and  

-
 R 2 both consistently estimate the population 

R-squared. The argument is essentially the same as in the cross-sectional case in the pres-
ence of heteroskedasticity (see Section 8.1). Because there is never an unbiased estimator 
of the population R-squared, it makes no sense to talk about bias in R2 caused by serial 
correlation. All we can really say is that our goodness-of-fit measures are still consistent 
estimators of the population parameter. This argument does not go through if {y

t
} is an 

I(1) process because Var(y
t
) grows with t; goodness-of-fit does not make much sense in 

this case. As we discussed in Section 10.5, trends in the mean of y
t
, or seasonality, can and 

should be accounted for in computing an R-squared. Other departures from stationarity 
do not cause difficulty in interpreting R2 and  

-
 R 2 in the usual ways.

Q u e s t i o n  1 2 . 1
Suppose that, rather than the AR(1) model, ut follows the MA(1) 
model ut � et � �et�1. Find Var( ̂  � 1) and show that it is different 
from the usual formula if � 	 0.
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Serial Correlation in the Presence 

of Lagged Dependent Variables

Beginners in econometrics are often warned of the dangers of serially correlated errors in 
the presence of lagged dependent variables. Almost every textbook on econometrics con-
tains some form of the statement “OLS is inconsistent in the presence of lagged dependent 
variables and serially correlated errors.” Unfortunately, as a general assertion, this state-
ment is false. There is a version of the statement that is correct, but it is important to be 
very precise.
 To illustrate, suppose that the expected value of y

t
 given y

t�1
 is linear:

 E(y
t
�y

t�1
) � �

0
 � �

1
y

t�1
, 12.5

where we assume stability, � �
1
� � 1. We know we can always write this with an error 

term as

 y
t
 � �

0
 � �

1
y

t�1
 � u

t
, 12.6

 E(u
t
�y

t�1
) � 0. 12.7

By construction, this model satisfies the key zero conditional mean Assumption TS.3� 
for consistency of OLS; therefore, the OLS estimators  ̂  � 

0
 and  ̂  � 

1
 are consistent. It is 

important to see that, without further assumptions, the errors {u
t
} can be serially cor-

related. Condition (12.7) ensures that u
t 
is uncorrelated with y

t�1
, but u

t
 and y

t�2
 could be 

correlated. Then, because u
t�1

 � y
t�1

 � �
0
 � �

1
y

t�2
, the covariance between u

t
 and u

t�1
 is 

��
1
Cov(u

t
, y

t�2
), which is not necessarily zero. Thus, the errors exhibit serial correlation 

and the model contains a lagged dependent variable, but OLS consistently estimates �
0
 and 

�
1
 because these are the parameters in the conditional expectation (12.5). The serial cor-

relation in the errors will cause the usual OLS statistics to be invalid for testing purposes, 
but it will not affect consistency.
 So when is OLS inconsistent if the errors are serially correlated and the regressors 
contain a lagged dependent variable? This happens when we write the model in error form, 
exactly as in (12.6), but then we assume that {u

t
} follows a stable AR(1) model as in (12.1) 

and (12.2), where

 E(e
t
�u

t�1
, u

t�2
, …) � E(e

t
�y

t�1
, y

t�2
, …) � 0. 12.8

Because e
t
 is uncorrelated with y

t�1
 by assumption, Cov(y

t�1
, u

t
) � �Cov(y

t�1
, u

t�1
), which 

is not zero unless � � 0. This causes the OLS estimators of �
0
 and �

1
 from the regression 

of y
t
 on y

t�1
 to be inconsistent.

 We now see that OLS estimation of (12.6), when the errors u
t
 also follow an AR(1) 

model, leads to inconsistent estimators. However, the correctness of this statement makes 
it no less wrongheaded. We have to ask: What would be the point in estimating the param-
eters in (12.6) when the errors follow an AR(1) model? It is difficult to think of cases 
where this would be interesting. At least in (12.5) the parameters tell us the expected value 
of y

t
 given y

t�1
. When we combine (12.6) and (12.1), we see that y

t
 really follows a second 
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order autoregressive model, or AR(2) model. To see this, write u
t�1

 � y
t�1

 � �
0
 � �

1
y

t�2
 

and plug this into u
t
 � �u

t�1
 � e

t
. Then, (12.6) can be rewritten as

 y
t
 � �

0
 � �

1
y

t�1
 � �(y

t�1
 � �

0
 � �

1
y

t�2
) � e

t

 � �
0
(1 � �) � (�

1
 � �)y

t�1
 � ��

1
y

t�2
 � e

t

 � �
0
 � �

1
y

t�1
 � �

2
y

t�2
 � e

t
,

where �
0
 � �

0
(1 � �), �

1
 � �

1
 � �, and �

2
 � ���

1
. Given (12.8), it follows that

 E(y
t
�y

t�1
, y

t�2
, …) � E(y

t
�y

t�1
, y

t�2
) � �

0
 � �

1
y

t�1
 � �

2 
y

t�2
. 12.9

This means that the expected value of y
t
, given all past y, depends on two lags of y. It is 

equation (12.9) that we would be interested in using for any practical purpose, including 
forecasting, as we will see in Chapter 18. We are especially interested in the parameters 
�

j
. Under the appropriate stability conditions for an AR(2) model—which we will cover 

in Section 12.3—OLS estimation of (12.9) produces consistent and asymptotically normal 
estimators of the �

j
.

 The bottom line is that you need a good reason for having both a lagged dependent 
variable in a model and a particular model of serial correlation in the errors. Often, serial 
correlation in the errors of a dynamic model simply indicates that the dynamic regression 
function has not been completely specified: in the previous example, we should add y

t�2
 

to the equation.
 In Chapter 18, we will see examples of models with lagged dependent variables where 
the errors are serially correlated and are also correlated with y

t�1
. But even in these cases, 

the errors do not follow an autoregressive process.

12.2 Testing for Serial Correlation
In this section, we discuss several methods of testing for serial correlation in the error 
terms in the multiple linear regression model

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

t k
 � u

t
.

We first consider the case when the regressors are strictly exogenous. Recall that this 
requires the error, u

t
, to be uncorrelated with the regressors in all time periods (see 

Section 10.3), so, among other things, it rules out models with lagged dependent variables.

A t Test for AR(1) Serial Correlation 

with Strictly Exogenous Regressors

Although there are numerous ways in which the error terms in a multiple regression model 
can be serially correlated, the most popular model—and the simplest to work with—is 
the AR(1) model in equations (12.1) and (12.2). In the previous section, we explained the 
implications of performing OLS when the errors are serially correlated in general, and we 
derived the variance of the OLS slope estimator in a simple regression model with AR(1) 
errors. We now show how to test for the presence of AR(1) serial correlation. The null 
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hypothesis is that there is no serial correlation. Therefore, just as with tests for heteroske-
dasticity, we assume the best and require the data to provide reasonably strong evidence 
that the ideal assumption of no serial correlation is violated.
 We first derive a large-sample test under the assumption that the explanatory variables 
are strictly exogenous: the expected value of u

t
, given the entire history of independent 

variables, is zero. In addition, in (12.1), we must assume that

 E(e
t
�u

t�1
, u

t�2
, …) � 0 12.10

and

 Var(e
t
�u

t�1
) � Var(e

t
) � � 2   e  . 12.11

These are standard assumptions in the AR(1) model (which follow when {e
t
} is an i.i.d. 

sequence), and they allow us to apply the large-sample results from Chapter 11 for 
dynamic regression.
 As with testing for heteroskedasticity, the null hypothesis is that the appropriate Gauss-
Markov assumption is true. In the AR(1) model, the null hypothesis that the errors are 
serially uncorrelated is

 H
0
: � � 0. 12.12

How can we test this hypothesis? If the u
t
 were observed, then, under (12.10) and (12.11), 

we could immediately apply the asymptotic normality results from Theorem 11.2 to the 
dynamic regression model

 u
t
 � �u

t�1
 � e

t
, t � 2, …, n. 12.13

(Under the null hypothesis � � 0, {u
t
} is clearly weakly dependent.) In other words, 

we could estimate � from the regression of u
t
 on u

t�1
, for all t � 2, …, n, without an 

intercept, and use the usual t statistic for  ̂  � . This does not work because the errors u
t
 are 

not observed. Nevertheless, just as with testing for heteroskedasticity, we can replace u
t
 

with the corresponding OLS residual,  ̂  u 
t
. Since  ̂  u 

t
 depends on the OLS estimators  ̂  � 

0
,  ̂  � 

1
, … ,  

ˆ � 
k
, it is not obvious that using  ̂  u 

t
 for u

t
 in the regression has no effect on the distribution 

of the t statistic. Fortunately, it turns out that, because of the strict exogeneity assumption, 
the large-sample distribution of the t statistic is not affected by using the OLS residuals in 
place of the errors. A proof is well beyond the scope of this text, but it follows from the 
work of Wooldridge (1991b).
 We can summarize the asymptotic test for AR(1) serial correlation very simply.

Testing for AR(1) Serial Correlation with Strictly Exogenous Regressors:

 (i) Run the OLS regression of y
t
 on x

t1
, …, x

tk
 and obtain the OLS residuals,  ̂  u 

t
, for 

all t � 1, 2, …, n.
 (ii) Run the regression of

  ̂  u 
t
 on  ̂  u 

t�1
, for all t � 2, …, n, 12.14
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obtaining the coefficient  ̂  �  on  ̂  u 
t�1

 and its t statistic, t ̂  � . (This regression may or may not 
contain an intercept; the t statistic for  ̂  �  will be slightly affected, but it is asymptotically 
valid either way.)
 (iii) Use t ̂  �  to test H

0
: � � 0 against H

1
: � 	 0 in the usual way. (Actually, since 

� � 0 is often expected a priori, the alternative can be H
1
: � � 0.) Typically, we conclude 

that serial correlation is a problem to be dealt with only if H
0
 is rejected at the 5% level. 

As always, it is best to report the p-value for the test.
 In deciding whether serial correlation needs to be addressed, we should remember 
the difference between practical and statistical significance. With a large sample size, it 
is possible to find serial correlation even though  ̂  �  is practically small; when  ̂  �  is close to 
zero, the usual OLS inference procedures will not be far off [see equation (12.4)]. Such 
outcomes are somewhat rare in time series applications because time series data sets are 
usually small.

E x a m p l e  1 2 . 1

[Testing for AR(1) Serial Correlation in the Phillips Curve]

In Chapter 10, we estimated a static Phillips curve that explained the inflation-unemployment trade-
off in the United States (see Example 10.1). In Chapter 11, we studied a particular expectations 
augmented Phillips curve, where we assumed adaptive expectations (see Example 11.5). We now 
test the error term in each equation for serial correlation. Since the expectations augmented curve 
uses ∆inf

t
 � inf

t
 � inf

t�1
 as the dependent variable, we have one fewer observation.

 For the static Phillips curve, the regression in (12.14) yields  ̂  �  � .573, t � 4.93, and p-value � 
.000 (with 48 observations through 1996). This is very strong evidence of positive, first order serial 
correlation. One consequence of this is that the standard errors and t statistics from Chapter 10 are 
not valid. By contrast, the test for AR(1) serial correlation in the expectations augmented curve gives  
ˆ �  � �.036, t � �.287, and p-value � .775 (with 47 observations): there is no evidence of AR(1) 
serial correlation in the expectations augmented Phillips curve.

 Although the test from (12.14) is derived from the AR(1) model, the test can detect 
other kinds of serial correlation. Remember,  ̂  �  is a consistent estimator of the correlation 
between u

t
 and u

t�1
. Any serial correlation that causes adjacent errors to be correlated can 

be picked up by this test. On the other 
hand, it does not detect serial correla-
tion where adjacent errors are uncorre-
lated, Corr(u

t
, u

t�1
) � 0. (For example, 

u
t
 and u

t�2
 could be correlated.)

 In using the usual t statistic from 
(12.14), we must assume that the 

errors in (12.13) satisfy the appropriate homoskedasticity assumption, (12.11). In fact, 
it is easy to make the test robust to heteroskedasticity in e

t
: we simply use the usual, 

 heteroskedasticity-robust t statistic from Chapter 8. For the static Phillips curve in  
Example 12.1, the heteroskedasticity-robust t statistic is 4.03, which is smaller than the 
nonrobust t statistic but still very significant. In Section 12.6, we further discuss heteroske-
dasticity in time series regressions, including its dynamic forms.

Q u e s t i o n  1 2 . 2
How would you use regression (12.14) to construct an approxi-
mate 95% confidence interval for �?



 Chapter 12   Serial Correlation and Heteroskedasticity in Time Series Regressions 415

The Durbin-Watson Test under Classical Assumptions

Another test for AR(1) serial correlation is the Durbin-Watson test. The Durbin-Watson 
(DW) statistic is also based on the OLS residuals:

 DW �    

 ∑ 
t�2

   
n

    ( ̂  u 
t
 �  ̂  u 

t�1
)2

  _____________________ 

  ∑ 
t�1

   
n

     ̂  u  2   t  
     .  12.15

Simple algebra shows that DW and  ̂  �  from (12.14) are closely linked:

 DW � 2(1 �  ̂  � ). 12.16

One reason this relationship is not exact is that  ̂  �  has  ∑ 
t�2

  
n
     ̂  u  2   

t�1
  in its denominator, while 

the DW statistic has the sum of squares of all OLS residuals in its denominator. Even with 
moderate sample sizes, the approximation in (12.16) is often pretty close. Therefore, tests 
based on DW and the t test based on  ̂  �  are conceptually the same.
 Durbin and Watson (1950) derive the distribution of DW (conditional on X), some-
thing that requires the full set of classical linear model assumptions, including normality of 
the error terms. Unfortunately, this distribution depends on the values of the independent 
variables. (It also depends on the sample size, the number of regressors, and whether the 
regression contains an intercept.) Although some econometrics packages tabulate critical 
values and p-values for DW, many do not. In any case, they depend on the full set of CLM 
assumptions.
 Several econometrics texts report upper and lower bounds for the critical values that 
depend on the desired significance level, the alternative hypothesis, the number of obser-
vations, and the number of regressors. (We assume that an intercept is included in the 
model.) Usually, the DW test is computed for the alternative

 H
1
: � � 0. 12.17

From the approximation in (12.16),  ̂  �  � 0 implies that DW � 2, and  ̂  �  � 0 implies that 
DW � 2. Thus, to reject the null hypothesis (12.12) in favor of (12.17), we are looking for 
a value of DW that is significantly less than two. Unfortunately, because of the problems 
in obtaining the null distribution of DW, we must compare DW with two sets of critical 
values. These are usually labeled as d

U
 (for upper) and d

L
 (for lower). If DW � d

L
, then 

we reject H
0
 in favor of (12.17); if DW � d

U
, we fail to reject H

0
. If d

L 

 DW 
 d

U
, the 

test is inconclusive.
 As an example, if we choose a 5% significance level with n � 45 and k � 4, 
d

U
 � 1.720 and d

L
 � 1.336 [see Savin and White (1977)]. If DW � 1.336, we reject the 

null of no serial correlation at the 5% level; if DW � 1.72, we fail to reject H
0
; if 1.336 
 

DW 
 1.72, the test is inconclusive.
 In Example 12.1, for the static Phillips curve, DW is computed to be DW � .80. We 
can obtain the lower 1% critical value from Savin and White (1977) for k � 1 and n � 50: 
d

L
 � 1.32. Therefore, we reject the null of no serial correlation against the alternative of 

positive serial correlation at the 1% level. (Using the previous t test, we can conclude that 
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the p-value equals zero to three decimal places.) For the expectations augmented Phillips 
curve, DW � 1.77, which is well within the fail-to-reject region at even the 5% level 
(d

U
 � 1.59).

 The fact that an exact sampling distribution for DW can be tabulated is the only advan-
tage that DW has over the t test from (12.14). Given that the tabulated critical values are 
exactly valid only under the full set of CLM assumptions and that they can lead to a wide 
inconclusive region, the practical disadvantages of the DW statistic are substantial. The 
t statistic from (12.14) is simple to compute and asymptotically valid without normally 
distributed errors. The t statistic is also valid in the presence of heteroskedasticity that 
depends on the x

tj
. Plus, it is easy to make it robust to any form of heteroskedasticity.

Testing for AR(1) Serial Correlation without 

Strictly Exogenous Regressors

When the explanatory variables are not strictly exogenous, so that one or more x
tj
 are cor-

related with u
t�1

, neither the t test from regression (12.14) nor the Durbin-Watson statistic 
are valid, even in large samples. The leading case of nonstrictly exogenous regressors 
occurs when the model contains a lagged dependent variable: y

t�1
 and u

t�1
 are obviously 

correlated. Durbin (1970) suggested two alternatives to the DW statistic when the model 
contains a lagged dependent variable and the other regressors are nonrandom (or, more 
generally, strictly exogenous). The first is called Durbin’s h statistic. This statistic has a 
practical drawback in that it cannot always be computed, so we do not cover it here.
 Durbin’s alternative statistic is simple to compute and is valid when there are any 
number of nonstrictly exogenous explanatory variables. The test also works if the explana-
tory variables happen to be strictly exogenous.

Testing for Serial Correlation with General Regressors:

 (i) Run the OLS regression of y
t
 on x

t1
, …, x

tk
 and obtain the OLS residuals,  ̂  u 

t
, for 

all t � 1, 2, …, n.
 (ii) Run the regression of

  ̂  u 
t 
on x

t1
, x

t2
, …, x

tk
,  ̂  u 

t�1
, for all t � 2, …, n 12.18

to obtain the coefficient  ̂  �  on  ̂  u 
t�1

 and its t statistic, t
 ̂  � 
.

 (iii) Use t
 ̂  � 
 to test H

0
: � � 0 against H

1
: �  0 in the usual way (or use a one-sided 

alternative).

In equation (12.18), we regress the OLS residuals on all independent variables, including 
an intercept, and the lagged residual. The t statistic on the lagged residual is a valid test 
of (12.12) in the AR(1) model (12.13) [when we add Var(u

t
�x

t
, u

t�1
) � �2 under H

0
]. Any 

number of lagged dependent variables may appear among the x
tj
, and other nonstrictly 

exogenous explanatory variables are allowed as well.
 The inclusion of x

t1
, …, x

tk
 explicitly allows for each x

tj
 to be correlated with u

t�1
, and 

this ensures that t
 ̂  � 
 has an approximate t distribution in large samples. The t statistic from 

(12.14) ignores possible correlation between x
tj
 and u

t�1
, so it is not valid without strictly 

exogenous regressors. Incidentally, because  ̂  u 
t
 � y

t
 �  ̂  � 

0
 �  ̂  � 

1
x

t1
 � … �  ̂  � 

k
x

tk
, it can be 

shown that the t statistic on  ̂  u 
t�1

 is the same if y
t
 is used in place of  ̂  u 

t
 as the dependent 

variable in (12.18).



 Chapter 12   Serial Correlation and Heteroskedasticity in Time Series Regressions 417

 The t statistic from (12.18) is easily made robust to heteroskedasticity of unknown 
form [in particular, when Var(u

t
�x

t
, u

t�1
) is not constant]: just use the heteroskedasticity-

robust t statistic on  ̂  u 
t�1

.

E x a m p l e  1 2 . 2

[Testing for AR(1) Serial Correlation in the Minimum Wage Equation]

In Chapter 10 (see Example 10.9), we estimated the effect of the minimum wage on the Puerto Rican 
employment rate. We now check whether the errors appear to contain serial correlation, using the 
test that does not assume strict exogeneity of the minimum wage or GNP variables. [We add the log 
of Puerto Rican real GNP to equation (10.38), as in Computer Exercise C10.3.] We are assuming 
that the underlying stochastic processes are weakly dependent, but we allow them to contain a linear 
time trend by including t in the regression.
 Letting  ̂  u 

t
 denote the OLS residuals, we run the regression of

  ̂  u 
t 
on log(mincov

t
), log(prgnp

t
), log(usgnp

t
), t, and  ̂  u 

t�1
,

using the 37 available observations. The estimated coefficient on  ̂  u 
t�1

 is  ̂  �  � .481 with t � 2.89 (two-
sided p-value � .007). Therefore, there is strong evidence of AR(1) serial correlation in the errors, 
which means the t statistics for the  ̂  � 

j
 that we obtained before are not valid for inference. Remember, 

though, the  ̂  � 
j
 are still consistent if u

t
 is contemporaneously uncorrelated with each explanatory 

variable. Incidentally, if we use regression (12.14) instead, we obtain  ̂  �  � .417 and t � 2.63, so the 
outcome of the test is similar in this case.

Testing for Higher Order Serial Correlation

The test from (12.18) is easily extended to higher orders of serial correlation. For example, 
suppose that we wish to test

 H
0
: �

1
 � 0, �

2
 � 0 12.19

in the AR(2) model,

 u
t
 � �

1
u

t�1
 � �

2
u

t�2
 � e

t
.

This alternative model of serial correlation allows us to test for second order serial cor-
relation. As always, we estimate the model by OLS and obtain the OLS residuals,  ̂  u 

t
. Then, 

we can run the regression of

  ̂  u 
t 
on x

t1
, x

t2
, …, x

tk
,  ̂  u 

t�1
, and  ̂  u 

t�2
, for all t � 3, …, n,

to obtain the F test for joint significance of  ̂  u 
t�1

 and  ̂  u 
t�2

. If these two lags are jointly 
significant at a small enough level, say, 5%, then we reject (12.19) and conclude that the 
errors are serially correlated.
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 More generally, we can test for serial correlation in the autoregressive model of 
order q:

 u
t
 � �

1
u

t�1
 � �

2
u

t�2
 � … � �

q
u

t�q
 � e

t
. 12.20

The null hypothesis is

 H
0
: �

1
 � 0, �

2
 � 0, …, �

q
 � 0. 12.21

Testing for AR(q) Serial Correlation:

 (i) Run the OLS regression of y
t
 on x

t1
, …, x

tk
 and obtain the OLS residuals,  ̂  u 

t
, for 

all t � 1, 2, …, n.
 (ii) Run the regression of

  ̂  u 
t 
on x

t1
, x

t2
, …, x

tk
,  ̂  u 

t�1
,  ̂  u 

t�2
, …,  ̂  u 

t�q
, for all t � (q � 1), …, n. 12.22

 (iii) Compute the F test for joint significance of  ̂  u 
t�1

,  ̂  u 
t�2

, …,  ̂  u 
t�q 

in (12.22). [The F 
statistic with y

t
 as the dependent variable in (12.22) can also be used, as it gives an identi-

cal answer.]

If the x
tj
 are assumed to be strictly exogenous, so that each x

tj
 is uncorrelated with u

t�1
, 

u
t�2

, …, u
t�q

, then the x
tj
 can be omitted from (12.22). Including the x

tj
 in the regression 

makes the test valid with or without the strict exogeneity assumption. The test requires the 
homoskedasticity assumption

 Var(u
t
�x

t
, u

t�1
, …, u

t�q
) � �2. 12.23

A heteroskedasticity-robust version can be computed as described in Chapter 8.
 An alternative to computing the F test is to use the Lagrange multiplier (LM) form of 
the statistic. (We covered the LM statistic for testing exclusion restrictions in Chapter 5 
for cross-sectional analysis.) The LM statistic for testing (12.21) is simply

 LM � (n � q)R 2   
 ̂  u 
  , 12.24

where R 2   
 ̂  u 
   is just the usual R-squared from regression (12.22). Under the null hypothesis, 

LM ~ª 	 2   q . This is usually called the Breusch-Godfrey test for AR(q) serial correlation. 
The LM statistic also requires (12.23), but it can be made robust to heteroskedasticity. [For 
details, see Wooldridge (1991b).]

E x a m p l e  1 2 . 3

[Testing for AR(3) Serial Correlation]

In the event study of the barium chloride industry (see Example 10.5), we used monthly data, so we 
may wish to test for higher orders of serial correlation. For illustration purposes, we test for AR(3) 
serial correlation in the errors underlying equation (10.22). Using regression (12.22), the F statistic 
for joint significance of  ̂  u 

t�1
,  ̂  u 

t�2
, and  ̂  u 

t�3
 is F � 5.12. Originally, we had n � 131, and we lose three 

observations in the auxiliary regression (12.22). Because we estimate 10 parameters in (12.22) for 
this example, the df in the F statistic are 3 and 118. The p-value of the F statistic is .0023, so there 
is strong evidence of AR(3) serial correlation.
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 With quarterly or monthly data that have not been seasonally adjusted, we sometimes 
wish to test for seasonal forms of serial correlation. For example, with quarterly data, we 
might postulate the autoregressive model

 u
t
 � �

4
u

t�4
 � e

t
. 12.25

From the AR(1) serial correlation tests, it is pretty clear how to proceed. When the regres-
sors are strictly exogenous, we can use a t test on  ̂  u 

t�4
 in the regression of

  ̂  u 
t 
on  ̂  u 

t�4
, for all t � 5, …, n.

A modification of the Durbin-Watson statistic is also available [see Wallis (1972)]. 
When the x

tj
 are not strictly exogenous, we can use the regression in (12.18), with  ̂  u 

t�4
 

replacing  ̂  u 
t�1

.
 In Example 12.3, the data are 
 monthly and are not seasonally adjusted.
Therefore, it makes sense to test for cor-
relation between u

t
 and u

t�12
. A regres-

sion of  ̂  u 
t
 on  ̂  u 

t�12
 yields  ̂  � 

12
 � �.187 

and p-value � .028, so there is evidence 
of negative seasonal autocorrelation. 
(Including the regressors changes things only modestly:  ̂  � 

12
 � �.170 and p-value � .052.) 

This is somewhat unusual and does not have an obvious explanation.

12.3 Correcting for Serial Correlation 
with Strictly Exogenous Regressors
If we detect serial correlation after applying one of the tests in Section 12.2, we have to do 
something about it. If our goal is to estimate a model with complete dynamics, we need 
to respecify the model. In applications where our goal is not to estimate a fully dynamic 
model, we need to find a way to carry out statistical inference: as we saw in Section 12.1, 
the usual OLS test statistics are no longer valid. In this section, we begin with the impor-
tant case of AR(1) serial correlation. The traditional approach to this problem assumes 
fixed regressors. What are actually needed are strictly exogenous regressors. Therefore, at 
a minimum, we should not use these corrections when the explanatory variables include 
lagged dependent variables.

Obtaining the Best Linear Unbiased Estimator 

in the AR(1) Model

We assume the Gauss-Markov assumptions TS.1 through TS.4, but we relax Assumption 
TS.5. In particular, we assume that the errors follow the AR(1) model

 u
t
 � �u

t�1
 � e

t
, for all t � 1, 2, …. 12.26

Q u e s t i o n  1 2 . 3
Suppose you have quarterly data and you want to test for the 
presence of first order or fourth order serial correlation. With 
strictly exogenous regressors, how would you proceed?
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Remember that Assumption TS.3 implies that u
t
 has a zero mean conditional on X. In the 

following analysis, we let the conditioning on X be implied in order to simplify the nota-
tion. Thus, we write the variance of u

t
 as

 Var(u
t
) � � 2   e  /(1 � �2). 12.27

 For simplicity, consider the case with a single explanatory variable:

 y
t
 � �

0
 � �

1
x

t
 � u

t
, for all t � 1, 2, …, n.

Because the problem in this equation is serial correlation in the u
t
, it makes sense to trans-

form the equation to eliminate the serial correlation. For t � 2, we write

 y
t�1

 � �
0
 � �

1
x

t�1
 � u

t�1

 
y

t
 � �

0
 � �

1
x

t
 � u

t
.

Now, if we multiply this first equation by � and subtract it from the second equation, 
we get

 y
t
 � �y

t�1
 � (1 � �)�

0
 � �

1
(x

t
 � �x

t�1
) � e

t
, t � 2,

where we have used the fact that e
t
 � u

t
 � �u

t�1
. We can write this as

  ̃  y 
t
 � (1 � �)�

0
 � �

1
 ̃  x 

t
 � e

t
, t � 2, 12.28

where

  ̃  y 
t
 � y

t
 � �y

t�1
,  ̃  x 

t
 � x

t
 � �x

t�1
 12.29

are called the quasi-differenced data. (If � � 1, these are differenced data, but remember 
we are assuming ��� � 1.) The error terms in (12.28) are serially uncorrelated; in fact, this 
equation satisfies all of the Gauss-Markov assumptions. This means that, if we knew �, we 
could estimate �

0
 and �

1
 by regressing  ̃  y 

t
 on  ̃  x 

t
, provided we divide the estimated intercept 

by (1 � �).
 The OLS estimators from (12.28) are not quite BLUE because they do not use the first 
time period. This is easily fixed by writing the equation for t � 1 as

 y
1
 � �

0
 � �

1
x

1
 � u

1
. 12.30

Since each e
t
 is uncorrelated with u

1
, we can add (12.30) to (12.28) and still have serially uncor-

related errors. However, using (12.27), Var(u
1
) � � 2   e   /(1 � �2) � � 2   e   � Var(e

t
). [Equation (12.27)

clearly does not hold when ��� � 1, which is why we assume the stability condition.] Thus, 
we must multiply (12.30) by (1 � �2)1/2 to get errors with the same variance:

 (1 � �2)1/2y
1
 � (1 � �2)1/2�

0
 � �

1
(1 � �2)1/2x

1
 � (1 � �2)1/2u

1

or

  ̃  y 
1
 � (1 � �2)1/2�

0
 � �

1
 ̃  x 

1
 �  ̃  u 

1
, 12.31
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where  ̃  u 
1
 � (1 � �2)1/2u

1
,  ̃  y 

1
 � (1 � �2)1/2y

1
, and so on. The error in (12.31) has variance 

Var( ̃  u 
1
) � (1 � �2)Var(u

1
) � � 2   e  , so we can use (12.31) along with (12.28) in an OLS 

regression. This gives the BLUE estimators of �
0
 and �

1
 under Assumptions TS.1 through 

TS.4 and the AR(1) model for u
t
. This is another example of a generalized least squares 

(or GLS) estimator. We saw other GLS estimators in the context of heteroskedasticity in 
Chapter 8.
 Adding more regressors changes very little. For t � 2, we use the equation

  ̃  y 
t
 � (1 � �)�

0
 � �

1
 ̃  x 

t1
 � … � �

k 
 ̃  x 

tk
 � e

t
, 12.32

where  ̃  x 
tj
 � x

tj
 � �x

t�1, j
. For t � 1, we have  ̃  y 

1
 � (1 � �2)1/2y

1
,  ̃  x 

1j
 � (1 � �2)1/2x

1j
, and the 

intercept is (1 � �2)1/2�
0
. For given �, it is fairly easy to transform the data and to carry out 

OLS. Unless � � 0, the GLS estimator, that is, OLS on the transformed data, will generally 
be different from the original OLS estimator. The GLS estimator turns out to be BLUE, 
and, since the errors in the transformed equation are serially uncorrelated and homoske-
dastic, t and F statistics from the transformed equation are valid (at least asymptotically, 
and exactly if the errors e

t
 are normally distributed).

Feasible GLS Estimation with AR(1) Errors

The problem with the GLS estimator is that � is rarely known in practice. However, we 
already know how to get a consistent estimator of �: we simply regress the OLS residuals 
on their lagged counterparts, exactly as in equation (12.14). Next, we use this estimate,  ̂  � , 
in place of � to obtain the quasi-differenced variables. We then use OLS on the equation

  ̃  y 
t
 � �

0
 ̃  x 

t0
 � �

1
 ̃  x 

t1
 � … � �

k
  ̃  x 

tk
 � error

t
, 12.33

where  ̃  x 
t0

 � (1 �  ̂  � ) for t � 2, and  ̃  x 
10

 � (1 �  ̂  � 2)1/2. This results in the feasible GLS 
(FGLS) estimator of the �

j
. The error term in (12.33) contains e

t
 and also the terms 

involving the estimation error in  ̂  � . Fortunately, the estimation error in  ̂  �  does not affect 
the asymptotic distribution of the FGLS estimators.

Feasible GLS Estimation of the AR(1) Model:

 (i) Run the OLS regression of y
t
 on x

t1
, …, x

tk
 and obtain the OLS residuals,  ̂  u 

t
, t � 1, 

2, …, n.
 (ii) Run the regression in equation (12.14) and obtain  ̂  � .
 (iii) Apply OLS to equation (12.33) to estimate �

0
, �

1
, …, �

k
. The usual standard 

errors, t statistics, and F statistics are asymptotically valid.

The cost of using  ̂  �  in place of � is that the feasible GLS estimator has no tractable 
finite sample properties. In particular, it is not unbiased, although it is consistent when 
the data are weakly dependent. Further, even if e

t
 in (12.32) is normally distributed, the 

t and F statistics are only approximately t and F distributed because of the estimation 
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error in  ̂  � . This is fine for most purposes, although we must be careful with small sample 
sizes.
 Since the FGLS estimator is not unbiased, we certainly cannot say it is BLUE. 
Nevertheless, it is asymptotically more efficient than the OLS estimator when the AR(1) 
model for serial correlation holds (and the explanatory variables are strictly exogenous). 
Again, this statement assumes that the time series are weakly dependent.
 There are several names for FGLS estimation of the AR(1) model that come from dif-
ferent methods of estimating � and different treatment of the first observation. Cochrane-
Orcutt (CO) estimation omits the first observation and uses  ̂  �  from (12.14), whereas 
Prais-Winsten (PW) estimation uses the first observation in the previously suggested 
way. Asymptotically, it makes no difference whether or not the first observation is used, 
but many time series samples are small, so the differences can be notable in applications.
 In practice, both the Cochrane-Orcutt and Prais-Winsten methods are used in an 
iterative scheme. That is, once the FGLS estimator is found using  ̂  �  from (12.14), 
we can compute a new set of residuals, obtain a new estimator of � from (12.14), trans-
form the data using the new estimate of �, and estimate (12.33) by OLS. We can repeat 
the whole process many times, until the estimate of � changes by very little from the 
previous iteration. Many regression packages implement an iterative procedure automati-
cally, so there is no additional work for us. It is difficult to say whether more than one 
iteration helps. It seems to be helpful in some cases, but, theoretically, the large-sample 
properties of the iterated estimator are the same as the estimator that uses only the 
first iteration. For details on these and other methods, see Davidson and MacKinnon 
(1993, Chapter 10).

E x a m p l e  1 2 . 4

[Prais-Winsten Estimation in the Event Study]

We estimate the equation in Example 10.5 using iterated Prais-Winsten estimation. For comparison, 
we also present the OLS results in Table 12.1.
 The coefficients that are statistically significant in the Prais-Winsten estimation do not differ 
by much from the OLS estimates [in particular, the coefficients on log(chempi), log(rtwex), and 
afdec6]. It is not surprising for statistically insignificant coefficients to change, perhaps markedly, 
across different estimation methods.
 Notice how the standard errors in the second column are uniformly higher than the standard 
errors in column (1). This is common. The Prais-Winsten standard errors account for serial cor-
relation; the OLS standard errors do not. As we saw in Section 12.1, the OLS standard errors 
usually understate the actual sampling variation in the OLS estimates and should not be relied 
upon when significant serial correlation is present. Therefore, the effect on Chinese imports after 
the International Trade Commission’s decision is now less statistically significant than we thought 
(t

afdec6
 � �1.69).

 Finally, an R-squared is reported for the PW estimation that is well below the R-squared for 
the OLS estimation in this case. However, these R-squareds should not be compared. For OLS, the 
R-squared, as usual, is based on the regression with the untransformed dependent and independent 
variables. For PW, the R-squared comes from the final regression of the transformed dependent 
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variable on the transformed independent variables. It is not clear what this R2 is actually measuring; 
nevertheless, it is traditionally reported.

Comparing OLS and FGLS

In some applications of the Cochrane-Orcutt or Prais-Winsten methods, the FGLS esti-
mates differ in practically important ways from the OLS estimates. (This was not the case 
in Example 12.4.) Typically, this has been interpreted as a verification of feasible GLS’s 
superiority over OLS. Unfortunately, things are not so simple. To see why, consider the 
regression model

 y
t
 � �

0
 � �

1
x

t
 � u

t
,

TABLE  12 . 1

Dependent Variable: log(chnimp)

Coefficient OLS Prais-Winsten

log(chempi)  3.12
 (0.48)

 2.94 
 (0.63)

log(gas)  .196
 (.907)

 1.05
 (0.98)

log(rtwex)  .983
 (.400)

 1.13
 (0.51)

befile6  .060
 (.261)

 �.016
 (.322)

affile6  �.032
 (.264)

 �.033
 (.322)

afdec6  �.565
 (.286)

 �.577
 (.342)

intercept  �17.80
 (21.05)

 �37.08
 (22.78)

 ̂  � ———  .293

Observations
R-squared

131
 .305

131
 .202
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where the time series processes are stationary. Now, assuming that the law of large num-
bers holds, consistency of OLS for �

1
 holds if

 Cov(x
t
, u

t
) � 0. 12.34

Earlier, we asserted that FGLS was consistent under the strict exogeneity assumption, 
which is more restrictive than (12.34). In fact, it can be shown that the weakest assumption 
that must hold for FGLS to be consistent, in addition to (12.34), is that the sum of x

t�1
 and 

x
t�1

 is uncorrelated with u
t
:

 Cov[(x
t�1

 � x
t�1

), u
t
] � 0. 12.35

Practically speaking, consistency of FGLS requires u
t
 to be uncorrelated with x

t�1
, x

t
, 

and x
t�1

.
 How can we show that condition (12.35) is needed along with (12.34)? The argument 
is simple if we assume � is known and drop the first time period, as in Cochrane-Orcutt. 
The argument when we use  ̂  �  is technically harder and yields no additional insights. Since 
one observation cannot affect the asymptotic properties of an estimator, dropping it does 
not affect the argument. Now, with known �, the GLS estimator uses x

t
 � �x

t�1
 as the 

regressor in an equation where u
t
 � �u

t�1
 is the error. From Theorem 11.1, we know the 

key condition for consistency of OLS is that the error and the regressor are uncorrelated. In 
this case, we need E[(x

t
 � �x

t�1
)(u

t
 � �u

t�1
)] � 0. If we expand the expectation, we get

 E[(x
t
 � �x

t�1
)(u

t
 � �u

t�1
)] � E(x

t
u

t
) � �E(x

t�1
u

t
) � �E(x

t
u

t�1
) � �2E(x

t�1
u

t�1
)

 � ��[E(x
t�1

u
t
) � E(x

t
u

t�1
)]

because E(x
t
u

t
) � E(x

t�1
u

t�1
) � 0 by assumption (12.34). Now, under stationarity, E(x

t
u

t�1
) �

E(x
t�1

u
t
) because we are just shifting the time index one period forward. Therefore,

 E(x
t�1

u
t
) � E(x

t
u

t�1
) � E[(x

t�1
 � x

t�1
)u

t
],

and the last expectation is the covariance in equation (12.35) because E(u
t
) � 0. We have 

shown that (12.35) is necessary along with (12.34) for GLS to be consistent for �
1
. [Of 

course, if � � 0, we do not need (12.35) because we are back to doing OLS.]
 Our derivation shows that OLS and FGLS might give significantly different estimates 
because (12.35) fails. In this case, OLS—which is still consistent under (12.34)—is 
preferred to FGLS (which is inconsistent). If x has a lagged effect on y, or x

t�1
 reacts to 

changes in u
t
, FGLS can produce misleading results.

 Because OLS and FGLS are different estimation procedures, we never expect them to 
give the same estimates. If they provide similar estimates of the �

j
, then FGLS is preferred 

if there is evidence of serial correlation, because the estimator is more efficient and the 
FGLS test statistics are at least asymptotically valid. A more difficult problem arises when 
there are practical differences in the OLS and FGLS estimates: it is hard to determine 
whether such differences are statistically significant. The general method proposed by 
Hausman (1978) can be used, but it is beyond the scope of this text.
 The next example gives a case where OLS and FGLS are different in practically 
important ways.
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TABLE  12 . 2

Dependent Variable: inf

Coefficient OLS Prais-Winsten

unem  .468
 (.289)

 �.716 
 (.313)

intercept  1.424
 (1.719)

 8.296
 (2.231)

 ̂  � ———  .781

Observations
R-squared

 49
 .053

 49
 .136

The coefficient of interest is on unem, and it differs markedly between PW and OLS. Because the 
PW estimate is consistent with the inflation-unemployment tradeoff, our tendency is to focus on the 
PW estimates. In fact, these estimates are fairly close to what is obtained by first differencing both 
inf and unem (see Computer Exercise C11.4), which makes sense because the quasi-differencing 
used in PW with  ̂  �  � .781 is similar to first differencing. It may just be that inf and unem are not 
related in levels, but they have a negative relationship in first differences.

 Examples like the static Phillips curve can pose difficult problems for empirical 
researchers. On the one hand, if we are truly interested in a static relationship, and if 
unemployment and inflation are I(0) processes, then OLS produces consistent estimators 
without additional assumptions. But it could be that unemployment, inflation, or both 
have unit roots, in which case OLS need not have its usual desirable properties; we dis-
cuss this further in Chapter 18. In Example 12.5, FGLS gives more economically sensible 
estimates; because it is similar to first differencing, FGLS has the advantage of (approxi-
mately) eliminating unit roots. 

Correcting for Higher Order Serial Correlation

It is also possible to correct for higher orders of serial correlation. A general treatment is 
given in Harvey (1990). Here, we illustrate the approach for AR(2) serial correlation:

 u
t
 � �

1
u

t�1
 � �

2
u

t�2
 � e

t
,

E x a m p l e  1 2 . 5

[Static Phillips Curve]

Table 12.2 presents OLS and iterated Prais-Winsten estimates of the static Phillips curve from 
Example 10.1, using the observations through 1996.
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where {e
t
} satisfies the assumptions stated for the AR(1) model. The stability conditions 

are more complicated now. They can be shown to be [see Harvey (1990)]

 �
2
 � �1, �

2
 � �

1
 � 1, and �

1
 � �

2
 � 1.

For example, the model is stable if �
1
 � .8 and �

2
 � �.3; the model is unstable if 

�
1
 � .7 and �

2
 � .4.

 Assuming the stability conditions hold, we can obtain the transformation that elimi-
nates the serial correlation. In the simple regression model, this is easy when t � 2:

 y
t 
� �

1
y

t�1 
� �

2 
y

t�2
 � �

0
(1

 
� �

1 
� �

2
) � �

1
(x

t 
� �

1
x

t�1 
� �

2 
x

t�2
) � e

t

or

  ̃  y 
t
 � �

0
(1

 
� �

1 
� �

2
) � �

1
 ̃  x 

t
 � e

t
, t � 3, 4, …, n. 12.36

If we know �
1
 and �

2
, we can easily estimate this equation by OLS after obtaining the 

transformed variables. Since we rarely know �
1
 and �

2
, we have to estimate them. As 

usual, we can use the OLS residuals,  ̂  u 
t
: obtain  ̂  � 

1
 and  ̂  � 

2
 from the regression of

  ̂  u 
t
 on  ̂  u 

t�1
,  ̂  u 

t�2
, t � 3, …, n.

[This is the same regression used to test for AR(2) serial correlation with strictly exogenous 
regressors.] Then, we use  ̂  � 

1
 and  ̂  � 

2
 in place of �

1
 and �

2 
to obtain the transformed variables. 

This gives one version of the feasible GLS estimator. If we have multiple explanatory vari-
ables, then each one is transformed by  ̃  x 

tj
 � x

tj
 �  ̂  � 

1
x

t�1, j
 �  ̂  � 

2
x

t�2, j
 , when t � 2.

 The treatment of the first two observations is a little tricky. It can be shown that the 
dependent variable and each independent variable (including the intercept) should be 
transformed by

  ̃  z 
1
 � {(1

 
� �

2
)[(1

 
� �

2
)2

 
� � 2   

1
 ]/(1

 
� �

2
)}1/2z

1

 
 ̃  z 

2
 � (1

 
� � 2   

2
 )1/2z

2
 � [�

1
(1

 
� � 2   

1
 )1/2/(1

 
� �

2
)]z

1
,

where z
1
 and z

2
 denote either the dependent or an independent variable at t � 1 and t � 2, 

respectively. We will not derive these transformations. Briefly, they eliminate the serial 
correlation between the first two observations and make their error variances equal to � 2   e  .
 Fortunately, econometrics packages geared toward time series analysis easily estimate 
models with general AR(q) errors; we rarely need to directly compute the transformed 
variables ourselves.

12.4 Differencing and Serial Correlation
In Chapter 11, we presented differencing as a transformation for making an integrated pro-
cess weakly dependent. There is another way to see the merits of differencing when dealing 
with highly persistent data. Suppose that we start with the simple regression model:

 y
t
 � �

0
 � �

1
x

t
 � u

t
, t � 1, 2, …, 12.37

where u
t
 follows the AR(1) process in (12.26). As we mentioned in Section 11.3, and as 

we will discuss more fully in Chapter 18, the usual OLS inference procedures can be very 
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misleading when the variables y
t
 and x

t
 are integrated of order one, or I(1). In the extreme 

case where the errors {u
t
} in (12.37) follow a random walk, the equation makes no sense 

because, among other things, the variance of u
t
 grows with t. It is more logical to differ-

ence the equation:

 ∆y
t
 � �

1
∆x

t
 � ∆u

t
, t � 2, …, n. 12.38

If u
t
 follows a random walk, then e

t 
� ∆u

t
 has zero mean and a constant variance and is 

serially uncorrelated. Thus, assuming that e
t
 and ∆x

t
 are uncorrelated, we can estimate 

(12.38) by OLS, where we lose the first observation.
 Even if u

t
 does not follow a random walk, but � is positive and large, first differ-

encing is often a good idea: it will eliminate most of the serial correlation. Of course, 
equation (12.38) is different from (12.37), but at least we can have more faith in the OLS 
standard errors and t statistics in (12.38). Allowing for multiple explanatory variables does 
not change anything.

E x a m p l e  1 2 . 6

[Differencing the Interest Rate Equation]

In Example 10.2, we estimated an equation relating the three-month T-bill rate to inflation and the 
federal deficit [see equation (10.15)]. If we obtain the residuals obtained from estimating (10.15) 
and regress them on a single lag, we obtain  ̂  �  � .623 (.110), which is large and very statistically 
significant. Therefore, at a minimum, serial correlation is a problem in this equation. 
 If we difference the data and run the regression, we obtain 

 ∆i3
t
 � .042 � .149 ∆inf

t
 � .181 ∆def

t 
�  ̂  e 

t

 (.171) (.092) (.148) 12.39

 n � 55, R2 � .176,  
-

 R 2 � .145 

The coefficients from this regression are very different from the equation in levels, suggesting 
either that the explanatory variables are not strictly exogenous or that one or more of the variables 
has a unit root. In fact, the correlation between i3

t
 and i3

t−1
 is about .885, which may indicate a 

problem with interpreting (10.15) as a meaningful regression. Plus, the regression in differences has 
essentially no serial correlation: a regression of  ̂  e 

t
 on   ̂  e 

t−1
 gives  ̂  �  � .072 (.134). Because first dif-

ferencing eliminates possible unit roots as well as serial correlation, we probably have more faith in 
the estimates and standard errors from (12.39) than (10.15). The equation in differences shows that 
annual changes in interest rates are only weakly, positively related to annual changes in inflation, 
and the coefficient on ∆def

t
 is actually negative (though not statistically significant at even the 20% 

significance level against a two-sided alternative).

 As we explained in Chapter 11, the 
decision of whether or not to difference 
is a tough one. But this discussion points 
out another benefit of differencing, 
which is that it removes serial correla-
tion. We will come back to this issue in 
Chapter 18.

Q u e s t i o n  1 2 . 4
Suppose after estimating a model by OLS that you estimate � from 
regression (12.14) and you obtain  ̂  �  � .92. What would you do 
about this?



428 Part 2   Regression Analysis with Time Series Data

12.5 Serial Correlation-Robust 
Inference after OLS 
In recent years, it has become more popular to estimate models by OLS but to correct 
the standard errors for fairly arbitrary forms of serial correlation (and heteroskedasticity). 
Even though we know OLS will be inefficient, there are some good reasons for taking 
this approach. First, the explanatory variables may not be strictly exogenous. In this case, 
FGLS is not even consistent, let alone efficient. Second, in most applications of FGLS, the 
errors are assumed to follow an AR(1) model. It may be better to compute standard errors 
for the OLS estimates that are robust to more general forms of serial correlation.
 To get the idea, consider equation (12.4), which is the variance of the OLS slope esti-
mator in a simple regression model with AR(1) errors. We can estimate this variance very 
simply by plugging in our standard estimators of � and �2. The only problems with this are 
that it assumes the AR(1) model holds and also assumes homoskedasticity. It is possible 
to relax both of these assumptions.
 A general treatment of standard errors that are both heteroskedasticity- and serial 
 correlation-robust is given in Davidson and MacKinnon (1993). Here, we provide a simple 
method to compute the robust standard error of any OLS coefficient.
 Our treatment here follows Wooldridge (1989). Consider the standard multiple linear 
regression model

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

tk
 � u

t
, t � 1, 2, …, n, 12.40

which we have estimated by OLS. For concreteness, we are interested in obtaining a serial 
correlation-robust standard error for  ̂  � 

1
. This turns out to be fairly easy. Write x

t1
 as a linear 

function of the remaining independent variables and an error term,

 x
t1
 � �

0
 � �

2
x

t2
 � … � �

k
 x

tk
 � r

t
,

where the error r
t
 has zero mean and is uncorrelated with x

t2
, x

t3
, …, x

tk
.

 Then, it can be shown that the asymptotic variance of the OLS estimator  ̂  � 
1
 is

 Avar(  ̂  � 
1
) �  �  ∑ 

t�1

   
n

    E(r  2   t  ) � 
�2

 Var  �  ∑ 
t�1

   
n

    r
t
u

t
 � .

Under the no serial correlation Assumption TS.5�, {a
t
 � r

t
u

t
} is serially uncorrelated, so 

either the usual OLS standard errors (under homoskedasticity) or the heteroskedasticity-
robust standard errors will be valid. But if TS.5� fails, our expression for Avar( ̂  � 

1
) must 

account for the correlation between a
t
 and a

s
, when t 	 s. In practice, it is common to 

assume that, once the terms are farther apart than a few periods, the correlation is essen-
tially zero. Remember that under weak dependence, the correlation must be approaching 
zero, so this is a reasonable approach.
 Following the general framework of Newey and West (1987), Wooldridge (1989) 
shows that Avar( ̂  � 

1
) can be estimated as follows. Let “se( ̂  � 

1
)” denote the usual (but incor-

rect) OLS standard error and let  ̂  �  be the usual standard error of the regression (or root 
mean squared error) from estimating (12.40) by OLS. Let  ̂  r 

t
 denote the residuals from the 

auxiliary regression of
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 x
t1
 on x

t2
, x

t3
, …, x

tk
 12.41

(including a constant, as usual). For a chosen integer g � 0, define

  ̂  v  �  ∑ 
t�1

   
n

     ̂  a  2   t   � 2  ∑ 
h�1

   
g

    [1 � h/(g � 1)]  �   ∑ 
t�h �1

  
n

     ̂  a 
t 
 ̂  a 

t�h
 � , 12.42

where

  ̂  a 
t
 �  ̂  r 

t
  ̂  u 

t
, t � 1, 2, …, n.

This looks somewhat complicated, but in practice it is easy to obtain. The integer g in 
(12.42) controls how much serial correlation we are allowing in computing the standard 
error. Once we have  ̂  v , the serial correlation-robust standard error of  ̂  � 

1
 is simply

 se(  ̂  � 
1
) � [“se(  ̂  � 

1
)”/ ̂  � ]2 �

_
  ̂  v   . 12.43

In other words, we take the usual OLS standard error of  ̂  � 
1
, divide it by  ̂  � , square the 

result, and then multiply by the square root of  ̂  v . This can be used to construct confidence 
intervals and t statistics for  ̂  � 

1
.

 It is useful to see what  ̂  v  looks like in some simple cases. When g � 1,

  ̂  v  �  ∑ 
t�1

   
n

     ̂  a  2   t   �  ∑ 
t�2

   
n

     ̂  a 
t 
 ̂  a 

t�1
, 12.44

and when g � 2,

  ̂  v  �  ∑ 
t�1

   
n

     ̂  a  2   t   � (4/3)  �  ∑ 
t�2

   
n

     ̂  a 
t 
 ̂  a 

t�1
 �  � (2/3)   �  ∑ 

t�3

   
n

     ̂  a 
t 
 ̂  a 

t�2
 � . 12.45

The larger that g is, the more terms are included to correct for serial correlation. The 
purpose of the factor [1 � h/(g � 1)] in (12.42) is to ensure that  ̂  v  is in fact nonnegative 
[Newey and West (1987) verify this]. We clearly need  ̂  v  � 0, since  ̂  v  is estimating a vari-
ance and the square root of  ̂  v  appears in (12.43).
 The standard error in (12.43) is also robust to arbitrary heteroskedasticity. (In the 
time series literature, the serial correlation-robust standard errors are sometimes called 
heteroskedasticity and autocorrelation consistent, or HAC, standard errors.) In fact, if 
we drop the second term in (12.42), then (12.43) becomes the usual heteroskedasticity-
robust standard error that we discussed in Chapter 8 (without the degrees of freedom 
adjustment).
 The theory underlying the standard error in (12.43) is technical and somewhat subtle. 
Remember, we started off by claiming we do not know the form of serial correlation. If 
this is the case, how can we select the integer g? Theory states that (12.43) works for 
fairly arbitrary forms of serial correlation, provided g grows with sample size n. The idea 
is that, with larger sample sizes, we can be more flexible about the amount of correlation 
in (12.42). There has been much recent work on the relationship between g and n, but we 
will not go into that here. For annual data, choosing a small g, such as g � 1 or g � 2, 
is likely to account for most of the serial correlation. For quarterly or monthly data, g 
should probably be larger (such as g � 4 or 8 for quarterly and g � 12 or 24 for monthly), 
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assuming that we have enough data. Newey and West (1987) recommend taking g to be 
the integer part of 4(n/100)2/9; others have suggested the integer part of n1/4. The Newey-
West suggestion is implemented by the econometrics program Eviews®. For, say, n � 50 
(which is reasonable for annual, postwar data from World War II), g � 3. (The integer 
part of n1/4 gives g � 2.)
 We summarize how to obtain a serial correlation-robust standard error for  ̂  � 

1
. Of 

course, since we can list any independent variable first, the following procedure works for 
computing a standard error for any slope coefficient.

Serial Correlation-Robust Standard Error for  ̂  � 
1
:

 (i) Estimate (12.40) by OLS, which yields “se( ̂  � 
1
)”,  ̂  � , and the OLS residuals

{ ̂  u 
t
: t � 1, …, n}.

 (ii) Compute the residuals { ̂  r 
t
: t � 1, …, n} from the auxiliary regression (12.41). 

Then, form  ̂  a 
t
 �  ̂  r 

t
  ̂  u 

t
 (for each t).

 (iii) For your choice of g, compute  ̂  v  as in (12.42).
 (iv) Compute se(  ̂  � 

1
) from (12.43).

 Empirically, the serial correlation-robust standard errors are typically larger than the 
usual OLS standard errors when there is serial correlation. This is true because, in most 
cases, the errors are positively serially correlated. However, it is possible to have substan-
tial serial correlation in {u

t
} but to also have similarities in the usual and serial correlation-

robust (SC-robust) standard errors of some coefficients: it is the sample autocorrelations 
of  ̂  a 

t
 �  ̂  r 

t
  ̂  u 

t
 that determine the robust standard error for  ̂  � 

1
.

 The use of SC-robust standard errors has lagged behind the use of standard errors 
robust only to heteroskedasticity for several reasons. First, large cross sections, where the 
heteroskedasticity-robust standard errors will have good properties, are more common 
than large time series. The SC-robust standard errors can be poorly behaved when there is 
substantial serial correlation and the sample size is small (where small can even be as large 
as, say, 100). Second, since we must choose the integer g in equation (12.42), computation 
of the SC-robust standard errors is not automatic. As mentioned earlier, some economet-
rics packages have automated the selection, but you still have to abide by the choice.
 Another important reason that SC-robust standard errors are not yet routinely com-
puted is that, in the presence of severe serial correlation, OLS can be very inefficient, 
especially in small sample sizes. After performing OLS and correcting the standard errors 
for serial correlation, the coefficients are often insignificant, or at least less significant than 
they were with the usual OLS standard errors.
 If we are confident that the explanatory variables are strictly exogenous, yet are 
skeptical about the errors following an AR(1) process, we can still get estimators more 
efficient than OLS by using a standard feasible GLS estimator, such as Prais-Winsten or 
Cochrane-Orcutt. With substantial serial correlation, the quasi-differencing transforma-
tion used by PW and CO is likely to be better than doing nothing and just using OLS. But, 
if the errors do not follow an AR(1) model, then the standard errors reported from PW 
or CO estimation will be incorrect. Nevertheless, we can manually quasi-difference the 
data after estimating �, use pooled OLS on the transformed data, and then use SC-robust 
standard errors in the transformed equation. Computing an SC-robust standard error 
after quasi-differencing would ensure that any extra serial correlation is accounted for in 
statistical inference. In fact, the SC-robust standard errors probably work better after 
much serial correlation has been eliminated using quasi-differencing [or some other 
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transformation, such as that used for AR(2) serial correlation]. Such an approach is 
analogous to using weighted least squares in the presence of heteroskedasticity but then 
computing standard errors that are robust to having the variance function incorrectly 
specified; see Section 8.4.
 The SC-robust standard errors after OLS estimation are most useful when we have 
doubts about some of the explanatory variables being strictly exogenous, so that methods 
such as Prais-Winsten and Cochrane-Orcutt are not even consistent. It is also valid to use 
the SC-robust standard errors in models with lagged dependent variables, assuming, of 
course, that there is good reason for allowing serial correlation in such models.

E x a m p l e  1 2 . 7

[The Puerto Rican Minimum Wage]

We obtain an SC-robust standard error for the minimum wage effect in the Puerto Rican employment 
equation. In Example 12.2, we found pretty strong evidence of AR(1) serial correlation. As in that 
example, we use as additional controls log(usgnp), log(prgnp), and a linear time trend.
 The OLS estimate of the elasticity of the employment rate with respect to the minimum 
wage is  ̂  � 

1
 � �.2123, and the usual OLS standard error is “se( ̂  � 

1
)” � .0402. The standard error 

of the regression is  ̂  �  � .0328. Further, using the previous procedure with g � 2 [see (12.45)], 
we obtain  ̂  v  � .000805. This gives the SC/heteroskedasticity-robust standard error as se( ̂  � 

1
) � 

[(.0402/.0328)2]  �
_______

 .000805   � .0426. Interestingly, the robust standard error is only slightly greater 
than the usual OLS standard error. The robust t statistic is about �4.98, and so the estimated elastic-
ity is still very statistically significant.
 For comparison, the iterated PW estimate of �

1
 is �.1477, with a standard error of .0458. Thus, 

the FGLS estimate is closer to zero than the OLS estimate, and we might suspect violation of the 
strict exogeneity assumption. Or, the difference in the OLS and FGLS estimates might be explain-
able by sampling error. It is very difficult to tell.

 Kiefer and Vogelsang (2005) provide a different way to obtain valid inference in 
the presence of arbitrary serial correlation. Rather than worry about the rate at which 
g is allowed to grow (as a function of n) in order for the t statistics to have asymp-
totic standard normal distributions, Kiefer and Vogelsang derive the large-sample 
distribution of the t statistic when b � (g � 1)/n is allowed to settle down to a nonzero 
fraction. [In the Newey-West setup, (g � 1)/n always converges to zero.] For example, 
when b � 1, g � n � 1, which means that we include every covariance term in equation 
(12.42). The resulting t statistic does not have a large-sample standard normal distribu-
tion, but Kiefer and Vogelsang show that it does have an asymptotic distribution, and they 
tabulate the appropriate critical values. For a two-sided, 5% level test, the critical value 
is 4.771, and for a two-sided 10% level test, the critical value is 3.764. Compared 
with the critical values from the standard normal distribution, we need a t statistic sub-
stantially larger. But we do not have to worry about choosing the number of covariances 
in (12.42). 
 Before leaving this section, we note that it is possible to construct serial correlation-
robust, F-type statistics for testing multiple hypotheses, but these are too advanced to 
cover here. [See Wooldridge (1991b, 1995) and Davidson and MacKinnon (1993) for 
treatments.]



432 Part 2   Regression Analysis with Time Series Data

12.6 Heteroskedasticity in 
Time Series Regressions
We discussed testing and correcting for heteroskedasticity for cross-sectional applica-
tions in Chapter 8. Heteroskedasticity can also occur in time series regression models, 
and the presence of heteroskedasticity, while not causing bias or inconsistency in the  ̂  � 

j
, 

does invalidate the usual standard errors, t statistics, and F statistics. This is just as in the 
cross-sectional case.
 In time series regression applications, heteroskedasticity often receives little, if any, 
attention: the problem of serially correlated errors is usually more pressing. Nevertheless, 
it is useful to briefly cover some of the issues that arise in applying tests and corrections 
for heteroskedasticity in time series regressions.
 Because the usual OLS statistics are asymptotically valid under Assumptions TS.1� 
through TS.5�, we are interested in what happens when the homoskedasticity assumption, 
TS.4�, does not hold. Assumption TS.3� rules out misspecifications such as omitted vari-
ables and certain kinds of measurement error, while TS.5� rules out serial correlation in 
the errors. It is important to remember that serially correlated errors cause problems that 
adjustments for heteroskedasticity are not able to address.

Heteroskedasticity-Robust Statistics

In studying heteroskedasticity for cross-sectional regressions, we noted how it has no bear-
ing on the unbiasedness or consistency of the OLS estimators. Exactly the same conclu-
sions hold in the time series case, as we can see by reviewing the assumptions needed for 
unbiasedness (Theorem 10.1) and consistency (Theorem 11.1).
 In Section 8.2, we discussed how the usual OLS standard errors, t statistics, and 
F statistics can be adjusted to allow for the presence of heteroskedasticity of unknown 
form. These same adjustments work for time series regressions under Assumptions 
TS.1�, TS.2�, TS.3�, and TS.5�. Thus, provided the only assumption violated is the 
homoskedasticity assumption, valid inference is easily obtained in most econometric 
packages.

Testing for Heteroskedasticity

Sometimes, we wish to test for heteroskedasticity in time series regressions, especially 
if we are concerned about the performance of heteroskedasticity-robust statistics in rela-
tively small sample sizes. The tests we covered in Chapter 8 can be applied directly, but 
with a few caveats. First, the errors u

t
 should not be serially correlated; any serial corre-

lation will generally invalidate a test for heteroskedasticity. Thus, it makes sense to test 
for serial correlation first, using a heteroskedasticity-robust test if heteroskedasticity is 
suspected. Then, after something has been done to correct for serial correlation, we can 
test for heteroskedasticity.
 Second, consider the equation used to motivate the Breusch-Pagan test for heteroske-
dasticity:

 u 2   t   � �
0
 � �

1
x

t1
 � … � �

k
x

tk
 � v

t
,  12.46
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where the null hypothesis is H
0
: �

1
 � �

2
 � 

… � �
k
 � 0. For the F statistic—with  ̂  u  2   t   

replacing u 2   t   as the dependent variable—
to be valid, we must assume that the 
errors {v

t
} are themselves homoske-

dastic (as in the cross-sectional case) 
and serially uncorrelated. These are implicitly assumed in computing all standard tests 
for heteroskedasticity, including the version of the White test we covered in Section 8.3. 
Assuming that the {v

t
} are serially uncorrelated rules out certain forms of dynamic heter-

oskedasticity, something we will treat in the next subsection.
 If heteroskedasticity is found in the u

t
 (and the u

t
 are not serially correlated), then the 

heteroskedasticity-robust test statistics can be used. An alternative is to use weighted least 
squares, as in Section 8.4. The mechanics of weighted least squares for the time series 
case are identical to those for the cross-sectional case. 

E x a m p l e  1 2 . 8

[Heteroskedasticity and the Efficient Markets Hypothesis]

In Example 11.4, we estimated the simple model

 return
t
 � �

0
 � �

1
return

t�1
 � u

t
. 12.47

The EMH states that �
1
 � 0. When we tested this hypothesis using the data in NYSE.RAW, we 

obtained t�1
 � 1.55 with n � 689. With such a large sample, this is not much evidence against the 

EMH. Although the EMH states that the expected return given past observable information should 
be constant, it says nothing about the conditional variance. In fact, the Breusch-Pagan test for heter-
oskedasticity entails regressing the squared OLS residuals  ̂  u  2   t    on return

t�1
:

  ̂  u  2   t   � 4.66 � 1.104 return
t�1

 � residual
t

 (0.43) (0.201) 12.48

 n � 689, R2 � .042.

The t statistic on return
t�1

 is about �5.5, indicating strong evidence of heteroskedasticity. Because 
the coefficient on return

t�1
 is negative, we have the interesting finding that volatility in stock returns 

is lower when the previous return was high, and vice versa. Therefore, we have found what is com-
mon in many financial studies: the expected value of stock returns does not depend on past returns, 
but the variance of returns does.

Autoregressive Conditional Heteroskedasticity

In recent years, economists have become interested in dynamic forms of heteroskedastic-
ity. Of course, if x

t
 contains a lagged dependent variable, then heteroskedasticity as in 

(12.46) is dynamic. But dynamic forms of heteroskedasticity can appear even in models 
with no dynamics in the regression equation.

Q u e s t i o n  1 2 . 5
How would you compute the White test for heteroskedasticity in 
equation (12.47)?
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 To see this, consider a simple static regression model:

 y
t
 � �

0
 � �

1
z

t
 � u

t
,

and assume that the Gauss-Markov assumptions hold. This means that the OLS estima-
tors are BLUE. The homoskedasticity assumption says that Var(u

t
�Z) is constant, where Z 

denotes all n outcomes of z
t
. Even if the variance of u

t
 given Z is constant, there are other 

ways that heteroskedasticity can arise. Engle (1982) suggested looking at the conditional 
variance of u

t
 given past errors (where the conditioning on Z is left implicit). Engle sug-

gested what is known as the autoregressive conditional heteroskedasticity (ARCH) 
model. The first order ARCH model is

 E(u 2   t  �ut�1
, u

t�2
, …) � E(u 2   t  �ut�1

) � �
0
 � �

1
u 2   t  �1

, 12.49

where we leave the conditioning on Z implicit. This equation represents the conditional 
variance of u

t
 given past u

t
 only if E(u

t
�u

t�1
, u

t�2
, …) � 0, which means that the errors are 

serially uncorrelated. Since conditional variances must be positive, this model only makes 
sense if �

0
 � 0 and �

1 
� 0; if �

1
 � 0, there are no dynamics in the variance equation.

 It is instructive to write (12.49) as

 u 2   t   � �
0
 � �

1
u 2   t  �1

 � v
t
, 12.50

where the expected value of v
t
 (given u

t�1
, u

t�2
, …) is zero by definition. (However, 

the v
t
 are not independent of past u

t
 because of the constraint v

t 
� ��

0
 � �

1
u 2   t  �1

.) 
Equation (12.50) looks like an autoregressive model in u 2   t   (hence the name ARCH). 
The stability condition for this equation is �

1
 � 1, just as in the usual AR(1) model. When 

�
1
 � 0, the squared errors contain (positive) serial correlation even though the u

t
 them-

selves do not.
 What implications does (12.50) have for OLS? Because we began by assuming the 
Gauss-Markov assumptions hold, OLS is BLUE. Further, even if u

t
 is not normally 

distributed, we know that the usual OLS test statistics are asymptotically valid under 
Assumptions TS.1� through TS.5�, which are satisfied by static and distributed lag models 
with ARCH errors.
 If OLS still has desirable properties under ARCH, why should we care about ARCH 
forms of heteroskedasticity in static and distributed lag models? We should be concerned 
for two reasons. First, it is possible to get consistent (but not unbiased) estimators of 
the �

j
 that are asymptotically more efficient than the OLS estimators. A weighted least 

squares procedure, based on estimating (12.50), will do the trick. A maximum likelihood 
procedure also works under the assumption that the errors u

t
 have a conditional normal 

distribution. Second, economists in various fields have become interested in dynamics 
in the conditional variance. Engle’s original application was to the variance of United 
Kingdom inflation, where he found that a larger magnitude of the error in the previous 
time period (larger u 2   

t�1
 ) was associated with a larger error variance in the current period. 

Since variance is often used to measure volatility, and volatility is a key element in asset 
pricing theories, ARCH models have become important in empirical finance.
 ARCH models also apply when there are dynamics in the conditional mean. Suppose 
we have the dependent variable, y

t
, a contemporaneous exogenous variable, z

t
, and

 E(y
t
�z

t
, y

t�1
, z

t�1
, y

t�2
, …) � �

0
 � �

1
z

t
 � �

2
y

t�1
 � �

3
z

t�1
,
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so that at most one lag of y and z appears in the dynamic regression. The typical approach 
is to assume that Var(y

t
�z

t
, y

t�1
, z

t�1
, y

t�2
, …) is constant, as we discussed in Chapter 11. 

But this variance could follow an ARCH model:

 Var(y
t
�z

t
, y

t�1
, z

t�1
, y

t�2
, …) � Var(u

t
�z

t
, y

t�1
, z

t�1
, y

t�2
, …)

 � �
0
 � �

1
u 2   

t�1
 ,

where u
t
 � y

t
 � E(y

t
�z

t
, y

t�1
, z

t�1
, y

t�2
, …). As we know from Chapter 11, the presence 

of ARCH does not affect consistency of OLS, and the usual heteroskedasticity-robust 
standard errors and test statistics are valid. (Remember, these are valid for any form of 
heteroskedasticity, and ARCH is just one particular form of heteroskedasticity.)
 If you are interested in the ARCH model and its extensions, see Bollerslev, Chou, and 
Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for recent surveys.

E x a m p l e  1 2 . 9

[ARCH in Stock Returns]

In Example 12.8, we saw that there was heteroskedasticity in weekly stock returns. This heteroske-
dasticity is actually better characterized by the ARCH model in (12.50). If we compute the OLS 
residuals from (12.47), square these, and regress them on the lagged squared residual, we obtain

  ̂  u  2   t   � 2.95 � .337  ̂  u  2   
t�1

  � residual
t

 (.44) (.036) 12.51

 n � 688, R2 � .114.

The t statistic on  ̂  u  2   
t�1

  is over nine, indicating strong ARCH. As we discussed earlier, a larger error 
at time t � 1 implies a larger variance in stock returns today.
 It is important to see that, though the squared OLS residuals are autocorrelated, the OLS 
residuals themselves are not (as is consistent with the EMH). Regressing  ̂  u 

t
 on  ̂  u 

t�1
 gives  ̂  �  � .0014 

with t
 ̂  � 
 � .038.

Heteroskedasticity and Serial Correlation 

in Regression Models

Nothing rules out the possibility of both heteroskedasticity and serial correlation being 
present in a regression model. If we are unsure, we can always use OLS and compute fully 
robust standard errors, as described in Section 12.5.
 Much of the time serial correlation is viewed as the most important problem, because 
it usually has a larger impact on standard errors and the efficiency of estimators than does 
heteroskedasticity. As we concluded in Section 12.2, obtaining tests for serial correlation 
that are robust to arbitrary heteroskedasticity is fairly straightforward. If we detect serial 
correlation using such a test, we can employ the Cochrane-Orcutt (or Prais-Winsten) trans-
formation [see equation (12.32)] and, in the transformed equation, use heteroskedasticity-
robust standard errors and test statistics. Or, we can even test for heteroskedasticity in 
(12.32) using the Breusch-Pagan or White tests.
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 Alternatively, we can model heteroskedasticity and serial correlation and correct for 
both through a combined weighted least squares AR(1) procedure. Specifically, consider 
the model

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

tk
 � u

t

 u
t
 �  �

__
 h  
t
v

t
 12.52

 
v

t
 � �v

t�1
 � e

t
, ��� � 1,

where the explanatory variables X are independent of e
t
 for all t, and h

t
 is a function of the 

x
tj
. The process {e

t
} has zero mean and constant variance � 2   e   and is serially uncorrelated. 

Therefore, {v
t
} satisfies a stable AR(1) process. The error u

t
 is heteroskedastic, in addition 

to containing serial correlation: 

 Var(u
t 
�x

t
) � � 2   v  ht

,

where � 2   v   � � 2   e  /(1 � � 2). But v
t
 � u

t 
/ �

__
 h  

t
 is homoskedastic and follows a stable AR(1) 

model. Therefore, the transformed equation

 y
t 
/ �

__
 h  

t
 � �

0
(1/ �

__
 h  

t
) � �

1
(x

t1
/ �

__
 h  

t
) � … � �

k
(x

tk 
/ �

__
 h  

t
) � v

t 12.53

has AR(1) errors. Now, if we have a particular kind of heteroskedasticity in mind—that is, 
we know h

t
—we can estimate (12.52) using standard CO or PW methods.

 In most cases, we have to estimate h
t
 first. The following method combines the weighted 

least squares method from Section 8.4 with the AR(1) serial correlation correction from 
Section 12.3.

Feasible GLS with Heteroskedasticity and AR(1) Serial Correlation:

 (i) Estimate (12.52) by OLS and save the residuals,  ̂  u 
t
.

 (ii) Regress log( ̂  u  2   t  ) on x
t1
, …, x

tk
 (or on  ̂  y 

t
,  ̂  y  2   t  ) and obtain the fitted values, say,  ̂  g 

t
.

 (iii) Obtain the estimates of h
t
:  ̂  h 

t
 � exp( ̂  g 

t
).

 (iv) Estimate the transformed equation

  ̂  h 
t
�1/2 y

t
 �  ̂  h 

t
�1/2�

0
 � �

1 
 ̂  h 

t
�1/2x

t1
 � … � �

k 
 ̂  h 

t
�1/2x

tk
 � error

t 12.54

by standard Cochrane-Orcutt or Prais-Winsten methods.
 The feasible GLS estimators obtained from the procedure are asymptotically efficient 
provided the assumptions in model (12.52) hold. More importantly, all standard errors and 
test statistics from the CO or PW estimation are asymptotically valid. If we allow the vari-
ance function to be misspecified, or allow the possibility that any serial correlation does 
not follow an AR(1) model, then we can apply quasi-differencing to (12.54), estimating 
the resulting equation by OLS, and then obtain the Newey-West standard errors. By doing 
so, we would be using a procedure that could be asymptotically efficient while ensuring 
that our inference is valid (asymptotically) if we have misspecified our model of either 
heteroskedasticity or serial correlation. 
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S U M M A R Y

We have covered the important problem of serial correlation in the errors of multiple regression 
models. Positive correlation between adjacent errors is common, especially in static and finite 
distributed lag models. This causes the usual OLS standard errors and statistics to be mislead-
ing (although the  ̂  � 

j
 can still be unbiased, or at least consistent). Typically, the OLS standard 

errors underestimate the true uncertainty in the parameter estimates.
 The most popular model of serial correlation is the AR(1) model. Using this as the starting 
point, it is easy to test for the presence of AR(1) serial correlation using the OLS residuals. An 
asymptotically valid t statistic is obtained by regressing the OLS residuals on the lagged residu-
als, assuming the regressors are strictly exogenous and a homoskedasticity assumption holds. 
Making the test robust to heteroskedasticity is simple. The Durbin-Watson statistic is available 
under the classical linear model assumptions, but it can lead to an inconclusive outcome, and 
it has little to offer over the t test.
 For models with a lagged dependent variable or other nonstrictly exogenous regressors, 
the standard t test on  ̂  u 

t�1
 is still valid, provided all independent variables are included as 

regressors along with  ̂  u 
t�1

. We can use an F or an LM statistic to test for higher order serial 
correlation.
 In models with strictly exogenous regressors, we can use a feasible GLS procedure—
Cochrane-Orcutt or Prais-Winsten—to correct for AR(1) serial correlation. This gives esti-
mates that are different from the OLS estimates: the FGLS estimates are obtained from OLS 
on quasi-differenced variables. All of the usual test statistics from the transformed equation 
are asymptotically valid. Almost all regression packages have built-in features for estimating 
models with AR(1) errors.
 Another way to deal with serial correlation, especially when the strict exogeneity assump-
tion might fail, is to use OLS but to compute serial correlation-robust standard errors (that are 
also robust to heteroskedasticity). Many regression packages follow a method suggested by 
Newey and West (1987); it is also possible to use standard regression packages to obtain one 
standard error at a time.
 Finally, we discussed some special features of heteroskedasticity in time series models. As 
in the cross-sectional case, the most important kind of heteroskedasticity is that which depends 
on the explanatory variables; this is what determines whether the usual OLS statistics are valid. 
The Breusch-Pagan and White tests covered in Chapter 8 can be applied directly, with the 
caveat that the errors should not be serially correlated. In recent years, economists—especially 
those who study the financial markets—have become interested in dynamic forms of heteroske-
dasticity. The ARCH model is the leading example.

K E Y  T E R M S

AR(1) Serial Correlation
Autoregressive Conditional

Heteroskedasticity (ARCH)
Breusch-Godfrey Test
Cochrane-Orcutt (CO) 

Estimation 

Durbin-Watson (DW) 
Statistic 

Feasible GLS (FGLS)
Prais-Winsten (PW) 

Estimation 

Quasi-Differenced Data
Serial Correlation-Robust 

Standard Error
Weighted Least Squares
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P R O B L E M S

12.1 When the errors in a regression model have AR(1) serial correlation, why do the OLS 
standard errors tend to underestimate the sampling variation in the  ̂  � 

j
? Is it always true 

that the OLS standard errors are too small?

12.2 Explain what is wrong with the following statement: “The Cochrane-Orcutt and Prais-
Winsten methods are both used to obtain valid standard errors for the OLS estimates 
when there is a serial correlation.”

12.3 In Example 10.6, we estimated a variant on Fair’s model for predicting presidential 
election outcomes in the United States.

 (i) What argument can be made for the error term in this equation being serially 
uncorrelated? (Hint: How often do presidential elections take place?)

 (ii) When the OLS residuals from (10.23) are regressed on the lagged residuals, we 
obtain  ̂  �  � �.068 and se( ̂  � ) � .240. What do you conclude about serial correlation 
in the u

t
?

 (iii) Does the small sample size in this application worry you in testing for serial 
 correlation?

12.4 True or false: “If the errors in a regression model contain ARCH, they must be serially 
correlated.”

12.5 (i)  In the enterprise zone event study in Computer Exercise C10.5, a regression of the 
OLS residuals on the lagged residuals produces  ̂  �  � .841 and se(  ̂  � ) � .053. What 
implications does this have for OLS?

 (ii) If you want to use OLS but also want to obtain a valid standard error for the EZ 
coefficient, what would you do?

12.6 In Example 12.8, we found evidence of heteroskedasticity in u
t
 in equation (12.47). 

Thus, we compute the heteroskedasticity-robust standard errors (in [�]) along with the 
usual standard errors:

 2return
t
 � .180 � .059 return

t�1

 (.081) (.038)

 [.085] [.069]

 
n � 689, R2 � .0035,  

-
 R 2 � .0020.

 What does using the heteroskedasticity-robust t statistic do to the significance of 
return

t�1
?

C O M P U T E R  E X E R C I S E S

C12.1 In Example 11.6, we estimated a finite DL model in first differences:

 ∆gfr
t
 � �

0
 � �

0
∆pe

t
 � �

1
∆pe

t�1
 � �

2
∆pe

t�2
 � u

t
.

  Use the data in FERTIL3.RAW to test whether there is AR(1) serial correlation in 
the errors.
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C12.2 (i)  Using the data in WAGEPRC.RAW, estimate the distributed lag model from 
Problem 11.5. Use regression (12.14) to test for AR(1) serial correlation.

 (ii)  Reestimate the model using iterated Cochrane-Orcutt estimation. What is your 
new estimate of the long-run propensity?

 (iii)  Using iterated CO, find the standard error for the LRP. (This requires you to 
estimate a modified equation.) Determine whether the estimated LRP is statisti-
cally different from one at the 5% level.

C12.3 (i)  In part (i) of Computer Exercise C11.6, you were asked to estimate the accel-
erator model for inventory investment. Test this equation for AR(1) serial 
 correlation.

 (ii)  If you find evidence of serial correlation, reestimate the equation by Cochrane-
Orcutt and compare the results.

C12.4 (i)  Use NYSE.RAW to estimate equation (12.48). Let  ̂  h 
t
 be the fitted values from 

this equation (the estimates of the conditional variance). How many  ̂  h 
t
 are 

 negative?
 (ii)  Add return 2   

t�1
  to (12.48) and again compute the fitted values,  ̂  h 

t
. Are any  ̂  h 

t
 

 negative?
 (iii)  Use the  ̂  h 

t
 from part (ii) to estimate (12.47) by weighted least squares (as in 

Section 8.4). Compare your estimate of �
1
 with that in equation (11.16). Test 

H
0
: �

1
 � 0 and compare the outcome when OLS is used.

 (iv)  Now, estimate (12.47) by WLS, using the estimated ARCH model in (12.51) to 
obtain the  ̂  h 

t
. Does this change your findings from part (iii)?

C12.5  Consider the version of Fair’s model in Example 10.6. Now, rather than predicting 
the proportion of the two-party vote received by the Democrat, estimate a linear prob-
ability model for whether or not the Democrat wins.

 (i)  Use the binary variable demwins in place of demvote in (10.23) and report the 
results in standard form. Which factors affect the probability of winning? Use 
the data only through 1992.

 (ii)  How many fitted values are less than zero? How many are greater than one?
 (iii)  Use the following prediction rule: if 2demwins � .5, you predict the Democrat 

wins; otherwise, the Republican wins. Using this rule, determine how many of 
the 20 elections are correctly predicted by the model.

 (iv)  Plug in the values of the explanatory variables for 1996. What is the predicted 
probability that Clinton would win the election? Clinton did win; did you get 
the correct prediction?

 (v)  Use a heteroskedasticity-robust t test for AR(1) serial correlation in the errors. 
What do you find?

 (vi)  Obtain the heteroskedasticity-robust standard errors for the estimates in part (i). 
Are there notable changes in any t statistics?

C12.6 (i)  In Computer Exercise C10.7, you estimated a simple relationship between con-
sumption growth and growth in disposable income. Test the equation for AR(1) 
serial correlation (using CONSUMP.RAW).

 (ii)  In Computer Exercise C11.7, you tested the permanent income hypothesis by 
regressing the growth in consumption on one lag. After running this regression, 
test for heteroskedasticity by regressing the squared residuals on gc

t�1
 and gc 2   

t�1
 . 

What do you conclude?
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C12.7 (i)  For Example 12.4, using the data in BARIUM.RAW, obtain the iterative 
Cochrane-Orcutt estimates.

 (ii)  Are the Prais-Winsten and Cochrane-Orcutt estimates similar? Did you expect 
them to be?

C12.8 Use the data in TRAFFIC2.RAW for this exercise. 
 (i)  Run an OLS regression of prcfat on a linear time trend, monthly dummy vari-

ables, and the variables wkends, unem, spdlaw, and beltlaw. Test the errors for 
AR(1) serial correlation using the regression in equation (12.14). Does it make 
sense to use the test that assumes strict exogeneity of the regressors?

 (ii)  Obtain serial correlation- and heteroskedasticity-robust standard errors for the 
coefficients on spdlaw and beltlaw, using four lags in the Newey-West estimator. 
How does this affect the statistical significance of the two policy  variables?

 (iii)  Now, estimate the model using iterative Prais-Winsten and compare the esti-
mates with the OLS estimates. Are there important changes in the policy vari-
able coefficients or their statistical significance?

C12.9  The file FISH.RAW contains 97 daily price and quantity observations on fish prices 
at the Fulton Fish Market in New York City. Use the variable log(avgprc) as the 
dependent variable.

 (i)  Regress log(avgprc) on four daily dummy variables, with Friday as the base. 
Include a linear time trend. Is there evidence that price varies systematically 
within a week?

 (ii)  Now, add the variables wave2 and wave3, which are measures of wave heights 
over the past several days. Are these variables individually significant? Describe 
a mechanism by which stormy seas would increase the price of fish.

 (iii)  What happened to the time trend when wave2 and wave3 were added to the 
regression? What must be going on?

 (iv)  Explain why all explanatory variables in the regression are safely assumed to 
be strictly exogenous.

 (v) Test the errors for AR(1) serial correlation.
 (vi)  Obtain the Newey-West standard errors using four lags. What happens to the 

t statistics on wave2 and wave3? Did you expect a bigger or smaller change 
compared with the usual OLS t statistics?

 (vii)  Now, obtain the Prais-Winsten estimates for the model estimated in part (ii). 
Are wave2 and wave3 jointly statistically significant?

C12.10 Use the data in PHILLIPS.RAW to answer these questions.
 (i)  Using the entire data set, estimate the static Phillips curve equation 

inf
t
 � �

0
 � �

1 
unem

t
 � u

t
 by OLS and report the results in the usual form.

 (ii)  Obtain the OLS residuals from part (i), û
t
, and obtain � from the regression 

û
t 
on û

t�1
. (It is fine to include an intercept in this regression.) Is there strong 

evidence of serial correlation?
 (iii)  Now estimate the static Phillips curve model by iterative Prais-Winsten. 

Compare the estimate of �
1
 with that obtained in Table 12.2. Is there much dif-

ference in the estimate when the later years are added?
 (iv)  Rather than using Prais-Winsten, use iterative Cochrane-Orcutt. How similar 

are the final estimates of �? How similar are the PW and CO estimates of �
1
?
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C12.11 Use the data in NYSE.RAW to answer these questions.
 (i)  Estimate the model in equation (12.47) and obtain the squared OLS residuals. 

Find the average, minimum, and maximum values of û 2   t   over the sample.
 (ii)  Use the squared OLS residuals to estimate the following model of heteroske-

dasticity:

Var(u
t
�return

t�1
, return

t�2
, …) � Var (u

t
�return

t�1
) � �

0
 � �

1
 return

t�1
 � �

2
 return 2   

t�1
 .

   Report the estimated coefficients, the reported standard errors, the R-squared, 
and the adjusted R-squared.

 (iii)  Sketch the conditional variance as a function of the lagged return
�1

. For what 
value of return

�1
 is the variance the smallest, and what is the variance?

 (iv)  For predicting the dynamic variance, does the model in part (ii) produce any 
negative variance estimates?

 (v)  Does the model in part (ii) seem to fit better or worse than the ARCH(1) model 
in Example 12.9? Explain.

 (vi)  To the ARCH(1) regression in equation (12.51), add the second lag, û 2   
t�2

 . Does 
this lag seem important? Does the ARCH(2) model fit better than the model in 
part (ii)?

C12.12 Use the data in INVEN.RAW for this exercise; see also Computer Exercise C11.6.
 (i)  Obtain the OLS residuals from the accelerator model ∆inven

t 
� �

0
 � 

�
1
∆GDP

t
 � u

t
 and use the regression û

t 
on

 
û

t�1
 to test for serial correlation. What 

is the estimate of �? How big a problem does serial correlation seem to be?
 (ii)  Estimate the accelerator model by PW, and compare the estimate of �

1
 to the 

OLS estimate. Why do you expect them to be similar?

C12.13  Use the data in OKUN.RAW to answer this question; see also Computer 
Exercise 11.11. 

 (i)  Estimate the equation pcrgdp
t 
� �

0
 � �

1
∆unem

t 
� u

t
 and test the errors for 

AR(1) serial correlation, without assuming {∆unem
t
: t � 1, 2, …} is strictly 

exogenous. What do you conclude? 
 (ii)  Regress the squared residuals,  ̂  u  2   t  , on ∆unem

t
 (this is the Breusch-Pagan test for 

heteroskedasticity in the simple regression case). What do you conclude? 
 (iii)  Obtain the heteroskedasticity-robust standard error for the OLS estimate  ̂  � 

1
. Is 

it substantially different from the usual OLS standard error? 

C12.14 Use the data in MINWAGE.RAW for this exercise, focusing on sector 232. 
 (i) Estimate the equation

 gwage232
t
 � �

0
 � �

1
gmwage

t
� �

2
gcpi

i 
� u

t
,

   and test the errors for AR(1) serial correlation. Does it matter whether you assume 
gmwage

t
 and gcpi

t
 are strictly exogenous? What do you conclude  overall? 

 (ii)  Obtain the Newey-West standard error for the OLS estimates in part (i), using 
a lag of 12. How do the Newey-West standard errors compare to the usual OLS 
standard errors? 

 (iii)  Now obtain the heteroskedasticity-robust standard errors for OLS, and compare 
them with the usual standard errors and the Newey-West standard errors. Does 
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it appear that serial correlation or heteroskedasticity is more of a problem in this 
application? 

 (iv)  Use the Breusch-Pagan test in the original equation to verify that the errors 
exhibit strong heteroskedasticity. 

 (v)  Add lags 1 through 12 of gmwage to the equation in part (i). Obtain the p-value 
for the joint F test for lags 1 through 12, and compare it with the p-value for the 
heteroskedasticity-robust test. How does adjusting for heteroskedasticity affect 
the significance of the lags? 

 (vi)  Obtain the p-value for the joint significance test in part (v) using the Newey-
West approach. What do you conclude now? 

 (vii)  If you leave out the lags of gmwage, is the estimate of the long-run propsensity 
much different? 



We now turn to some more specialized topics that are not usually covered 
in a one-term, introductory course. Some of these topics require few more 
mathematical skills than the multiple regression analysis did in Parts 1 
and 2. In Chapter 13, we show how to apply multiple regression to inde-

pendently pooled cross sections. The issues raised are very similar to standard cross-
sectional analysis, except that we can study how relationships change over time by 
including time dummy variables. We also illustrate how panel data sets can be analyzed 
in a regression framework. Chapter 14 covers more advanced panel data methods that 
are nevertheless used routinely in applied work.
 Chapters 15 and 16 investigate the problem of endogenous explanatory variables. In 
Chapter 15, we introduce the method of instrumental variables as a way of solving the 
omitted variable problem as well as the measurement error problem. The method of two 
stage least squares is used quite often in empirical economics and is indispensable for 
estimating simultaneous equation models, a topic we turn to in Chapter 16.
 Chapter 17 covers some fairly advanced topics that are typically used in cross-
sectional analysis, including models for limited dependent variables and methods for 
 correcting sample selection bias. Chapter 18 heads in a different direction by covering 
some recent advances in time series econometrics that have proven to be useful in esti-
mating dynamic relationships.
 Chapter 19 should be helpful to students who must write either a term paper or some 
other paper in the applied social sciences. The chapter offers suggestions for how to 
select a topic, collect and analyze the data, and write the paper.
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Pooling Cross Sections 
across Time: Simple Panel 
Data Methods

C H A P T E R 13

Until now, we have covered multiple regression analysis using pure cross-sectional 
or pure time series data. Although these two cases arise often in applications, data 
sets that have both cross-sectional and time series dimensions are being used more 

and more often in empirical research. Multiple regression methods can still be used on 
such data sets. In fact, data with cross-sectional and time series aspects can often shed light 
on important policy questions. We will see several examples in this chapter.
 We will analyze two kinds of data sets in this chapter. An independently pooled cross 
section is obtained by sampling randomly from a large population at different points in 
time (usually, but not necessarily, different years). For instance, in each year, we can draw 
a random sample on hourly wages, education, experience, and so on, from the popula-
tion of working people in the United States. Or, in every other year, we draw a random 
sample on the selling price, square footage, number of bathrooms, and so on, of houses 
sold in a particular metropolitan area. From a statistical standpoint, these data sets have an 
important feature: they consist of independently sampled observations. This was also a key 
aspect in our analysis of cross-sectional data: among other things, it rules out correlation 
in the error terms across different observations.
 An independently pooled cross section differs from a single random sample in that 
sampling from the population at different points in time likely leads to observations that 
are not identically distributed. For example, distributions of wages and education have 
changed over time in most countries. As we will see, this is easy to deal with in practice 
by allowing the intercept in a multiple regression model, and in some cases the slopes, to 
change over time. We cover such models in Section 13.1. In Section 13.2, we discuss how 
pooling cross sections over time can be used to evaluate policy changes.
 A panel data set, while having both a cross-sectional and a time series dimension, 
differs in some important respects from an independently pooled cross section. To collect 
panel data—sometimes called longitudinal data—we follow (or attempt to follow) the 
same individuals, families, firms, cities, states, or whatever, across time. For example, 
a panel data set on individual wages, hours, education, and other factors is collected by 
randomly selecting people from a population at a given point in time. Then, these same
people are reinterviewed at several subsequent points in time. This gives us data on wages, 
hours, education, and so on, for the same group of people in different years.
 Panel data sets are fairly easy to collect for school districts, cities, counties, states, and 
countries, and policy analysis is greatly enhanced by using panel data sets; we will see 
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some examples in the following discussion. For the econometric analysis of panel data, 
we cannot assume that the observations are independently distributed across time. For 
example, unobserved factors (such as ability) that affect someone’s wage in 1990 will also 
affect that person’s wage in 1991; unobserved factors that affect a city’s crime rate in 1985 
will also affect that city’s crime rate in 1990. For this reason, special models and methods 
have been developed to analyze panel data. In Sections 13.3, 13.4, and 13.5, we describe 
the straightforward method of differencing to remove time-constant, unobserved attributes 
of the units being studied. Because panel data methods are somewhat more advanced, we 
will rely mostly on intuition in describing the statistical properties of the estimation proce-
dures, leaving detailed assumptions to the chapter appendix. We follow the same strategy 
in Chapter 14, which covers more complicated panel data methods.

13.1 Pooling Independent Cross 
Sections across Time
Many surveys of individuals, families, and firms are repeated at regular intervals, often 
each year. An example is the Current Population Survey (or CPS), which randomly sam-
ples households each year. (See, for example, CPS78_85.RAW, which contains data from 
the 1978 and 1985 CPS.) If a random sample is drawn at each time period, pooling the 
resulting random samples gives us an independently pooled cross section.
 One reason for using independently pooled cross sections is to increase the sample 
size. By pooling random samples drawn from the same population, but at different points 
in time, we can get more precise estimators and test statistics with more power. Pooling is 
helpful in this regard only insofar as the relationship between the dependent variable and 
at least some of the independent variables remains constant over time.
 As mentioned in the introduction, using pooled cross sections raises only minor sta-
tistical complications. Typically, to reflect the fact that the population may have different 
distributions in different time periods, we allow the intercept to differ across periods, usu-
ally years. This is easily accomplished by including dummy variables for all but one year, 
where the earliest year in the sample is usually chosen as the base year. It is also possible 
that the error variance changes over time, something we discuss later.
 Sometimes, the pattern of coefficients on the year dummy variables is itself of interest. 
For example, a demographer may be interested in the following question: After controlling 
for education, has the pattern of fertility among women over age 35 changed between 
1972 and 1984? The following example illustrates how this question is simply answered 
by using multiple regression analysis with year dummy variables.

E x a m p l e  1 3 . 1

[Women’s Fertility over Time]

The data set in FERTIL1.RAW, which is similar to that used by Sander (1992), comes from the National 
Opinion Research Center’s General Social Survey for the even years from 1972 to 1984, inclusively. We 
use these data to estimate a model explaining the total number of kids born to a woman (kids).
 One question of interest is: After controlling for other observable factors, what has happened to fer-
tility rates over time? The factors we control for are years of education, age, race, region of the country 
where living at age 16, and living environment at age 16. The estimates are given in Table 13.1.
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TABLE  13 . 1

Determinants of Women’s Fertility

Dependent Variable: kids

Independent Variables Coefficients Standard Errors

educ   �.128 .018

age    .532 .138

age2   �.0058 .0016

black   1.076 .174

east    .217 .133

northcen    .363 .121

west    .198 .167

farm  �.053 .147

othrural  �.163 .175

town    .084 .124

smcity    .212 .160

y74    .268 .173

y76   �.097 .179

y78   �.069 .182

y80   �.071 .183

y82   �.522 .172

y84   �.545 .175

constant �7.742 3.052

n � 1,129 
R2 � .1295 
 
-

 R 2 � .1162
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 The base year is 1972. The coefficients on the year dummy variables show a sharp drop in 
 fertility in the early 1980s. For example, the coefficient on y82 implies that, holding education, age, 
and other factors fixed, a woman had on average .52 less children, or about one-half a child, in 1982 
than in 1972. This is a very large drop: holding educ, age, and the other factors fixed, 100 women 
in 1982 are predicted to have about 52 fewer children than 100 comparable women in 1972. Since 
we are controlling for education, this drop is separate from the decline in fertility that is due to the 
increase in average education levels. (The average years of education are 12.2 for 1972 and 13.3 for 
1984.) The coefficients on y82 and y84 represent drops in fertility for reasons that are not captured 
in the explanatory variables.
 Given that the 1982 and 1984 year dummies are individually quite significant, it is not surpris-
ing that as a group the year dummies are jointly very significant: the R-squared for the regression 
without the year dummies is .1019, and this leads to F

6,1111
 � 5.87 and p-value � 0.

 Women with more education have fewer children, and the estimate is very statistically sig-
nificant. Other things being equal, 100 women with a college education will have about 51 fewer 
children on average than 100 women with only a high school education: .128(4) � .512. Age has 
a diminishing effect on fertility. (The turning point in the quadratic is at about age � 46, by which 
time most women have finished having children.)
 The model estimated in Table 13.1 assumes that the effect of each explanatory variable, particu-
larly education, has remained constant. This may or may not be true; you will be asked to explore 
this issue in Computer Exercise C13.1.
 Finally, there may be heteroskedasticity in the error term underlying the estimated equation. This 
can be dealt with using the methods in Chapter 8. There is one interesting difference here: now, the 
error variance may change over time even if it does not change with the values of educ, age, black, 
and so on. The heteroskedasticity-robust standard errors and test statistics are nevertheless valid. 
The Breusch-Pagan test would be obtained by regressing the squared OLS residuals on all of the 
independent variables in Table 13.1, including the year dummies. (For the special case of the White 
statistic, the fitted values 1kids and the squared fitted values are used as the independent variables, as 
always.) A weighted least squares procedure should account for variances that possibly change over 
time. In the procedure discussed in Section 8.4, year dummies would be included in equation (8.32).

 

 We can also interact a year dummy 
variable with key explanatory variables 
to see if the effect of that variable has 
changed over a certain time period. The 
next example examines how the return 
to education and the gender gap have 
changed from 1978 to 1985.

E x a m p l e  1 3 . 2

[Changes in the Return to Education and the Gender Wage Gap]

A log(wage) equation (where wage is hourly wage) pooled across the years 1978 (the base year) 
and 1985 is

 log(wage) � �
0
 � �

0 
y85 � �

1
educ � �

1 
y85�educ � �

2
exper

 � �
3
exper 2 � �

4
union � �

5  
female � �

5 
y85�female � u,

  13.1

Q u e s t i o n  1 3 . 1
In reading Table 13.1, someone claims that, if everything else is 
equal in the table, a black woman is expected to have one more 
child than a nonblack woman. Do you agree with this claim?
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where most explanatory variables should by now be familiar. The variable union is a dummy vari-
able equal to one if the person belongs to a union, and zero otherwise. The variable y85 is a dummy 
variable equal to one if the observation comes from 1985 and zero if it comes from 1978. There are 
550 people in the sample in 1978 and a different set of 534 people in 1985.
 The intercept for 1978 is �

0
, and the intercept for 1985 is �

0
 � �

0
. The return to education in 

1978 is �
1
, and the return to education in 1985 is �

1
 � �

1
. Therefore, �

1
 measures how the return to 

another year of education has changed over the seven-year period. Finally, in 1978, the log(wage) 
differential between women and men is �

5
; the differential in 1985 is �

5
 � �

5
. Thus, we can test the 

null hypothesis that nothing has happened to the gender differential over this seven-year period by 
testing H

0
: �

5
 � 0. The alternative that the gender differential has been reduced is H

1
: �

5
 � 0. For 

simplicity, we have assumed that experience and union membership have the same effect on wages 
in both time periods.
 Before we present the estimates, there is one other issue we need to address—namely, hourly 
wage here is in nominal (or current) dollars. Since nominal wages grow simply due to inflation, we 
are really interested in the effect of each explanatory variable on real wages. Suppose that we settle 
on measuring wages in 1978 dollars. This requires deflating 1985 wages to 1978 dollars. (Using 
the Consumer Price Index for the 1997 Economic Report of the President, the deflation factor is 
107.6/65.2 � 1.65.) Although we can easily divide each 1985 wage by 1.65, it turns out that this is 
not necessary, provided a 1985 year dummy is included in the regression and log(wage) (as opposed 
to wage) is used as the dependent variable. Using real or nominal wage in a logarithmic functional 
form only affects the coefficient on the year dummy, y85. To see this, let P85 denote the deflation 
factor for 1985 wages (1.65, if we use the CPI). Then, the log of the real wage for each person i in 
the 1985 sample is

 log(wage
i
 /P85) � log(wage

i 
) � log(P85).

Now, while wage
i
 differs across people, P85 does not. Therefore, log(P85) will be absorbed into the 

intercept for 1985. (This conclusion would change if, for example, we used a different price index for 
people living in different parts of the country.) The bottom line is that, for studying how the return to 
education or the gender gap has changed, we do not need to turn nominal wages into real wages in 
equation (13.1). Computer Exercise C13.2 asks you to verify this for the current example.
 If we forget to allow different intercepts in 1978 and 1985, the use of nominal wages can pro-
duce seriously misleading results. If we use wage rather than log(wage) as the dependent variable, 
it is important to use the real wage and to include a year dummy.
 The previous discussion generally holds when using dollar values for either the dependent or 
independent variables. Provided the dollar amounts appear in logarithmic form and dummy variables 
are used for all time periods (except, of course, the base period), the use of aggregate price deflators 
will only affect the intercepts; none of the slope estimates will change.
 Now, we use the data in CPS78_85.RAW to estimate the equation:

 1log(wage) � .459 � .118 y85 � .0747 educ � .0185 y85�educ
 (.093) (.124) (.0067) (.0094)

 � .0296 exper � .00040 exper 2 � .202 union
 (.0036) (.00008) (.030) 13.2

 � .317 female � .085 y85�female
 (.037) (.051)

 n � 1,084, R2 � .426,  
-

 R 2 � .422.
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The return to education in 1978 is estimated to be about 7.5%; the return to education in 1985 is 
about 1.85 percentage points higher, or about 9.35%. Because the t statistic on the interaction term 
is .0185/.0094 � 1.97, the difference in the return to education is statistically significant at the 5% 
level against a two-sided alternative.
 What about the gender gap? In 1978, other things being equal, a woman earned about 31.7% less 
than a man (27.2% is the more accurate estimate). In 1985, the gap in log(wage) is �.317 � .085 � 
�.232. Therefore, the gender gap appears to have fallen from 1978 to 1985 by about 8.5 percent-
age points. The t statistic on the interaction term is about 1.67, which means it is significant at the 
5% level against the positive one-sided alternative.

 
 What happens if we interact all independent variables with y85 in equation (13.2)? 
This is identical to estimating two separate equations, one for 1978 and one for 1985. 
Sometimes, this is desirable. For example, in Chapter 7, we discussed a study by Krueger 
(1993) in which he estimated the return to using a computer on the job. Krueger estimates 
two separate equations, one using the 1984 CPS and the other using the 1989 CPS. By 
comparing how the return to education changes across time and whether or not computer 
usage is controlled for, he estimates that one-third to one-half of the observed increase in 
the return to education over the five-year period can be attributed to increased computer 
usage. [See Tables VIII and IX in Krueger (1993).]

The Chow Test for Structural Change across Time

In Chapter 7, we discussed how the Chow test—which is simply an F test—can be used to 
determine whether a multiple regression function differs across two groups. We can apply 
that test to two different time periods as well. One form of the test obtains the sum of 
squared residuals from the pooled estimation as the restricted SSR. The unrestricted SSR 
is the sum of the SSRs for the two separately estimated time periods. The mechanics of 
computing the statistic are exactly as they were in Section 7.4. A heteroskedasticity-robust 
version is also available (see Section 8.2).
 Example 13.2 suggests another way to compute the Chow test for two time periods 
by interacting each variable with a year dummy for one of the two years and testing for 
joint significance of the year dummy and all of the interaction terms. Since the intercept 
in a regression model often changes over time (due to, say, inflation in the housing price 
example), this full-blown Chow test can detect such changes. It is usually more interest-
ing to allow for an intercept difference and then to test whether certain slope coefficients 
change over time (as we did in Example 13.2).
 A Chow test can also be computed for more than two time periods. Just as in the two-
period case, it is usually more interesting to allow the intercepts to change over time and 
then test whether the slope coefficients have changed over time. We can test the constancy 
of slope coefficients generally by interacting all of the time period dummies (except that 
defining the base group) with one, several, or all of the explanatory variables and test 
the joint significance of the interaction terms. Computer Exercises C13.1 and C13.2 are 
examples. For many time periods and explanatory variables, constructing a full set of 
interactions can be tedious. Alternatively, we can adapt the approach described in part (vi) 
of Computer Exercise C7.11. First, estimate the restricted model by doing a pooled 
regression allowing for different time intercepts; this gives SSR

r
. Then, run a regression 

for each of the, say, T time periods and obtain the sum of squared residuals for each time 
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period. The unrestricted sum of squared residuals is obtained as SSR
ur

 � SSR
1
 � SSR

2
 � 

... � SSR
T 
. If there are k explanatory variables (not including the intercept or the time 

dummies) with T time periods, then we are testing (T � 1)k restrictions, and there are 
T � Tk parameters estimated in the unrestricted model. So, if n � n

1
 � n

2
 � ... � n

T
 is 

the total number of observations, then the df of the F test are (T � 1)k and n � T � Tk. 
We compute the F statistic as usual: [(SSR

r
 � SSR

ur
)/SSR

ur
][(n � T � Tk)/(T � 1)k]. 

Unfortunately, as with any F test based on sums of squared residuals or R-squareds, this 
test is not robust to heteroskedasticity (including changing variances across time). To 
obtain a heteroskedasticity-robust test, we must construct the interaction terms and do a 
pooled regression.

13.2 Policy Analysis with Pooled 
Cross Sections
Pooled cross sections can be very useful for evaluating the impact of a certain event or 
policy. The following example of an event study shows how two cross-sectional data sets, 
collected before and after the occurrence of an event, can be used to determine the effect 
on economic outcomes.

E x a m p l e  1 3 . 3

[Effect of a Garbage Incinerator’s Location on Housing Prices]

Kiel and McClain (1995) studied the effect that a new garbage incinerator had on housing values in 
North Andover, Massachusetts. They used many years of data and a fairly complicated econometric 
analysis. We will use two years of data and some simplified models, but our analysis is similar.
 The rumor that a new incinerator would be built in North Andover began after 1978, and 
construction began in 1981. The incinerator was expected to be in operation soon after the start of 
construction; the incinerator actually began operating in 1985. We will use data on prices of houses 
that sold in 1978 and another sample on those that sold in 1981. The hypothesis is that the price of 
houses located near the incinerator would fall relative to the price of more distant houses.
 For illustration, we define a house to be near the incinerator if it is within three miles. [In 
Computer Exercise C13.3, you are instead asked to use the actual distance from the house to the 
incinerator, as in Kiel and McClain (1995).] We will start by looking at the dollar effect on housing 
prices. This requires us to measure price in constant dollars. We measure all housing prices in 
1978 dollars, using the Boston housing price index. Let rprice denote the house price in real terms.
 A naive analyst would use only the 1981 data and estimate a very simple model:

 rprice � �
0
 � �

1
nearinc � u, 13.3

where nearinc is a binary variable equal to one if the house is near the incinerator, and zero other-
wise. Estimating this equation using the data in KIELMC.RAW gives

 2rprice � 101,307.5 � 30,688.27 nearinc

 (3,093.0) (5,827.71) 13.4

 n � 142, R2 � .165.
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Since this is a simple regression on a single dummy variable, the intercept is the average selling price 
for homes not near the incinerator, and the coefficient on nearinc is the difference in the average 
selling price between homes near the incinerator and those that are not. The estimate shows that the 
average selling price for the former group was $30,688.27 less than for the latter group. The t statistic 
is greater than five in absolute value, so we can strongly reject the hypothesis that the average value 
for homes near and far from the incinerator are the same.
 Unfortunately, equation (13.4) does not imply that the siting of the incinerator is causing the 
lower housing values. In fact, if we run the same regression for 1978 (before the incinerator was even 
rumored), we obtain

 2rprice � 82,517.23 � 18,824.37 nearinc

 (2,653.79) (4,744.59) 13.5

 n � 179, R2 � .082.

Therefore, even before there was any talk of an incinerator, the average value of a home near the site 
was $18,824.37 less than the average value of a home not near the site ($82,517.23); the difference 
is statistically significant, as well. This is consistent with the view that the incinerator was built in 
an area with lower housing values.
 How, then, can we tell whether building a new incinerator depresses housing values? The key is 
to look at how the coefficient on nearinc changed between 1978 and 1981. The difference in aver-
age housing value was much larger in 1981 than in 1978 ($30,688.27 versus $18,824.37), even as 
a percentage of the average value of homes not near the incinerator site. The difference in the two 
coefficients on nearinc is

  ̂  � 
1
 � �30,688.27 � (�18,824.37) � �11,863.9.

This is our estimate of the effect of the incinerator on values of homes near the incinerator site. In 
empirical economics,  ̂  � 

1
 has become known as the difference-in-differences estimator because it 

can be expressed as

  ̂  � 
1
 � ( � rprice 

81, nr
 �  � rprice 

81, fr
) � ( � rprice 

78, nr
 �  � rprice 

78, fr
), 13.6

where nr stands for “near the incinerator site” and fr stands for “farther away from the site.” In 
other words,  ̂  � 

1
 is the difference over time in the average difference of housing prices in the two 

locations.
 To test whether    ̂  � 

1
 is statistically different from zero, we need to find its standard error by using 

a regression analysis. In fact,  ̂  � 
1
 can be obtained by estimating

 rprice � �
0
 � �

0 
y81 � �

1
nearinc � �

1
y81�nearinc � u, 13.7

using the data pooled over both years. The intercept, �
0
, is the average price of a home not near the 

incinerator in 1978. The parameter �
0
 captures changes in all housing values in North Andover from 

1978 to 1981. [A comparison of equations (13.4) and (13.5) shows that housing values in North 
Andover, relative to the Boston housing price index, increased sharply over this period.] The coef-
ficient on nearinc, �

1
, measures the location effect that is not due to the presence of the incinerator: 

as we saw in equation (13.5), even in 1978, homes near the incinerator site sold for less than homes 
farther away from the site.
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 The parameter of interest is on the interaction term y81·nearinc: �
1 
measures the decline in hous-

ing values due to the new incinerator, provided we assume that houses both near and far from the 
site did not appreciate at different rates for other reasons.
 The estimates of equation (13.7) are given in column (1) of Table 13.2. The only number we 
could not obtain from equations (13.4) and (13.5) is the standard error of  ̂  � 

1
. The t statistic on  ̂  � 

1
 is 

about �1.59, which is marginally significant against a one-sided alternative (  p-value � .057).
 Kiel and McClain (1995) included various housing characteristics in their analysis of the incin-
erator siting. There are two good reasons for doing this. First, the kinds of houses selling in 1981 
might have been systematically different than those selling in 1978; if so, it is important to control 
for characteristics that might have been different. But just as important, even if the average housing 
characteristics are the same for both years, including them can greatly reduce the error variance, 
which can then shrink the standard error of  ̂  � 

1
. (See Section 6.3 for discussion.) In column (2), we 

control for the age of the houses, using a quadratic. This substantially increases the R-squared (by 
reducing the residual variance). The coefficient on y81·nearinc is now much larger in magnitude, 
and its standard error is lower.
 In addition to the age variables in column (2), column (3) controls for distance to the interstate 
in feet (intst), land area in feet (land), house area in feet (area), number of rooms (rooms), and 
number of baths (baths). This produces an estimate on y81·nearinc closer to that without any con-
trols, but it yields a much smaller standard error: the t statistic for  ̂  � 

1
 is about �2.84. Therefore, we 

find a much more significant effect in column (3) than in column (1). The column (3) estimates are 
 preferred because they control for the most factors and have the smallest standard errors (except in 
the constant, which is not important here). The fact that nearinc has a much smaller coefficient and 

TABLE  13 . 2

Effects of Incinerator Location on Housing Prices

Dependent Variable: rprice

Independent Variable (1) (2) (3)

constant  82,517.23
(2,726.91)

 89,116.54 
(2,406.05)

 13,807.67 
 (11,166.59)

y81  18,790.29
 (4,050.07)

 21,321.04 
 (3,443.63)

 13,928.48 
 (2,798.75)

nearinc  �18,824.37
 (4,875.32)

 9,397.94 
 (4,812.22)

 3,780.34
 (4,453.42)

y81∙nearinc  �11,863.90
 (7,456.65)

 �21,920.27
 (6,359.75)

 �14,177.93
 (4,987.27)

Other controls No age, age2 Full Set

Observations
R-squared

 321
.174

 321
.414

 321
.660
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is insignificant in column (3) indicates that the characteristics included in column (3) largely capture 
the housing characteristics that are most important for determining housing prices.
 For the purpose of introducing the method, we used the level of real housing prices in 
Table 13.2. It makes more sense to use log(  price) [or log(rprice)] in the analysis in order to get an 
approximate percentage effect. The basic model becomes

 log(price) � �
0
 � �

0 
y81 � �

1
nearinc � �

1
y81·nearinc � u. 13.8

Now, 100��
1
 is the approximate percentage reduction in housing value due to the incinerator. [Just 

as in Example 13.2, using log(price) versus log(rprice) only affects the coefficient on y81.] Using 
the same 321 pooled observations gives

 2log(  price) � 11.29 � .457 y81 � .340 nearinc � .063 y81·nearinc

 (.31) (.045) (.055) (.083) 13.9

 n � 321, R2 � .409.

The coefficient on the interaction term implies that, because of the new incinerator, houses near the 
incinerator lost about 6.3% in value. However, this estimate is not statistically different from zero. 
But when we use a full set of controls, as in column (3) of Table 13.2 (but with intst, land, and area 
appearing in logarithmic form), the coefficient on y81�nearinc becomes �.132 with a t statistic of 
about �2.53. Again, controlling for other factors turns out to be important. Using the logarithmic 
form, we estimate that houses near the incinerator were devalued by about 13.2%.

 
 The methodology applied to the previous example has numerous applications, 
especially when the data arise from a natural experiment (or a quasi-experiment). A 
natural experiment occurs when some exogenous event—often a change in government 
policy— changes the environment in which individuals, families, firms, or cities operate. A 
natural experiment always has a control group, which is not affected by the policy change, 
and a treatment group, which is thought to be affected by the policy change. Unlike a true 
experiment, in which treatment and control groups are randomly and explicitly chosen, 
the control and treatment groups in natural experiments arise from the particular policy 
change. To control for systematic differences between the control and treatment groups, 
we need two years of data, one before the policy change and one after the change. Thus, 
our sample is usefully broken down into four groups: the control group before the change, 
the control group after the change, the treatment group before the change, and the treat-
ment group after the change.
 Call C the control group and T the treatment group, letting dT equal unity for those in 
the treatment group T, and zero otherwise. Then, letting d2 denote a dummy variable for 
the second (post-policy change) time period, the equation of interest is

 y � �
0
 � �

0
d2 � �

1
d T � �

1
d2·d T � other factors, 13.10

where y is the outcome variable of interest. As in Example 13.3, �
1
 measures the effect of 

the policy. Without other factors in the regression,  ̂  � 
1
 will be the difference-in-differences 

estimator:

  ̂  � 
1
 � (  - y 

2,T
 �  - y 

2,C
) � (  - y 

1,T
 �  - y 

1,C
), 13.11
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where the bar denotes average, the first subscript denotes the year, and the second sub-
script denotes the group.
 The general difference-in-differences setup is shown in Table 13.3. Table 13.3 sug-
gests that the parameter �

1
, sometimes called the average treatment effect (because it 

measures the effect of the “treatment” or policy on the average outcome of y), can be 
estimated in two ways: (1) Compute the differences in averages between the treatment 
and control groups in each time period, and then difference the results over time; this is 
just as in equation (13.11); (2) Compute the change in averages over time for each of the 
treatment and control groups, and then difference these changes, which means we simply 
write  ̂  � 

1 
� ( - y 

2,T
 �  - y 

1,T
) � ( - y 

2,C
 �  - y 

1,C
). Naturally, the estimate  ̂  � 

1
 does not depend on how 

we do the differencing, as is seen by simple rearrangement.
 When explanatory variables are added to equation (13.10) (to control for the fact that 
the populations sampled may differ systematically over the two periods), the OLS estimate 
of �

1
 no longer has the simple form of (13.11), but its interpretation is similar.

E x a m p l e  1 3 . 4

[Effect of Worker Compensation Laws on Weeks out of Work]

Meyer, Viscusi, and Durbin (1995) (hereafter, MVD) studied the length of time (in weeks) that 
an injured worker receives workers’ compensation. On July 15, 1980, Kentucky raised the cap on 
weekly earnings that were covered by workers’ compensation. An increase in the cap has no effect 
on the benefit for low-income workers, but it makes it less costly for a high-income worker to stay 
on workers’ compensation. Therefore, the control group is low-income workers, and the treatment 
group is high-income workers; high-income workers are defined as those who were subject to the 
pre-policy change cap. Using random samples both before and after the policy change, MVD were 
able to test whether more generous workers’ compensation causes people to stay out of work longer 
(everything else fixed). They started with a difference-in-differences analysis, using log(durat) as 
the dependent variable. Let afchnge be the dummy variable for observations after the policy change 

TABLE  13 . 3

Illustration of the Difference-in-Differences Estimator

Before After After – Before

Control �
0

�
0
 � �

0
�

0

Treatment �
0
 � �

1
�

0
 � �

0
 � �

1
 � �

1
�

0
 � �

1

Treatment � Control �
1

�
1
 � �

1
�

1
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and highearn the dummy variable for high earners. Using the data in INJURY.RAW, the estimated 
equation, with standard errors in parentheses, is

 2log(durat) � 1.126 � .0077 afchnge � .256 highearn

 (0.031) (.0447) (.047)

 � .191 afchnge�highearn 13.12

 (.069)

 n � 5,626, R2 � .021.

Therefore,  ̂  � 
1
 � .191 (t � 2.77), which implies that the average length of time on workers’ compen-

sation for high earners increased by about 19% due to the increased earnings cap. The coefficient on 
afchnge is small and statistically insignificant: as is expected, the increase in the earnings cap has no 
effect on duration for low-income workers.
 This is a good example of how we can get a fairly precise estimate of the effect of a policy 
change, even though we cannot explain much of the variation in the dependent variable. The dummy 
variables in (13.12) explain only 2.1% of the variation in log(durat). This makes sense: there are 
clearly many factors, including severity of the injury, that affect how long someone receives workers’ 
compensation. Fortunately, we have a very large sample size, and this allows us to get a significant 
t statistic.
 MVD also added a variety of controls for gender, marital status, age, industry, and type of injury. 
This allows for the fact that the kinds of people and types of injuries may differ systematically in 
the two years. Controlling for these factors turns out to have little effect on the estimate of �

1
. (See 

Computer Exercise C13.4.)

 
 Sometimes, the two groups consist 
of people living in two neighboring 
states in the United States. For example, 
to assess the impact of changing ciga-
rette taxes on cigarette consumption, 
we can obtain random samples from 
two states for two years. In State A, the control group, there was no change in the  cigarette 
tax. In State B, the treatment group, the tax increased (or decreased) between the two 
years. The outcome variable would be a measure of cigarette consumption, and  equation 
(13.10) can be estimated to determine the effect of the tax on cigarette consumption.
 For an interesting survey on natural experiment methodology and several additional 
examples, see Meyer (1995).

13.3 Two-Period Panel Data Analysis
We now turn to the analysis of the simplest kind of panel data: for a cross section of 
individuals, schools, firms, cities, or whatever, we have two years of data; call these t � 1 
and t � 2. These years need not be adjacent, but t � 1 corresponds to the earlier year. For 
example, the file CRIME2.RAW contains data on (among other things) crime and unem-
ployment rates for 46 cities for 1982 and 1987. Therefore, t � 1 corresponds to 1982, and 
t � 2 corresponds to 1987.

Q u e s t i o n  1 3 . 2
What do you make of the coefficient and t statistic on highearn 
in equation (13.12)?
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 What happens if we use the 1987 cross section and run a simple regression of crmrte 
on unem? We obtain

 2crmrte � 128.38 � 4.16 unem

 (20.76) (3.42)

 n � 46, R2 � .033.

If we interpret the estimated equation causally, it implies that an increase in the unemploy-
ment rate lowers the crime rate. This is certainly not what we expect. The coefficient on 
unem is not statistically significant at standard significance levels: at best, we have found 
no link between crime and unemployment rates.
 As we have emphasized throughout this text, this simple regression equation likely 
suffers from omitted variable problems. One possible solution is to try to control for more 
factors, such as age distribution, gender distribution, education levels, law enforcement 
efforts, and so on, in a multiple regression analysis. But many factors might be hard to 
control for. In Chapter 9, we showed how including the crmrte from a previous year—in 
this case, 1982—can help to control for the fact that different cities have historically dif-
ferent crime rates. This is one way to use two years of data for estimating a causal effect.
 An alternative way to use panel data is to view the unobserved factors affecting the 
dependent variable as consisting of two types: those that are constant and those that vary 
over time. Letting i denote the cross-sectional unit and t the time period, we can write a 
model with a single observed explanatory variable as

 y
it
 � �

0
 � �

0
d2

t
 � �

1
x

it
 � a

i
 � u

it
, t � 1,2. 13.13

In the notation y
it
, i denotes the person, firm, city, and so on, and t denotes the time period. 

The variable d2
t
 is a dummy variable that equals zero when t � 1 and one when t � 2; 

it does not change across i, which is why it has no i subscript. Therefore, the intercept for 
t � 1 is �

0
, and the intercept for t � 2 is �

0
 � �

0
. Just as in using independently pooled 

cross sections, allowing the intercept to change over time is important in most applica-
tions. In the crime example, secular trends in the United States will cause crime rates in 
all U.S. cities to change, perhaps markedly, over a five-year period.
 The variable a

i
 captures all unobserved, time-constant factors that affect y

it
. (The fact 

that a
i
 has no t subscript tells us that it does not change over time.) Generically, a

i
 is called 

an unobserved effect. It is also common in applied work to find a
i
 referred to as a fixed 

effect, which helps us to remember that a
i
 is fixed over time. The model in (13.13) is 

called an unobserved effects model or a fixed effects model. In applications, you might 
see a

i
 referred to as unobserved heterogeneity as well (or individual heterogeneity, firm 

heterogeneity, city heterogeneity, and so on).
 The error u

it
 is often called the idiosyncratic error or time-varying error, because it 

represents unobserved factors that change over time and affect y
it
. These are very much 

like the errors in a straight time series regression equation.
 A simple unobserved effects model for city crime rates for 1982 and 1987 is

 crmrte
it
 � �

0
 � �

0
d87

t
 � �

1
unem

it
 � a

i
 � u

it
, 13.14

where d87 is a dummy variable for 1987. Since i denotes different cities, we call a
i
 an 

unobserved city effect or a city fixed effect: it represents all factors affecting city crime 
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rates that do not change over time. Geographical features, such as the city’s location in 
the United States, are included in a

i
. Many other factors may not be exactly constant, 

but they might be roughly constant over a five-year period. These might include certain 
demographic features of the population (age, race, and education). Different cities may 
have their own methods for reporting crimes, and the people living in the cities might have 
different attitudes toward crime; these are typically slow to change. For historical reasons, 
cities can have very different crime rates, and historical factors are effectively captured by 
the unobserved effect a

i
.

 How should we estimate the parameter of interest, �
1
, given two years of panel data? 

One possibility is to just pool the two years and use OLS, essentially as in Section 13.1. 
This method has two drawbacks. The most important of these is that, in order for pooled 
OLS to produce a consistent estimator of �

1
, we would have to assume that the unobserved 

effect, a
i
, is uncorrelated with x

it
. We can easily see this by writing (13.13) as

 y
it
 � �

0
 � �

0
d2

t
 � �

1
x

it
 � v

it
, t � 1,2, 13.15

where v
it
 � a

i
 � u

it
 is often called the composite error. From what we know about OLS, 

we must assume that v
it
 is uncorrelated with x

it
, where t � 1 or 2, for OLS to consistently 

estimate �
1
 (and the other parameters). This is true whether we use a single cross section or 

pool the two cross sections. Therefore, 
even if we assume that the idiosyncratic 
error u

it
 is uncorrelated with x

it
, pooled 

OLS is biased and inconsistent if a
i
 and 

x
it
 are correlated. The resulting bias 

in pooled OLS is sometimes called 
 heterogeneity bias, but it is really 
just bias caused from omitting a time-
 constant variable.
 To illustrate what happens, we use the data in CRIME2.RAW to estimate (13.14) 
by pooled OLS. Since there are 46 cities and two years for each city, there are 92 total 
 observations:

 2crmrte � 93.42 � 7.94 d87 � .427 unem

 (12.74) (7.98) (1.188) 13.16

 n � 92, R2 � .012.

(When reporting the estimated equation, we usually drop the i and t subscripts.) The 
coefficient on unem, though positive in (13.16), has a very small t statistic. Thus, using 
pooled OLS on the two years has not substantially changed anything from using a single 
cross section. This is not surprising since using pooled OLS does not solve the omitted 
variables problem. (The standard errors in this equation are incorrect because of the serial 
correlation described in Question 13.3, but we ignore this since pooled OLS is not the 
focus here.)
 In most applications, the main reason for collecting panel data is to allow for the 
unobserved effect, a

i
, to be correlated with the explanatory variables. For example, in the 

crime equation, we want to allow the unmeasured city factors in a
i
 that affect the crime 

rate to also be correlated with the unemployment rate. It turns out that this is simple to 

Q u e s t i o n  1 3 . 3
Suppose that a

i
, ui1, and ui2 have zero means and are pairwise 

uncorrelated. Show that Cov(vi1, vi2) � Var(ai), so that the com-
posite errors are positively serially correlated across time, unless 
ai � 0. What does this imply about the usual OLS standard errors 
from pooled OLS estimation?
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allow: because a
i
 is constant over time, we can difference the data across the two years. 

More precisely, for a cross-sectional observation i, write the two years as

 y
i2
 � (�

0
 � �

0
) � �

1
x

i2
 � a

i
 � u

i2
 (t � 2)

 y
i1
 � �

0
 � �

1
x

i1
 � a

i
 � u

i1
 (t � 1).

If we subtract the second equation from the first, we obtain

 ( y
i2
 � y

i1
) � �

0
 � �

1
(x

i2
 � x

i1
) � (u

i2
 � u

i1
),

or

 ∆y
i
 � �

0
 � �

1
∆  x

i
 � ∆u

i
, 13.17

where ∆ denotes the change from t � 1 to t � 2. The unobserved effect, a
i
, does not appear 

in (13.17): it has been “differenced away.” Also, the intercept in (13.17) is actually the 
change in the intercept from t � 1 to t � 2.
 Equation (13.17), which we call the first-differenced equation, is very simple. It is just 
a single cross-sectional equation, but each variable is differenced over time. We can analyze 
(13.17) using the methods we developed in Part 1, provided the key assumptions are satis-
fied. The most important of these is that ∆u

i
 is uncorrelated with ∆x

i
. This assumption holds 

if the idiosyncratic error at each time t, u
it
, is uncorrelated with the explanatory variable 

in both time periods. This is another version of the strict exogeneity assumption that 
we encountered in Chapter 10 for time series models. In particular, this assumption rules out 
the case where x

it
 is the lagged dependent variable, y

i,t�1
. Unlike in Chapter 10, we allow x

it
 to 

be correlated with unobservables that are constant over time. When we obtain the OLS 
 estimator of �

1
 from (13.17), we call the resulting estimator the first-differenced estimator.

 In the crime example, assuming that ∆u
i
 and ∆unem

i
 are uncorrelated may be reason-

able, but it can also fail. For example, suppose that law enforcement effort (which is in the 
idiosyncratic error) increases more in cities where the unemployment rate decreases. This 
can cause negative correlation between ∆u

i
 and ∆unem

i
, which would then lead to bias in 

the OLS estimator. Naturally, this problem can be overcome to some extent by including 
more factors in the equation, something we will cover later. As usual, it is always possible 
that we have not accounted for enough time-varying factors.
 Another crucial condition is that ∆x

i
 must have some variation across i. This qualifi-

cation fails if the explanatory variable does not change over time for any cross-sectional 
observation, or if it changes by the same amount for every observation. This is not an 
issue in the crime rate example because the unemployment rate changes across time for 
almost all cities. But, if i denotes an individual and x

it
 is a dummy variable for gender, 

∆x
i
 � 0 for all i; we clearly cannot estimate (13.17) by OLS in this case. This actually makes 

perfectly good sense: since we allow a
i
 to be correlated with x

it
, we cannot hope to separate 

the effect of a
i
 on y

it
 from the effect of any variable that does not change over time.

 The only other assumption we need to apply to the usual OLS statistics is that (13.17) 
satisfies the homoskedasticity assumption. This is reasonable in many cases, and, if it 
does not hold, we know how to test and correct for heteroskedasticity using the methods 
in Chapter 8. It is sometimes fair to assume that (13.17) fulfills all of the classical linear 
model assumptions. The OLS estimators are unbiased and all statistical inference is exact 
in such cases.
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 When we estimate (13.17) for the crime rate example, we get

 ∆2crmrte � 15.40 � 2.22 ∆unem

 (4.70) (.88) 13.18 

 n � 46, R2 � .127,

which now gives a positive, statistically significant relationship between the crime and 
unemployment rates. Thus, differencing to eliminate time-constant effects makes a big 
difference in this example. The intercept in (13.18) also reveals something interesting. 
Even if ∆unem � 0, we predict an increase in the crime rate (crimes per 1,000 people) of 
15.40. This reflects a secular increase in crime rates throughout the United States from 
1982 to 1987.
 Even if we do not begin with the unobserved effects model (13.13), using differ-
ences across time makes intuitive sense. Rather than estimating a standard cross-sectional 
 relationship—which may suffer from omitted variables, thereby making ceteris paribus 
conclusions difficult—equation (13.17) explicitly considers how changes in the explana-
tory variable over time affect the change in y over the same time period. Nevertheless, it is 
still very useful to have (13.13) in mind: it explicitly shows that we can estimate the effect 
of x

it
 on y

it
, holding a

i
 fixed.

 Although differencing two years of panel data is a powerful way to control for unob-
served effects, it is not without cost. First, panel data sets are harder to collect than a sin-
gle cross section, especially for individuals. We must use a survey and keep track of the 
individual for a follow-up survey. It is often difficult to locate some people for a second 
survey. For units such as firms, some firms will go bankrupt or merge with other firms. 
Panel data are much easier to obtain for schools, cities, counties, states, and countries.
 Even if we have collected a panel data set, the differencing used to eliminate a

i
 can 

greatly reduce the variation in the explanatory variables. While x
it
 frequently has substan-

tial variation in the cross section for each t, ∆ x
i
 may not have much variation.We know 

from Chapter 3 that little variation in ∆ x
i
 can lead to a large standard error for  ̂  � 

1
 when 

estimating (13.17) by OLS. We can combat this by using a large cross section, but this 
is not always possible. Also, using longer differences over time is sometimes better than 
using year-to-year changes.
 As an example, consider the problem of estimating the return to education, now using 
panel data on individuals for two years. The model for person i is

 log(wage
it
) � �

0
 � �

0
d2

t
 � �

1
educ

it
 � a

i
 � u

it
, t � 1, 2,

where a
i
 contains unobserved ability—which is probably correlated with educ

it
. Again, 

we allow different intercepts across time to account for aggregate productivity gains (and 
inflation, if wage

it
 is in nominal terms). Since, by definition, innate ability does not change 

over time, panel data methods seem ideally suited to estimate the return to education. The 
equation in first differences is

 ∆log(wage
i
) � �

0
 � �

1
∆educ

i
 � ∆u

i
, 13.19

and we can estimate this by OLS. The problem is that we are interested in working adults, 
and for most employed individuals, education does not change over time. If only a small 
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fraction of our sample has ∆educ
i
 different from zero, it will be difficult to get a precise 

estimator of �
1
 from (13.19), unless we have a rather large sample size. In theory, using a 

first-differenced equation to estimate the return to education is a good idea, but it does not 
work very well with most currently available panel data sets.
 Adding several explanatory variables causes no difficulties. We begin with the unob-
served effects model

 y
it
 � �

0
 � �

0
d2

t
 � �

1
x

it1
 � �

2 
x

it2
 � … � �

k 
x

itk
 � a

i
 � u

it
, 13.20

for t � 1 and 2. This equation looks more complicated than it is because each explanatory 
variable has three subscripts. The first denotes the cross-sectional observation number, the 
second denotes the time period, and the third is just a variable label.

E x a m p l e  1 3 . 5

[Sleeping versus Working]

We use the two years of panel data in SLP75_81.RAW, from Biddle and Hamermesh (1990), to 
estimate the tradeoff between sleeping and working. In Problem 3.3, we used just the 1975 cross 
section. The panel data set for 1975 and 1981 has 239 people, which is much smaller than the 1975 
cross section that includes over 700 people. An unobserved effects model for total minutes of sleep-
ing per week is

 slpnap
it
 � �

0
 � �

0
d81

t
 � �

1
totwrk

it
 � �

2
educ

it
 � �

3
marr

it

 � �
4 
yngkid

it
 � �

5 
gdhlth

it
 � a

i
 � u

it
, t � 1, 2.

The unobserved effect, a
i
, would be called an unobserved individual effect or an individual fixed 

effect. It is potentially important to allow a
i
 to be correlated with totwrk

it
: the same factors (some bio-

logical) that cause people to sleep more or less (captured in a
i
) are likely correlated with the amount 

of time spent working. Some people just have more energy, and this causes them to sleep less and 
work more. The variable educ is years of education, marr is a marriage dummy variable, yngkid is a 
dummy variable indicating the presence of a small child, and gdhlth is a “good health” dummy vari-
able. Notice that we do not include gender or race (as we did in the cross-sectional analysis), since 
these do not change over time; they are part of a

i
. Our primary interest is in �

1
.

 Differencing across the two years gives the estimable equation

 ∆slpnap
i
 � �

0
 � �

1
∆totwrk

i
 � �

2
∆educ

i
 � �

3
∆marr

i

 � �
4
∆yngkid

i
 � �

5
∆gdhlth

i
 � ∆u

i
.

Assuming that the change in the idiosyncratic error, ∆u
i
, is uncorrelated with the changes in all 

explanatory variables, we can get consistent estimators using OLS. This gives

 ∆2slpnap � �92.63 � .227 ∆totwrk � .024 ∆educ

 (45.87) (.036) (48.759)

 � 104.21 ∆marr � 94.67 ∆yngkid � 87.58 ∆gdhlth 13.21

 (92.86) (87.65) (76.60)

 n � 239, R2 � .150.
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The coefficient on ∆totwrk indicates a tradeoff between sleeping and working: holding other factors 
fixed, one more hour of work is associated with .227(60) � 13.62 fewer minutes of sleeping. The 
t statistic (�6.31) is very significant. No other estimates, except the intercept, are statistically differ-
ent from zero. The F test for joint significance of all variables except ∆totwrk gives p-value � .49, 
which means they are jointly insignificant at any reasonable significance level and could be dropped 
from the equation.
 The standard error on ∆educ is especially large relative to the estimate. This is the phenomenon 
described earlier for the wage equation. In the sample of 239 people, 183 (76.6%) have no change 
in education over the six-year period; 90% of the people have a change in education of at most one 
year. As reflected by the extremely large standard error of  ̂  � 

2
, there is not nearly enough variation in 

education to estimate �
2
 with any precision. Anyway,  ̂  � 

2
 is practically very small.

 

 Panel data can also be used to estimate finite distributed lag models. Even if we specify 
the equation for only two years, we need to collect more years of data to obtain the lagged 
explanatory variables. The following is a simple example.

E x a m p l e  1 3 . 6

[Distributed Lag of Crime Rate on Clear-Up Rate]

Eide (1994) uses panel data from police districts in Norway to estimate a distributed lag model for 
crime rates. The single explanatory variable is the “clear-up percentage” (clrprc)—the percentage 
of crimes that led to a conviction. The crime rate data are from the years 1972 and 1978. Following 
Eide, we lag clrprc for one and two years: it is likely that past clear-up rates have a deterrent effect 
on current crime. This leads to the following unobserved effects model for the two years:

 log(crime
it
) � �

0
 � �

0
d78

t
 � �

1
clrprc

i, t�1
 � �

2
clrprc

i, t�2
 � a

i
 � u

it
.

When we difference the equation and estimate it using the data in CRIME3.RAW, we get

 ∆2log(crime) � .086 � .0040 ∆clrprc
�1

 � .0132 ∆clrprc
�2

 (.064) (.0047) (.0052) 13.22

 n � 53, R2 � .193,  
-

 R 2 � .161.

The second lag is negative and statistically significant, which implies that a higher clear-up percent-
age two years ago would deter crime this year. In particular, a 10 percentage point increase in clrprc 
two years ago would lead to an estimated 13.2% drop in the crime rate this year. This suggests that 
using more resources for solving crimes and obtaining convictions can reduce crime in the future.

 

Organizing Panel Data

In using panel data in an econometric study, it is important to know how the data should 
be stored. We must be careful to arrange the data so that the different time periods for the 
same cross-sectional unit (person, firm, city, and so on) are easily linked. For concrete-
ness, suppose that the data set is on cities for two different years. For most purposes, the 
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best way to enter the data is to have two records for each city, one for each year: the first 
record for each city corresponds to the early year, and the second record is for the later 
year. These two records should be adjacent. Therefore, a data set for 100 cities and 
two years will contain 200 records. The first two records are for the first city in the sample, 
the next two records are for the second city, and so on. (See Table 1.5 in Chapter 1 for 
an example.) This makes it easy to construct the differences to store these in the second 
record for each city, and to do a pooled cross-sectional analysis, which can be compared 
with the differencing estimation.
 Most of the two-period panel data sets accompanying this text are stored in this way 
(for example, CRIME2.RAW, CRIME3.RAW, GPA3.RAW, LOWBRTH.RAW, and 
RENTAL.RAW). We use a direct extension of this scheme for panel data sets with more 
than two time periods.
 A second way of organizing two periods of panel data is to have only one record per 
cross-sectional unit. This requires two entries for each variable, one for each time period. 
The panel data in SLP75_81.RAW are organized in this way. Each individual has data on 
the variables slpnap75, slpnap81, totwrk75, totwrk81, and so on. Creating the differences 
from 1975 to 1981 is easy. Other panel data sets with this structure are TRAFFIC1.RAW 
and VOTE2.RAW. Putting the data in one record, however, does not allow a pooled OLS 
analysis using the two time periods on the original data. Also, this organizational method 
does not work for panel data sets with more than two time periods, a case we will consider 
in Section 13.5.

13.4 Policy Analysis with Two-Period 
Panel Data
Panel data sets are very useful for policy analysis and, in particular, program evaluation. 
In the simplest program evaluation setup, a sample of individuals, firms, cities, and so on 
is obtained in the first time period. Some of these units, those in the treatment group, then 
take part in a particular program in a later time period; the ones that do not are the con-
trol group. This is similar to the natural experiment literature discussed earlier, with one 
important difference: the same cross-sectional units appear in each time period.
 As an example, suppose we wish to evaluate the effect of a Michigan job training pro-
gram on worker productivity of manufacturing firms (see also Computer Exercise C9.3). 
Let scrap

it
 denote the scrap rate of firm i during year t (the number of items, per 100, that 

must be scrapped due to defects). Let grant
it 
be a binary indicator equal to one if firm i in 

year t received a job training grant. For the years 1987 and 1988, the model is

 scrap
it
 � �

0
 � �

0 
y88

t
 � �

1
grant

it
 � a

i
 � u

it
, t � 1, 2, 13.23

where y88
t
 is a dummy variable for 1988 and a

i
 is the unobserved firm effect or the firm 

fixed effect. The unobserved effect contains such factors as average employee ability, 
capital, and managerial skill; these are roughly constant over a two-year period. We are 
concerned about a

i
 being systematically related to whether a firm receives a grant. For 

example, administrators of the program might give priority to firms whose workers have 
lower skills. Or, the opposite problem could occur: to make the job training program 
appear effective, administrators may give the grants to employers with more productive 
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workers. Actually, in this particular program, grants were awarded on a first-come, first-
served basis. But whether a firm applied early for a grant could be correlated with worker 
productivity. In that case, an analysis using a single cross section or just a pooling of the 
cross sections will produce biased and inconsistent estimators.
 Differencing to remove a

i
 gives

 ∆ scrap
i
 � �

0
 � �

1
∆ grant

i
 � ∆u

i
. 13.24

Therefore, we simply regress the change in the scrap rate on the change in the grant indi-
cator. Because no firms received grants in 1987, grant

i1
 � 0 for all i, and so ∆ grant

i
 � 

grant
i2
 � grant

i1
 � grant

i2
, which simply indicates whether the firm received a grant in 

1988. However, it is generally important to difference all variables (dummy variables 
included) because this is necessary for removing a

i
 in the unobserved effects model 

(13.23).
 Estimating the first-differenced equation using the data in JTRAIN.RAW gives

 ∆ 1scrap � �.564 � .739 ∆grant

 (.405) (.683)

 n � 54, R2 � .022.

Therefore, we estimate that having a job training grant lowered the scrap rate on average 
by �.739. But the estimate is not statistically different from zero.
 We get stronger results by using log(scrap) and estimating the percentage effect:

 ∆1log(scrap) � �.057 � .317 ∆ grant

 (.097) (.164)

 n � 54, R2 � .067.

Having a job training grant is estimated to lower the scrap rate by about 27.2%. [We 
obtain this estimate from equation (7.10): exp(�.317) � 1 � �.272.] The t statistic is 
about �1.93, which is marginally significant. By contrast, using pooled OLS of log(scrap) 
on y88 and grant gives  ̂  � 

1
 � .057 (standard error � .431). Thus, we find no significant 

relationship between the scrap rate and the job training grant. Since this differs so much 
from the first-difference estimates, it suggests that firms that have lower-ability workers 
are more likely to receive a grant.
 It is useful to study the program evaluation model more generally. Let y

it
 denote an 

outcome variable and let prog
it
 be a program participation dummy variable. The simplest 

unobserved effects model is

 y
it
 � �

0
 � �

0
d2

t
 � �

1 
prog

it
 � a

i
 � u

it
. 13.25

If program participation only occurred in the second period, then the OLS estimator of �
1
 

in the differenced equation has a very simple representation:

  ̂  � 
1
 �  

�
 ∆y 
treat

 �  
�

 ∆y 
control

. 13.26

That is, we compute the average change in y over the two time periods for the treatment 
and control groups. Then,  ̂  � 

1
 is the difference of these. This is the panel data version of the 
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difference-in-differences estimator in equation (13.11) for two pooled cross sections. With 
panel data, we have a potentially important advantage: we can difference y across time for 
the same cross-sectional units. This allows us to control for person-, firm-, or city-specific 
effects, as the model in (13.25) makes clear.
 If program participation takes place in both periods,  ̂  � 

1
 cannot be written as in (13.26), 

but we interpret it in the same way: it is the change in the average value of y due to pro-
gram participation.
 Controlling for time-varying factors does not change anything of significance. We 
simply difference those variables and include them along with ∆prog. This allows us to 
control for time-varying variables that might be correlated with program designation.
 The same differencing method works for analyzing the effects of any policy that varies 
across city or state. The following is a simple example.

E x a m p l e  1 3 . 7

[Effect of Drunk Driving Laws on Traffic Fatalities]

Many states in the United States have adopted different policies in an attempt to curb drunk driv-
ing. Two types of laws that we will study here are open container laws—which make it illegal for 
passengers to have open containers of alcoholic beverages—and administrative per se laws—which 
allow courts to suspend licenses after a driver is arrested for drunk driving but before the driver is 
convicted. One possible analysis is to use a single cross section of states to regress driving fatalities 
(or those related to drunk driving) on dummy variable indicators for whether each law is present. This 
is unlikely to work well because states decide, through legislative processes, whether they need such 
laws. Therefore, the presence of laws is likely to be related to the average drunk driving  fatalities 
in recent years. A more convincing analysis uses panel data over a time period where some states 
adopted new laws (and some states may have repealed existing laws). The file TRAFFIC1.RAW 
contains data for 1985 and 1990 for all 50 states and the District of Columbia. The dependent vari-
able is the number of traffic deaths per 100 million miles driven (dthrte). In 1985, 19 states had 
open container laws, while 22 states had such laws in 1990. In 1985, 21 states had per se laws; the 
number had grown to 29 by 1990.
 Using OLS after first differencing gives

 ∆1dthrte � �.497 � .420 ∆open � .151 ∆admn

 (.052) (.206) (.117) 13.27

 n � 51, R2 � .119.

The estimates suggest that adopting an open container law lowered the traffic fatality rate by .42, 
a nontrivial effect given that the average death rate in 1985 was 2.7 with a standard deviation of 
about .6. The estimate is statistically significant at the 5% level against a two-sided alternative. 

The administrative per se law has a smaller 
effect, and its t statistic is only �1.29; but 
the estimate is the sign we expect. The 
intercept in this equation shows that traffic 
fatalities fell substantially for all states over 
the five-year period, whether or not there 

were any law changes. The states that adopted an open container law over this period saw a further 
drop, on average, in fatality rates.

Q u e s t i o n  1 3 . 4
In Example 13.7, ∆admn � �1 for the state of Washington. 
Explain what this means.
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 Other laws might also affect traffic fatalities, such as seat belt laws, motorcycle helmet laws, 
and maximum speed limits. In addition, we might want to control for age and gender distributions, 
as well as measures of how influential an organization such as Mothers Against Drunk Driving is in 
each state.

 

13.5 Differencing with More Than 
Two Time Periods
We can also use differencing with more than two time periods. For illustration, suppose 
we have N individuals and T � 3 time periods for each individual. A general fixed effects 
model is

 y
it
 � �

1
 � �

2
d2

t
 � �

3
d3

t
 � �

1
x

it1
 � … � �

k 
x

itk
 � a

i
 � u

it
, 13.28

for t � 1, 2, and 3. (The total number of observations is therefore 3N.) Notice that we now 
include two time period dummies in addition to the intercept. It is a good idea to allow a 
separate intercept for each time period, especially when we have a small number of them. 
The base period, as always, is t � 1. The intercept for the second time period is �

1
 � �

2
, 

and so on. We are primarily interested in �
1
, �

2
, …, �

k
. If the unobserved effect a

i
 is cor-

related with any of the explanatory variables, then using pooled OLS on the three years of 
data results in biased and inconsistent estimates.
 The key assumption is that the idiosyncratic errors are uncorrelated with the explana-
tory variable in each time period:

 Cov(x
itj
, u

is
) � 0, for all t, s, and j. 13.29

That is, the explanatory variables are strictly exogenous after we take out the unobserved 
effect, a

i
. (The strict exogeneity assumption stated in terms of a zero conditional expecta-

tion is given in the chapter appendix.) Assumption (13.29) rules out cases where future 
explanatory variables react to current changes in the idiosyncratic errors, as must be the 
case if x

itj
 is a lagged dependent variable. If we have omitted an important time-varying 

variable, then (13.29) is generally violated. Measurement error in one or more explanatory 
variables can cause (13.29) to be false, just as in Chapter 9. In Chapters 15 and 16, we will 
discuss what can be done in such cases.
 If a

i
 is correlated with x

itj
, then x

itj
 will be correlated with the composite error, v

it
 � 

a
i
 � u

it
, under (13.29). We can eliminate a

i
 by differencing adjacent periods. In the 

T � 3 case, we subtract time period one from time period two and time period two from 
time period three. This gives

 ∆y
it
 � �

2
∆d2

t
 � �

3
∆d3

t
 � �

1
∆x

it1
 � … � �

k
∆x

itk
 � ∆u

it
, 13.30

for t � 2 and 3. We do not have a differenced equation for t � 1 because there is nothing 
to subtract from the t � 1 equation. Now, (13.30) represents two time periods for each 
individual in the sample. If this equation satisfies the classical linear model assumptions, 
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then pooled OLS gives unbiased estimators, and the usual t and F statistics are valid for 
hypothesis. We can also appeal to asymptotic results. The important requirement for OLS 
to be consistent is that ∆u

it
 is uncorrelated with ∆x

itj 
for all j and t � 2 and 3. This is the 

natural extension from the two time period case.
 Notice how (13.30) contains the differences in the year dummies, d2

t
 and d3

t
. For 

t �  2, ∆d2
t
 � 1 and ∆d3

t
 � 0; for t � 3, ∆d2

t
 � �1 and ∆d3

t
 � 1. Therefore, (13.30) 

does not contain an intercept. This is inconvenient for certain purposes, including the 
computation of R-squared. Unless the time intercepts in the original model (13.28) are of 
direct interest—they rarely are—it is better to estimate the first-differenced equation with 
an intercept and a single time period dummy, usually for the third period. In other words, 
the equation becomes

 ∆y
it
 � �

0
 � �

3
d3

t
 � �

1
∆x

it1
 � … � �

k
∆x

itk
 � ∆u

it
, for t � 2 and 3.

The estimates of the �
j
 are identical in either formulation.

 With more than three time periods, things are similar. If we have the same T time 
periods for each of N cross-sectional units, we say that the data set is a balanced panel: 
we have the same time periods for all individuals, firms, cities, and so on. When T is small 
relative to N, we should include a dummy variable for each time period to account for 
secular changes that are not being modeled. Therefore, after first differencing, the equation 
looks like

 ∆y
it
 � �

0
 � �

3
d3

t
 � �

4
d4

t
 � … � �

T 
dT

t
 � �

1
∆x

it1
 � …

 � �
k
∆x

itk
 � ∆u

it
, t � 2, 3, …, T,

 13.31

where we have T � 1 time periods on each unit i for the first-differenced equation. The 
total number of observations is N(T � 1).
 It is simple to estimate (13.31) by pooled OLS, provided the observations have been 
properly organized and the differencing carefully done. To facilitate first differencing, the 
data file should consist of NT records. The first T records are for the first cross-sectional 
observation, arranged chronologically; the second T records are for the second cross-
 sectional observations, arranged chronologically; and so on. Then, we compute the differ-
ences, with the change from t � 1 to t stored in the time t record. Therefore, the differences 
for t � 1 should be missing values for all N cross-sectional observations. Without doing 
this, you run the risk of using bogus observations in the regression analysis. An invalid 
observation is created when the last observation for, say, person i � 1 is subtracted from 
the first observation for person i. If you do the regression on the differenced data, and 
NT or NT � 1 observations are reported, then you forgot to set the t � 1 observations as 
missing.
 When using more than two time periods, we must assume that ∆u

it
 is uncorrelated 

over time for the usual standard errors and test statistics to be valid. This assumption is 
sometimes reasonable, but it does not follow if we assume that the original idiosyncratic 
errors, u

it
, are uncorrelated over time (an assumption we will use in Chapter 14). In fact, 

if we assume the u
it
 are serially uncorrelated with constant variance, then the correlation 

between ∆u
it
 and ∆u

i, t �1
 can be shown to be �.5. If u

it
 follows a stable AR(1) model, then 

∆u
it
 will be serially correlated. Only when u

it
 follows a random walk will ∆u

it
 be serially 

uncorrelated.
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 It is easy to test for serial correlation in the first-differenced equation. Let r
it
 � ∆u

it
 

denote the first difference of the original error. If r
it
 follows the AR(1) model r

it
 � �r

i,t�1
 � e

it
, 

then we can easily test H
0
: � � 0. First, we estimate (13.31) by pooled OLS and obtain 

the residuals,  ̂  r 
it
. 

 Then, we run a simple pooled OLS regression of   ̂  r 
it
 on  ̂  r 

i, t �1
, t � 3, ..., T, i � 1, ..., N, 

and compute a standard t test for the coefficient on   ̂  r 
i,t�1

. (Or we can make the t statistic 
robust to heteroskedasticity.) The coefficient  ̂  �  on   ̂  r 

i, t�1
 is a consistent estimator of �. 

Because we are using the lagged residual, we lose another time period. For example, if we 
started with T � 3, the differenced equation has two time periods, and the test for serial 
correlation is just a cross-sectional regression of the residuals from the third time period 
on the residuals from the second time period. We will give an example later.
 We can correct for the presence of AR(1) serial correlation in r

it
 by using feasible 

GLS. Essentially, within each cross-sectional observation, we would use the Prais-
Winsten transformation based on  ̂  �  described in the previous paragraph. (We clearly 
prefer Prais-Winsten to Cochrane-Orcutt here, as dropping the first time period would 
now mean losing N cross-sectional observations.) Unfortunately, standard packages 
that perform AR(1) corrections for time series regressions will not work. Standard 
Prais-Winsten methods will treat the observations as if they followed an AR(1) process 
across i and t; this makes no sense, as we are assuming the observations are indepen-
dent across i. Corrections to the OLS standard errors that allow arbitrary forms of serial 
correlation (and heteroskedasticity) 
can be computed when N is large (and 
N should be notably larger than T ). 
A detailed treatment of these topics 
is beyond the scope of this text [see 
Wooldridge (2002, Chapter 10)], but 
they are easy to compute in certain 
regression packages.
 If there is no serial correlation in the errors, the usual methods for dealing with heter-
oskedasticity are valid. We can use the Breusch-Pagan and White tests for heteroskedasticity 
from Chapter 8, and we can also compute robust standard errors.
 Differencing more than two years of panel data is very useful for policy analysis, as 
shown by the following example.

E x a m p l e  1 3 . 8

[Effect of Enterprise Zones on Unemployment Claims]

Papke (1994) studied the effect of the Indiana enterprise zone (EZ) program on unemployment 
claims. She analyzed 22 cities in Indiana over the period from 1980 to 1988. Six enterprise zones 
were designated in 1984, and four more were assigned in 1985. Twelve of the cities in the sample 
did not receive an enterprise zone over this period; they served as the control group.
 A simple policy evaluation model is

 log(uclms
it
) � �

t
 � �

1
ez

it
 � a

i
 � u

it
,

Q u e s t i o n  1 3 . 5
Does serial correlation in ∆uit cause the first-differenced  estimator to 
be biased and inconsistent? Why is serial correlation a  concern?
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where uclms
it
 is the number of unemployment claims filed during year t in city i. The parameter 

�
t
 just denotes a different intercept for each time period. Generally, unemployment claims were 

falling statewide over this period, and this should be reflected in the different year intercepts. The 
binary variable ez

it
 is equal to one if city i at time t was an enterprise zone; we are interested in �

1
. 

The unobserved effect a
i 
represents fixed factors that affect the economic climate in city i. Because 

enterprise zone designation was not determined randomly—enterprise zones are usually economi-
cally depressed areas—it is likely that ez

it
 and a

i
 are positively correlated (high a

i
 means higher 

unemployment claims, which lead to a higher chance of being given an EZ). Thus, we should dif-
ference the equation to eliminate a

i
:

 ∆log(uclms
it
) � �

0
 � �

1
d82

t
 � … � �

7
d88

t
 � �

1
∆ez

it
 � ∆u

it
. 13.32

The dependent variable in this equation, the change in log(uclms
it
), is the approximate annual growth 

rate in unemployment claims from year t � 1 to t. We can estimate this equation for the years 1981 
to 1988 using the data in EZUNEM.RAW; the total sample size is 22·8 � 176. The estimate of �

1
 is  

ˆ � 
1
 � �.182 (standard error � .078). Therefore, it appears that the presence of an EZ causes about a 

16.6% [exp(�.182) � 1 � �.166] fall in unemployment claims. This is an economically large and 
statistically significant effect.
 There is no evidence of heteroskedasticity in the equation: the Breusch-Pagan F test yields 
F � .85, p-value � .557. However, when we add the lagged OLS residuals to the differenced 
equation (and lose the year 1981), we get  ̂  �  � �.197 (t � �2.44), so there is evidence of minimal 
negative serial correlation in the first-differenced errors. Unlike with positive serial correlation, the 
usual OLS standard errors may not greatly understate the correct standard errors when the errors 
are negatively correlated (see Section 12.1). Thus, the significance of the enterprise zone dummy 
variable will probably not be affected.

 

E x a m p l e  1 3 . 9

[County Crime Rates in North Carolina]

Cornwell and Trumbull (1994) used data on 90 counties in North Carolina, for the years 1981 through 
1987, to estimate an unobserved effects model of crime; the data are contained in CRIME4.RAW. 
Here, we estimate a simpler version of their model, and we difference the equation over time to elim-
inate a

i
, the unobserved effect. (Cornwell and Trumbull use a different transformation, which we 

will cover in Chapter 14.) Various factors including geographical location, attitudes toward crime, 
historical records, and reporting conventions might be contained in a

i
. The crime rate is number of 

crimes per person, prbarr is the estimated probability of arrest, prbconv is the estimated probability 
of conviction (given an arrest), prbpris is the probability of serving time in prison (given a convic-
tion), avgsen is the average sentence length served, and polpc is the number of police officers per 
capita. As is standard in criminometric studies, we use the logs of all variables to estimate elastici-
ties. We also include a full set of year dummies to control for state trends in crime rates. We can 
use the years 1982 through 1987 to estimate the differenced equation. The quantities in parentheses 
are the usual OLS standard errors; the quantities in brackets are standard errors robust to both serial 
correlation and heteroskedasticity:
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 ∆2log(crmrte) � .008 � .100 d83 � .048 d84 � .005 d85

 (.017) (.024) (.024) (.023)

 [.014] [.022] [.020] [.025]

 � .028 d86 � .041 d87 � .327 ∆log(prbarr)

 (.024) (.024) (.030)

 [.021] [.024] [.056]

 � .238 ∆log(prbconv) � .165 ∆log(prbpris) 13.33

 (.018) (.026)

 [.040] [.046]

 � .022 ∆log(avgsen) � .398 ∆log(polpc)

 (.022) (.027)

 [.026] [.103]

 n � 540, R2 � .433,  
-

 R 2 � .422.

The three probability variables—of arrest, conviction, and serving prison time—all have the expected 
sign, and all are statistically significant. For example, a 1% increase in the probability of arrest is 
predicted to lower the crime rate by about .33%. The average sentence variable shows a modest 
deterrent effect, but it is not statistically significant.
 The coefficient on the police per capita variable is somewhat surprising and is a feature of most 
studies that seek to explain crime rates. Interpreted causally, it says that a 1% increase in police per 
capita increases crime rates by about .4%. (The usual t statistic is very large, almost 15.) It is hard 
to believe that having more police officers causes more crime. What is going on here? There are at 
least two possibilities. First, the crime rate variable is calculated from reported crimes. It might be 
that, when there are additional police, more crimes are reported. Second, the police variable might 
be endogenous in the equation for other reasons: counties may enlarge the police force when they 
expect crime rates to increase. In this case, (13.33) cannot be interpreted in a causal fashion. In 
Chapters 15 and 16, we will cover models and estimation methods that can account for this addi-
tional form of endogeneity.
 The special case of the White test for heteroskedasticity in Section 8.3 gives F � 75.48 and p-value � 
.0000, so there is strong evidence of heteroskedasticity. (Technically, this test is not valid if there is 
also serial correlation, but it is strongly suggestive.) Testing for AR(1) serial correlation yields  ̂  �  � 
�.233, t � �4.77, so negative serial correlation exists. The standard errors in brackets adjust for serial 
correlation and heteroskedasticity. [We will not give the details of this; the calculations are similar to 
those described in Section 12.5 and are carried out by many econometric packages. See Wooldridge 
(2002, Chapter 10) for more discussion.] No variables lose statistical significance, but the t statistics 
on the significant deterrent variables get notably smaller. For example, the t statistic on the probability 
of conviction variable goes from �13.22 using the usual OLS standard error to �6.10 using the fully 
robust standard error. Equivalently, the confidence intervals constructed using the robust standard 
errors will, appropriately, be much wider than those based on the usual OLS standard errors.

 
 Naturally, we can apply the Chow test to panel data models estimated by first differ-
encing. As in the case of pooled cross sections, we rarely want to test whether the inter-
cepts are constant over time; for many reasons, we expect the intercepts to be different. 
Much more interesting is to test whether slope coefficients have changed over time, and 
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we can easily carry out such tests by interacting the explanatory variables of interest with 
time-period dummy variables. Interestingly, while we cannot estimate the slopes on vari-
ables that do not change over time, we can test whether the partial effects of time-constant 
variables have changed over time. As an illustration, suppose we observe three years of 
data on a random sample of people working in 2000, 2002, and 2004, and specify the 
model (for the log of wage, lwage),

 lwage
it
 � �

0
 � �

1
d02

t
 � �

2
d04

t
 � �

1 
female

i
 � �

1
d02

t  
female

i

 
� �

2
d04

t  
female

i
 � z

it
� � a

i
 � u

it
,

where z
it
� is shorthand for other explanatory variables included in the model and their 

coefficients. When we first difference, we eliminate the intercept for 2000, �
0
, and also the 

gender wage gap for 2000, �
1
. However, the change in d01

t    
female

i
 is (∆d01

t
) female

i
, which 

does not drop out. Consequently, we can estimate how the wage gap has changed in 2002 
and 2004 relative to 2000, and we can test whether �

1
 � 0, or �

2
 � 0, or both. We might 

also ask whether the union wage premium has changed over time, in which case we include 
in the model union

it
, d02

t
union

it
, and d04

t
union

it
. The coefficients on all of these explanatory 

variables can be estimated because union
it
 would presumably have some time variation. 

 If one tries to estimate a model containing interactions by differencing by hand, it can 
be a bit tricky. For example, in the previous equation with union status, we must simply 
difference the interaction terms, d02

t
union

it
 and d04

t
union

it
. We cannot compute the proper 

differences as, say, d02
t
∆union

it
 and d04

t
∆union

it
, or even replacing d02

t
 and d04

t
 with 

their first differences. 
 As a general comment, it is important to return to the original model and remember 
that the differencing is used to eliminate a

i
. It is easiest to use a built-in command that 

allows first differencing as an option in panel data analysis. (We will see some of the other 
options in Chapter 14.)

Potential Pitfalls in First Differencing Panel Data

In this and previous sections, we have argued that differencing panel data over time, in 
order to eliminate a time-constant unobserved effect, is a valuable method for obtain-
ing causal effects. Nevertheless, differencing is not free of difficulties. We have already 
discussed potential problems with the method when the key explanatory variables do not 
vary much over time (and the method is useless for explanatory variables that never vary 
over time). Unfortunately, even when we do have sufficient time variation in the x

itj
, first-

differenced (FD) estimation can be subject to serious biases. We have already mentioned 
that strict exogeneity of the regressors is a critical assumption. Unfortunately, as discussed 
in Wooldridge (2002, Section 11.1), having more time periods generally does not reduce 
the inconsistency in the FD estimator when the regressors are not strictly exogenous (say, 
if y

i, t�1
 is included among the x

itj
).

 Another important drawback to the FD estimator is that it can be worse than pooled 
OLS if one or more of the explanatory variables is subject to measurement error, espe-
cially the classical errors-in-variables model discussed in Section 9.3. Differencing a 
poorly measured regressor reduces its variation relative to its correlation with the differ-
enced error caused by classical measurement error, resulting in a potentially sizable bias. 
Solving such problems can be very difficult. See Section 15.8 and Wooldridge (2002, 
Chapter 11).
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S U M M A R Y

We have studied methods for analyzing independently pooled cross-sectional and panel 
data sets. Independent cross sections arise when different random samples are obtained 
in different time periods (usually years). OLS using pooled data is the leading method 
of estimation, and the usual inference procedures are available, including corrections for 
heteroskedasticity. (Serial correlation is not an issue because the samples are independent 
across time.) Because of the time series dimension, we often allow different time inter-
cepts. We might also interact time dummies with certain key variables to see how they 
have changed over time. This is especially important in the policy evaluation literature for 
natural experiments.
 Panel data sets are being used more and more in applied work, especially for policy 
analysis. These are data sets where the same cross-sectional units are followed over time. 
Panel data sets are most useful when controlling for time-constant unobserved features—of 
people, firms, cities, and so on—which we think might be correlated with the explanatory 
variables in our model. One way to remove the unobserved effect is to difference the data 
in adjacent time periods. Then, a standard OLS analysis on the differences can be used. 
Using two periods of data results in a cross-sectional regression of the differenced data. 
The usual inference procedures are asymptotically valid under homoskedasticity; exact 
inference is available under normality.
 For more than two time periods, we can use pooled OLS on the differenced data; we 
lose the first time period because of the differencing. In addition to homoskedasticity, we 
must assume that the differenced errors are serially uncorrelated in order to apply the usual 
t and F statistics. (The chapter appendix contains a careful listing of the assumptions.) 
Naturally, any variable that is constant over time drops out of the analysis.

K E Y  T E R M S

Average Treatment Effect
Balanced Panel
Composite Error
Difference-in-Differences 

Estimator
First-Differenced Equation
First-Differenced Estimator
Fixed Effect

Fixed Effects Model
Heterogeneity Bias
Idiosyncratic Error
Independently Pooled 

Cross Section
Longitudinal Data
Natural Experiment
Panel Data

Quasi-Experiment
Strict Exogeneity
Unobserved Effect
Unobserved Effects Model
Unobserved Heterogeneity
Year Dummy Variables

P R O B L E M S

13.1 In Example 13.1, assume that the averages of all factors other than educ have remained 
constant over time and that the average level of education is 12.2 for the 1972 sample 
and 13.3 in the 1984 sample. Using the estimates in Table 13.1, find the estimated 
change in average fertility between 1972 and 1984. (Be sure to account for the intercept 
change and the change in average education.)
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13.2 Using the data in KIELMC.RAW, the following equations were estimated using the 
years 1978 and 1981:

 2log(price) � 11.49 � .547 nearinc � .394 y81�nearinc

 (.26) (.058) (.080)

 n � 321, R2 � .220

 and

 2log(price) � 11.18 � .563 y81 � .403 y81�nearinc

 (.27) (.044) (.067)

 n � 321, R2 � .337.

 Compare the estimates on the interaction term y81�nearinc with those from equa-
tion (13.9). Why are the estimates so different?

13.3 Why can we not use first differences when we have independent cross sections in two 
years (as opposed to panel data)?

13.4 If we think that �
1
 is positive in (13.14) and that ∆u

i
 and ∆unem

i
 are negatively corre-

lated, what is the bias in the OLS estimator of �
1
 in the first-differenced equation? [Hint: 

Review equation (5.4).]

13.5 Suppose that we want to estimate the effect of several variables on annual saving and that 
we have a panel data set on individuals collected on January 31, 1990, and January 31, 
1992. If we include a year dummy for 1992 and use first differencing, can we also 
include age in the original model? Explain.

13.6 In 1985, neither Florida nor Georgia had laws banning open alcohol containers in 
vehicle passenger compartments. By 1990, Florida had passed such a law, but Georgia 
had not.

 (i) Suppose you can collect random samples of the driving-age population in both 
states, for 1985 and 1990. Let arrest be a binary variable equal to unity if a person 
was arrested for drunk driving during the year. Without controlling for any other 
factors, write down a linear probability model that allows you to test whether the 
open container law reduced the probability of being arrested for drunk driving. 
Which coefficient in your model measures the effect of the law?

 (ii) Why might you want to control for other factors in the model? What might some 
of these factors be?

 (iii) Now, suppose that you can only collect data for 1985 and 1990 at the county level 
for the two states. The dependent variable would be the fraction of licensed drivers 
arrested for drunk driving during the year. How does this data structure differ from 
the individual-level data described in part (i)? What econometric method would 
you use?

13.7  (i)  Using the data in INJURY.RAW for Kentucky, the estimated equation when 
afchnge is dropped from (13.12) is

 2log(durat) � 1.129 � .253 highearn � .198 afchnge·highearn

 (0.022) (.042) (.052)

 n � 5,626, R2 � .021.
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  Is it surprising that the estimate on the interaction is fairly close to that in (13.12)? 
Explain.

 (ii) When afchnge is included but highearn is dropped, the result is

 2log(durat) � 1.233 � .100 afchnge � .447 afchnge·highearn

 (0.023) (.040) (.050)

 n � 5,626, R2 � .016.

  Why is the coefficient on the interaction term now so much larger than in (13.12)? 
[Hint: In equation (13.10), what is the assumption being made about the treatment 
and control groups if �

1 
� 0?]

C O M P U T E R  E X E R C I S E S

C13.1 Use the data in FERTIL1.RAW for this exercise.
 (i)  In the equation estimated in Example 13.1, test whether living environment at 

age 16 has an effect on fertility. (The base group is large city.) Report the value 
of the F statistic and the p-value.

 (ii)  Test whether region of the country at age 16 (South is the base group) has an 
effect on fertility.

 (iii)  Let u be the error term in the population equation. Suppose you think that the 
variance of u changes over time (but not with educ, age, and so on). A model 
that captures this is

u2 � �
0
 � �

1 
y74 � �

2 
y76 � … � �

6 
y84 � v.

   Using this model, test for heteroskedasticity in u. (Hint: Your F test should have 
6 and 1,122 degrees of freedom.)

 (iv)  Add the interaction terms y74�educ, y76�educ, …, y84·educ to the model 
estimated in Table 13.1. Explain what these terms represent. Are they jointly 
significant?

C13.2 Use the data in CPS78_85.RAW for this exercise.
 (i)  How do you interpret the coefficient on y85 in equation (13.2)? Does it have an 

interesting interpretation? (Be careful here; you must account for the interaction 
terms y85�educ and y85�female.)

 (ii)  Holding other factors fixed, what is the estimated percent increase in nominal 
wage for a male with 12 years of education? Propose a regression to obtain 
a confidence interval for this estimate. [Hint: To get the confidence interval, 
replace y85�educ with y85�(educ � 12); refer to Example 6.3.]

 (iii)  Reestimate equation (13.2) but let all wages be measured in 1978 dollars. In 
particular, define the real wage as rwage � wage for 1978 and as rwage � 
wage/1.65 for 1985. Now, use log(rwage) in place of log(wage) in estimating 
(13.2). Which coefficients differ from those in equation (13.2)?

 (iv)  Explain why the R-squared from your regression in part (iii) is not the same as 
in equation (13.2). (Hint: The residuals, and therefore the sum of squared resi d-
uals, from the two regressions are identical.)
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 (v) Describe how union participation changed from 1978 to 1985.
 (vi)  Starting with equation (13.2), test whether the union wage differential changed 

over time. (This should be a simple t test.)
 (vii)  Do your findings in parts (v) and (vi) conflict? Explain.

C13.3 Use the data in KIELMC.RAW for this exercise.
 (i)  The variable dist is the distance from each home to the incinerator site, in feet. 

Consider the model

 log(price) � �
0
 � �

0 
y81 � �

1
log(dist) � �

1
y81�log(dist) � u.

   If building the incinerator reduces the value of homes closer to the site, what is 
the sign of �

1
? What does it mean if �

1
 � 0?

 (ii)  Estimate the model from part (i) and report the results in the usual form. 
Interpret the coefficient on y81�log(dist). What do you conclude?

 (iii)  Add age, age2, rooms, baths, log(intst), log(land), and log(area) to the equa-
tion. Now, what do you conclude about the effect of the incinerator on housing 
 values?

 (iv)  How come the coefficient on log(dist) is positive and statistically significant 
in part (ii) but not in part (iii)? What does this say about the controls used in 
part (iii)?

C13.4 Use the data in INJURY.RAW for this exercise.
 (i)  Using the data for Kentucky, reestimate equation (13.12), adding as explana-

tory variables male, married, and a full set of industry and injury type dummy 
variables. How does the estimate on afchnge�highearn change when these other 
factors are controlled for? Is the estimate still statistically significant?

 (ii)  What do you make of the small R-squared from part (i)? Does this mean the 
equation is useless?

 (iii)  Estimate equation (13.12) using the data for Michigan. Compare the estimates 
on the interaction term for Michigan and Kentucky. Is the Michigan estimate 
statistically significant? What do you make of this?

C13.5  Use the data in RENTAL.RAW for this exercise. The data for the years 1980 and 1990 
include rental prices and other variables for college towns. The idea is to see whether 
a stronger presence of students affects rental rates. The unobserved effects model is

log(rent
it
) � �

0
 � �

0 
y90

t
 � �

1
log( pop

it
) � �

2
log(avginc

it
) � �

3 
pctstu

it
 � a

i
 � u

it
,

  where pop is city population, avginc is average income, and pctstu is student popula-
tion as a percentage of city population (during the school year).

 (i)  Estimate the equation by pooled OLS and report the results in standard form. 
What do you make of the estimate on the 1990 dummy variable? What do you 
get for  ̂  � 

pctstu
?

 (ii) Are the standard errors you report in part (i) valid? Explain.
 (iii)  Now, difference the equation and estimate by OLS. Compare your estimate of 

�
pctstu

 with that from part (ii). Does the relative size of the student population 
appear to affect rental prices?

 (iv)  Obtain the heteroskedasticity-robust standard errors for the first-differenced 
equation in part (iii). Does this change your conclusions?
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C13.6 Use CRIME3.RAW for this exercise.
 (i)  In the model of Example 13.6, test the hypothesis H

0
: �

1
 � �

2
. (Hint: Define �

1
 � 

�
1
 � �

2
 and write �

1
 in terms of �

1
 and �

2
. Substitute this into the equation and 

then rearrange. Do a t test on �
1
.)

 (ii) If �
1
 � �

2
, show that the differenced equation can be written as

∆log(crime
i
) � �

0
 � �

1
∆avgclr

i
 � ∆u

i 
,

   where �
1
 � 2�

1
 and avgclr

i
 � (clrprc

i,�1
 � clrprc

i,�2
)/2 is the average clear-up 

percentage over the previous two years.
 (iii)  Estimate the equation from part (ii). Compare the adjusted R-squared with that 

in (13.22). Which model would you finally use?

C13.7  Use GPA3.RAW for this exercise. The data set is for 366 student-athletes from a 
large university for fall and spring semesters. [A similar analysis is in Maloney and 
McCormick (1993), but here we use a true panel data set.] Because you have two 
terms of data for each student, an unobserved effects model is appropriate. The pri-
mary question of interest is this: Do athletes perform more poorly in school during the 
semester their sport is in season?

 (i)  Use pooled OLS to estimate a model with term GPA (trmgpa) as the dependent 
variable. The explanatory variables are spring, sat, hsperc, female, black, white, 
frstsem, tothrs, crsgpa, and season. Interpret the coefficient on season. Is it 
statistically significant?

 (ii)  Most of the athletes who play their sport only in the fall are football players. 
Suppose the ability levels of football players differ systematically from those of 
other athletes. If ability is not adequately captured by SAT score and high school 
percentile, explain why the pooled OLS estimators will be biased.

 (iii)  Now, use the data differenced across the two terms. Which variables drop out? 
Now, test for an in-season effect.

 (iv)  Can you think of one or more potentially important, time-varying variables that 
have been omitted from the analysis?

C13.8  VOTE2.RAW includes panel data on House of Representative elections in 1988 and 
1990. Only winners from 1988 who are also running in 1990 appear in the sample; 
these are the incumbents. An unobserved effects model explaining the share of the 
incumbent’s vote in terms of expenditures by both candidates is

vote
it
 � �

0
 � �

0
d90

t
 � �

1
log(inexp

it
) � �

2
log(chexp

it
) � �

3
incshr

it
 � a

i
 � u

it
,

  where incshr
it
 is the incumbent’s share of total campaign spending (in percentage 

form). The unobserved effect a
i
 contains characteristics of the incumbent—such 

as “quality”—as well as things about the district that are constant. The incum-
bent’s gender and party are constant over time, so these are subsumed in a

i
. We 

are interested in the effect of campaign expenditures on election outcomes.
 (i)  Difference the given equation across the two years and estimate the differenced 

equation by OLS. Which variables are individually significant at the 5% level 
against a two-sided alternative?

 (ii)  In the equation from part (i), test for joint significance of ∆log(inexp) and 
∆log(chexp). Report the p-value.
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 (iii)  Reestimate the equation from part (i) using ∆incshr as the only independent 
variable. Interpret the coefficient on ∆incshr. For example, if the incumbent’s 
share of spending increases by 10 percentage points, how is this predicted to 
affect the incumbent’s share of the vote?

 (iv)  Redo part (iii), but now use only the pairs that have repeat challengers. [This 
allows us to control for characteristics of the challengers as well, which would 
be in a

i
. Levitt (1994) conducts a much more extensive analysis.]

C13.9 Use CRIME4.RAW for this exercise.
 (i)  Add the logs of each wage variable in the data set and estimate the model by 

first differencing. How does including these variables affect the coefficients on 
the criminal justice variables in Example 13.9?

 (ii)  Do the wage variables in (i) all have the expected sign? Are they jointly signifi-
cant? Explain.

C13.10  For this exercise, we use JTRAIN.RAW to determine the effect of the job training 
grant on hours of job training per employee. The basic model for the three years is

hrsemp
it
 � �

0
 � �

1
d88

t
 � �

2
d89

t
 � �

1
grant

it 

� �
2
grant

i, t�1
 � �

3
log(employ

it
) � a

i
 � u

it
.

 (i)  Estimate the equation using first differencing. How many firms are used in the 
estimation? How many total observations would be used if each firm had data 
on all variables (in particular, hrsemp) for all three time periods?

 (ii) Interpret the coefficient on grant and comment on its significance.
 (iii) Is it surprising that grant

�1
 is insignificant? Explain.

 (iv)  Do larger firms train their employees more or less, on average? How big are the 
differences in training?

C13.11  The file MATHPNL.RAW contains panel data on school districts in Michigan for 
the years 1992 through 1998. It is the district-level analogue of the school-level data 
used by Papke (2005). The response variable of interest in this question is math4, the 
percentage of fourth graders in a district receiving a passing score on a standardized 
math test. The key explanatory variable is rexpp, which is real expenditures per pupil 
in the district. The amounts are in 1997 dollars. The spending variable will appear in 
logarithmic form.

 (i) Consider the static unobserved effects model

math4
it
 � �

1
y93

t
 � ... � �

6 
y98

t
 � �

1
log(rexpp

it
) 

� �
2
log(enrol

it
) � �

3
lunch

it
 � a

i
 � u

it
,

   where enrol
it
 is total district enrollment and lunch

it
 is the percentage of stu-

dents in the district eligible for the school lunch program. (So lunch
it
 is a 

pretty good measure of the district-wide poverty rate.) Argue that �
1
/10 is the 

percentage point change in math4
it
 when real per-student spending increases 

by roughly 10%.
 (ii)  Use first differencing to estimate the model in part (i). The simplest approach 

is to allow an intercept in the first-differenced equation and to include dummy 
variables for the years 1994 through 1998. Interpret the coefficient on the spend-
ing variable.
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 (iii)  Now, add one lag of the spending variable to the model and reestimate using 
first differencing. Note that you lose another year of data, so you are only using 
changes starting in 1994. Discuss the coefficients and significance on the current 
and lagged spending variables.

 (iv)  Obtain heteroskedasticity-robust standard errors for the first-differenced regres-
sion in part (iii). How do these standard errors compare with those from part (iii) 
for the spending variables?

 (v)  Now, obtain standard errors robust to both heteroskedasticity and serial correla-
tion. What does this do to the significance of the lagged spending variable?

 (vi)  Verify that the differenced errors r
it
 � ∆u

it
 have negative serial correlation by 

carrying out a test of AR(1) serial correlation.
 (vii)  Based on a fully robust joint test, does it appear necessary to include the enroll-

ment and lunch variables in the model?

C13.12 Use the data in MURDER.RAW for this exercise.
 (i)  Using the years 1990 and 1993, estimate the equation

mrdrte
it 
� �

0 
� �

1
d93

t 
� �

1
exec

it 
� �

2
unem

it 
� a

i 
� u

it
, t � 1, 2

   by pooled OLS and report the results in the usual form. Do not worry that the 
usual OLS standard errors are inappropriate because of the presence of a

i
. Do 

you estimate a deterrent effect of capital punishment?
 (ii)  Compute the FD estimates (use only the differences from 1990 to 1993; you 

should have 51 observations in the FD regression). Now what do you conclude 
about a deterrent effect?

 (iii)  In the FD regression from part (ii), obtain the residuals, say,  ̂  e 
i
. Run the Breusch-

Pagan regression  ̂  e  2   i   on ∆exec
i
, ∆unem

i
 and compute the F test for heteroskedas-

ticity. Do the same for the special case of the White test [that is, regress   ̂  e  2   i   on  
ˆ y 

i
,  ̂  y  2

i
, where the fitted values are from part (ii)]. What do you conclude about 

heteroskedasticity in the FD equation?
 (iv)  Run the same regression from part (ii), but obtain the heteroskedasticity-robust 

t statistics. What happens?
 (v)  Which t statistic on ∆exec

i
 do you feel more comfortable relying on, the usual 

one or the heteroskedasticity-robust one? Why?

C13.13 Use the data in WAGEPAN.RAW for this exercise.
 (i) Consider the unobserved effects model

lwage
it 
� �

0 
� �

1
d81

t 
� … � �

7 
d87

t
 � �

1
educ

i

 � �
1
d81

t
 educ

i 
� … � �

7 
d87

t 
educ

i  
� �

2 
union

it
 � a

i
 � u

it 
,

   where a
i
 is allowed to be correlated with educ

i
 and union

it
. Which parameters 

can you estimate using first differencing?
 (ii)  Estimate the equation from part (i) by FD, and test the null hypothesis that the 

return to education has not changed over time.
 (iii)  Test the hypothesis from part (ii) using a fully robust test, that is, one that allows 

arbitrary heteroskedasticity and serial correlation in the FD errors, ∆u
it
. Does 

your conclusion change?
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 (iv)  Now allow the union differential to change over time (along with education) and 
estimate the equation by FD. What is the estimated union differential in 1980? 
What about 1987? Is the difference statistically significant?

 (v)  Test the null hypothesis that the union differential has not changed over time, 
and discuss your results in light of your answer to part (iv).

C13.14 Use the data in JTRAIN3.RAW for this question.
 (i)  Estimate the simple regression model re78 � �

0
 � �

1
train � u, and report 

the results in the usual form. Based on this regression, does it appear that job 
training, which took place in 1976 and 1977, had a positive effect on real labor 
earnings in 1978?

 (ii)  Now use the change in real labor earnings, cre � re78 � re75, as the depen-
dent variable. (We need not difference train because we assume there was no 
job training prior to 1975. That is, if we define ctrain � train78 � train75 then 
ctrain � train78 because train75 � 0.) Now what is the estimated effect of 
training? Discuss how it compares with the estimate in part (i).

 (iii)  Find the 95% confidence interval for the training effect using the usual OLS 
standard error and the heteroskedasticity-robust standard error, and describe 
your findings.

Appendix 13A

Assumptions for Pooled OLS Using First Differences

In this appendix, we provide careful statements of the assumptions for the first-
 differencing estimator. Verification of these claims is somewhat involved, but it can be 
found in Wooldridge (2002, Chapter 10).

Assumption FD.2

We have a random sample from the cross section.

Assumption FD.3

Each explanatory variable changes over time (for at least some i ), and no perfect linear 
relationships exist among the explanatory variables.

Assumption FD.1

For each i, the model is

y
it
 � �

1
x

it1
 � … � �

k
 x

itk
 � a

i
 � u

it
, t � 1, …, T,

where the �
j
 are the parameters to estimate and a

i
 is the unobserved effect.
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When Assumption FD.4 holds, we sometimes say that the x
itj
 are strictly exogenous 

conditional on the unobserved effect. The idea is that, once we control for a
i
, there is no 

correlation between the x
isj

 and the remaining idiosyncratic error, u
it
, for all s and t. 

  As stated, Assumption FD.4 is stronger than necessary. We use this form of the 
assumption because it emphasizes that we are interested in the equation

E(y
it
�X

i
, a

i
) � E(y

it
�x

it
, a

i
) � �

1
x

it1 
� …

 
� �

k
 x

itk 
�

 
a

i 
,

so that the �
j
 measure partial effects of the observed explanatory variables holding fixed, 

or “controlling for,” the unobserved effect, a
i
. Nevertheless, an important implication of 

FD.4, and one that is sufficient for the unbiasedness of the FD estimator, is E(∆u
it
�X

i
) � 

0, t � 2, ..., T. In fact, for consistency we can simply assume that ∆x
itj
 is uncorrelated 

with ∆u
it
 for all t � 2, …, T and j � 1, …, k. See Wooldridge (2002, Chapter 10) for 

further discussion.
  Under these first four assumptions, the first-difference estimators are unbiased. The 
key assumption is FD.4, which is strict exogeneity of the explanatory variables. Under 
these same assumptions, we can also show that the FD estimator is consistent with a 
fixed T and as N →  (and perhaps more generally).
  The next two assumptions ensure that the standard errors and test statistics resulting 
from pooled OLS on the first differences are (asymptotically) valid.

Assumption FD.4

For each t, the expected value of the idiosyncratic error given the explanatory variables 
in all time periods and the unobserved effect is zero: E(u

it
�X

i
, a

i
) � 0.

Assumption FD.5

The variance of the differenced errors, conditional on all explanatory variables, is constant: 
Var(�u

it
�X

i
) � �2, t � 2, …, T.

Assumption FD.6

For all t 	 s, the differences in the idiosyncratic errors are uncorrelated (conditional on 
all explanatory variables): Cov(�u

it
, �u

is
�X

i
) � 0, t 	 s.

For the next assumption, it is useful to let X
i
 denote the explanatory variables for all time 

periods for cross-sectional observation i; thus, X
i 
contains x

itj
, t � 1, …, T, j � 1, …, k.

Assumption FD.5 ensures that the differenced errors, ∆u
it
, are homoskedastic. 

Assumption FD.6 states that the differenced errors are serially uncorrelated, which means 
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When we add Assumption FD.7, the FD estimators are normally distributed, and the t 
and F statistics from pooled OLS on the differences have exact t and F distributions. 
Without FD.7, we can rely on the usual asymptotic approximations.

Assumption FD.7

Conditional on X
i
, the �u

it
 are independent and identically distributed normal random 

 variables.

that the u
it
 follow a random walk across time (see Chapter 11). Under Assumptions FD.1 

through FD.6, the FD estimator of the �
j
 is the best linear unbiased estimator (conditional 

on the explanatory variables).
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In this chapter, we cover two methods for estimating unobserved effects panel data models 
that are at least as common as first differencing. Although these methods are somewhat 
harder to describe and implement, several econometrics packages support them.
In Section 14.1, we discuss the fixed effects estimator, which, like first differencing, 

uses a transformation to remove the unobserved effect a
i
 prior to estimation. Any time-

constant explanatory variables are removed along with a
i
.

The random effects estimator in Section 14.2 is attractive when we think the unob-
served effect is uncorrelated with all the explanatory variables. If we have good controls 
in our equation, we might believe that any leftover neglected heterogeneity only induces 
serial correlation in the composite error term, but it does not cause correlation between 
the composite errors and the explanatory variables. Estimation of random effects models 
by generalized least squares is fairly easy and is routinely done by many econometrics 
packages.

In Section 14.3, we show how panel data methods can be applied to other data struc-
tures, including matched pairs and cluster samples.

14.1 Fixed Effects Estimation
First differencing is just one of the many ways to eliminate the fixed effect, a

i
. An alter-

native method, which works better under certain assumptions, is called the fixed effects 
transformation. To see what this method involves, consider a model with a single 
explanatory variable: for each i,

 y
it
 � �

1
x

it
 � a

i
 � u

it  
,  t � 1, 2, …, T. 14.1

Now, for each i, average this equation over time. We get

  - y 
i
 � �

1
 - x 

i
 � a

i
 �  - u 

i  
,  14.2

14

Advanced Panel Data Methods
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where  - y 
i
 � T�1 �T

t�1
 y

it
, and so on. Because a

i
 is fixed over time, it appears in both (14.1) 

and (14.2). If we subtract (14.2) from (14.1) for each t, we wind up with

 y
it
 �  - y 

i
 � �

1
(x

it
 �  - x 

i
) � u

it
 �  - u 

i
, t � 1, 2, …, T, 

or

 ÿ
it
 � �

1
ẍ

it
 � ü

it
, t � 1, 2, …, T,  14.3

where ÿ
it
 � y

it
 �  - y 

i
 is the time-demeaned data on y, and similarly for ẍ

it 
and ü

it
. The fixed 

effects transformation is also called the within transformation. The important thing 
about equation (14.3) is that the unobserved effect, a

i
, has disappeared. This suggests that 

we should estimate (14.3) by pooled OLS. A pooled OLS estimator that is based on the 
time-demeaned variables is called the fixed effects estimator or the within estimator. 
The latter name comes from the fact that OLS on (14.3) uses the time variation in y and x 
within each cross-sectional observation.

The between estimator is obtained as the OLS estimator on the cross-sectional equa-
tion (14.2) (where we include an intercept, �

0
 ): we use the time averages for both y and 

x and then run a cross-sectional regression. We will not study the between estimator in 
detail because it is biased when a

i 
is correlated with  - x 

i
 (see Problem 14.2). If we think a

i
 

is uncorrelated with x
it
, it is better to use the random effects estimator, which we cover in 

Section 14.2. The between estimator ignores important information on how the variables 
change over time.

Adding more explanatory variables to the equation causes few changes. The original 
unobserved effects model is

 y
it
 � �

1
x

it1
 � �

2
x

it2
 � … � �

k
x

itk
 � a

i
 � u

it
, t � 1, 2, …, T. 14.4

We simply use the time-demeaning on each explanatory variable—including things like 
time period dummies—and then do a pooled OLS regression using all time-demeaned 
variables. The general time-demeaned equation for each i is

 ÿ
it
 � �

1
ẍ

it1
 � �

2
ẍ

it2
 � … � �

k
ẍ

itk
 � ü

it
, t � 1, 2, …, T,  14.5

which we estimate by pooled OLS.
Under a strict exogeneity assumption on the explanatory variables, the fixed effects 

estimator is unbiased: roughly, the idiosyncratic error u
it 

should be uncorrelated with 
each explanatory variable across all time periods. (See the chapter appendix for pre-
cise statements of the assumptions.) The fixed effects  estimator allows for arbitrary 
correlation between a

i
 and the explanatory variables in any time period, just as with 

first differencing. Because of this, any 
explanatory  variable that is constant 
over time for all i gets swept away 
by the fixed effects transformation: 
ẍ

it
 � 0 for all i and t, if x

it
 is  constant 

across t. Therefore, we cannot include 
variables such as gender or a city’s 
distance from a river.

Q u e s t i o n  1 4 . 1
Suppose that in a family savings equation, for the years 1990, 1991, 
and 1992, we let kidsit denote the number of children in family i for 
year t. If the number of kids is constant over this three-year period 
for most families in the sample, what problems might this cause for 
estimating the effect that the number of kids has on savings?
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The other assumptions needed for a straight OLS analysis to be valid are that the 
errors u

it
 are homoskedastic and serially uncorrelated (across t); see the appendix to 

this chapter.
There is one subtle point in determining the degrees of freedom for the fixed effects 

 estimator. When we estimate the time-demeaned equation (14.5) by pooled OLS, we 
have NT total observations and k independent variables. [Notice that there is no intercept
in (14.5); it is eliminated by the fixed effects transformation.] Therefore, we should 
apparently have NT � k degrees of freedom. This calculation is incorrect. For each 
cross-sectional observation i, we lose one df because of the time-demeaning. In other 
words, for each i, the demeaned errors ü

it
 add up to zero when summed across t, so we 

lose one degree of freedom. (There is no such constraint on the original idiosyncratic
errors u

it
.) Therefore, the appropriate degrees of freedom is df � NT � N � k � 

N(T � 1) � k. Fortunately, modern regression packages that have a fixed effects esti-
mation feature properly compute the df. But if we have to do the time-demeaning and 
the estimation by pooled OLS ourselves, we need to correct the standard errors and test 
statistics.

E x a m p l e  1 4 . 1

[Effect of Job Training on Firm Scrap Rates]

We use the data for three years, 1987, 1988, and 1989, on the 54 firms that reported scrap rates in 
each year. No firms received grants prior to 1988; in 1988, 19 firms received grants; in 1989, 10 
different firms received grants. Therefore, we must also allow for the possibility that the additional 
job training in 1988 made workers more productive in 1989. This is easily done by including a 
lagged value of the grant indicator. We also include year dummies for 1988 and 1989. The results 
are given in Table 14.1.
 We have reported the results in a way that emphasizes the need to interpret the estimates in light 
of the unobserved effects model, (14.4). We are explicitly controlling for the unobserved, time-
 constant effects in a

i
. The time-demeaning allows us to estimate the �

j
, but (14.5) is not the best 

equation for interpreting the estimates.
 Interestingly, the estimated lagged effect of the training grant is substantially larger than the 
contemporaneous effect: job training has an effect at least one year later. Because the dependent 
variable is in logarithmic form, obtaining a grant in 1988 is predicted to lower the firm scrap rate 
in 1989 by about 34.4% [exp(�.422) � 1 � �.344]; the coefficient on grant

�1
 is significant at the 

5% level against a two-sided alternative. The coefficient on grant is significant at the 10% level, 
and the size of the coefficient is hardly trivial. Notice the df is obtained as N(T � 1) � k � 54(3 � 
1) � 4 � 104.
 The coefficient on d89 indicates that the scrap rate was substantially lower in 1989 than in the base 
year, 1987, even in the absence of job training grants. Thus, it is important to allow for these aggregate 
effects. If we omitted the year dummies, 
the secular increase in worker productivity 
would be attributed to the job training grants. 
Table 14.1 shows that, even after controlling 
for aggregate trends in productivity, the job 
training grants had a large estimated effect.

Q u e s t i o n  1 4 . 2
Under the Michigan program, if a firm received a grant in one year, 
it was not eligible for a grant the following year. What does this 
imply about the correlation between grant and grant

�1?
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Finally, it is crucial to allow for the lagged effect in the model. If we omit grant
�1

, then we are assum-
ing that the effect of job  training does not last into the next year. The estimate on grant when we drop 
grant

�1
 is �.082 (t � �.65); this is much smaller and statistically insignificant.

 
When estimating an unobserved effects model by fixed effects, it is not clear how we 

should compute a goodness-of-fit measure. The R-squared given in Table 14.1 is based 
on the within transformation: it is the R-squared obtained from estimating (14.5). Thus, it 
is interpreted as the amount of time variation in the y

it
 that is explained by the time varia-

tion in the explanatory variables. Other ways of computing R-squared are possible, one of 
which we discuss later.

Although time-constant variables cannot be included by themselves in a fixed effects 
model, they can be interacted with variables that change over time and, in particular, with 
year dummy variables. For example, in a wage equation where education is constant over 
time for each individual in our sample, we can interact education with each year dummy 
to see how the return to education has changed over time. But we cannot use fixed effects 
to estimate the return to education in the base period, which means we cannot estimate the 
return to education in any period; we can only see how the return to education in each year 
differs from that in the base period.

When we include a full set of year dummies—that is, year dummies for all years but the 
first—we cannot estimate the effect of any variable whose change across time is constant. 
An example is years of experience in a panel data set where each person works in every year, 

TABLE  14 . 1

Fixed Effects Estimation of the Scrap Rate Equation

Dependent Variable: log(scrap)

Independent Variables Coefficient (Standard Error)

d88 �.080
 (.109)

d89  �.247
 (.133)

grant  �.252
 (.151)

grant
�1

�.422
(.210)

Observations 
Degrees of freedom 
R-squared

162 
104
.201
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so that experience always increases by one in each year, for every person in the sample. The 
presence of a

i
 accounts for differences across people in their years of experience in the initial 

time period. But then the effect of a one-year increase in experience cannot be distinguished 
from the aggregate time effects (because experience increases by the same amount for 
everyone). This would also be true if, in place of separate year dummies, we used a linear 
time trend: for each person, experience cannot be  distinguished from a linear trend.

E x a m p l e  1 4 . 2

[Has the Return to Education Changed over Time?]

The data in WAGEPAN.RAW are from Vella and Verbeek (1998). Each of the 545 men in the sample 
worked in every year from 1980 through 1987. Some variables in the data set change over time: expe-
rience, marital status, and union status are the three important ones. Other variables do not change: 
race and education are the key examples. If we use fixed effects (or first differencing), we cannot 
include race, education, or experience in the equation. However, we can include interactions of educ 
with year dummies for 1981 through 1987 to test whether the return to education was constant over 
this time period. We use log(wage) as the dependent variable, dummy variables for marital and union 
status, a full set of year dummies, and the interaction terms d81�educ, d82�educ, …,  d87�educ.
 The estimates on these interaction terms are all positive, and they generally get larger for more 
recent years. The largest coefficient of .030 is on d87�educ, with t � 2.48. In other words, the return 
to education is estimated to be about 3 percentage points larger in 1987 than in the base year, 1980. 
(We do not have an estimate of the return to education in the base year for the reasons given earlier.) 
The other significant interaction term is d86�educ (coefficient � .027, t � 2.23). The estimates on 
the earlier years are smaller and insignificant at the 5% level against a two-sided alternative. If we 
do a joint F test for significance of all seven interaction terms, we get p-value � .28: this gives an 
example where a set of variables is jointly insignificant even though some variables are individually
significant. [The df for the F test are 7 and 3,799; the second of these comes from N(T � 1) � k �
545(8 � 1) � 16 � 3,799.] Generally, the results are consistent with an increase in the return to 
education over this period.

 

The Dummy Variable Regression

A traditional view of the fixed effects approach is to assume that the unobserved effect, 
a

i
, is a parameter to be estimated for each i. Thus, in equation (14.4), a

i
 is the intercept for 

person i (or firm i, city i, and so on) that is to be estimated along with the �
j
. (Clearly, we 

cannot do this with a single cross section: there would be N � k parameters to  estimate with 
only N observations. We need at least two time periods.) The way we estimate an intercept 
for each i is to put in a dummy variable for each cross-sectional observation, along with the 
explanatory variables (and probably dummy variables for each time period). This method 
is usually called the dummy variable regression. Even when N is not very large (say, N �
54 as in Example 14.1), this results in many explanatory  variables—in most cases, too 
many to explicitly carry out the regression. Thus, the dummy variable method is not very 
practical for panel data sets with many cross- sectional observations.

Nevertheless, the dummy variable regression has some interesting features. Most 
importantly, it gives us exactly the same estimates of the �

j 
that we would obtain from the 

regression on time-demeaned data, and the standard errors and other major statistics are 
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identical. Therefore, the fixed effects estimator can be obtained by the dummy variable 
regression. One benefit of the dummy variable regression is that it properly computes the 
degrees of freedom directly. This is a minor advantage now that many econometrics pack-
ages have programmed fixed effects options.

The R-squared from the dummy variable regression is usually rather high. This 
occurs because we are including a dummy variable for each cross-sectional unit, which 
explains much of the variation in the data. For example, if we estimate the unobserved 
effects model in Example 13.8 by fixed effects using the dummy variable regression (which 
is possible with N � 22), then R2 � .933. We should not get too excited about this large 
R-squared: it is not surprising that we can explain much of the variation in unemployment 
claims using both year and city dummies. Just as in Example 13.8, the estimate on the EZ 
dummy variable is more important than R2.

The R-squared from the dummy variable regression can be used to compute F tests in 
the usual way, assuming, of course, that the classical linear model assumptions hold (see 
the chapter appendix). In particular, we can test the joint significance of all of the cross-
sectional dummies (N � 1, since one unit is chosen as the base group). The unrestricted 
R-squared is obtained from the regression with all of the cross-sectional dummies; the 
restricted R-squared omits these. In the vast majority of applications, the dummy variables 
will be jointly significant.

Occasionally, the estimated intercepts, say  ̂  a 
i
, are of interest. This is the case if we want 

to study the distribution of the  ̂  a 
i
 across i, or if we want to pick a particular firm or city to 

see whether its  ̂  a 
i
 is above or below the average value in the sample. These estimates are 

directly available from the dummy variable regression, but they are rarely reported by pack-
ages that have fixed effects routines (for the practical reason that there are so many  ̂  a 

i
). After 

fixed effects estimation with N of any size, the  ̂  a 
i
 are pretty easy to compute:

  ̂  a 
i
 �  - y 

i
 �  ̂  � 

1
 - x 

i1
 � … �  ̂  � 

k
 
 
 - x 

ik
, i � 1, …, N,  14.6

where the overbar refers to the time averages and the  ̂  � 
j
 are the fixed effects estimates.

For example, if we have estimated a model of crime while controlling for various time-
varying factors, we can obtain  ̂  a 

i
 for a city to see whether the unobserved fixed effects that 

contribute to crime are above or below average.
Some econometrics packages that support fixed effects estimation report an  “intercept,” 

which can cause confusion in light of our earlier claim that the time-demeaning eliminates 
all time-constant variables, including an overall intercept. [See equation (14.5).] Reporting 
an overall intercept in fixed effects (FE) estimation arises from viewing the a

i
 as parameters 

to estimate. Typically, the intercept reported is the average across i of the  ̂  a 
i
. In other words, 

the overall intercept is actually the average of the individual-specific intercepts, which is an 
unbiased, consistent estimator of � � E(a

i
).

In most studies, the  ̂  � 
j
 are of interest, and so the time-demeaned equations are used to 

obtain these estimates. Further, it is usually best to view the a
i
 as omitted variables that we 

control for through the within transformation. The sense in which the a
i
 can be estimated is 

generally weak. In fact, even though  ̂  a 
i
 is unbiased (under Assumptions FE.1 through FE.4 

in the chapter appendix), it is not consistent with a fixed T as N → . The reason is that, 
as we add each additional cross-sectional observation, we add a new a

i
. No information 

accumulates on each a
i
 when T is fixed. With larger T, we can get better estimates of the a

i
, 

but most panel data sets are of the large N and small T variety.
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Fixed Effects or First Differencing?

So far, setting aside pooled OLS, we have seen two competing methods for estimating 
unobserved effects models. One involves differencing the data, and the other involves 
time-demeaning. How do we know which one to use?
 We can eliminate one case immediately: when T � 2, the FE and FD estimates, as
well as all test statistics, are identical, and so it does not matter which we use. Of course, 
the equivalance between the FE and FD estimates requires that we estimate the same 
model in each case. In particular, as we discussed in Chapter 13, it is natural to include 
an intercept in the FD equation; this intercept is actually the intercept for the second time 
period in the original model written for the two time periods. Therefore, FE estimation 
must include a dummy variable for the second time period in order to be identical to the 
FD estimates that include an intercept.
 With T � 2, FD has the advantage of being straightforward to implement in any 
econometrics or statistical package that supports basic data manipulation, and it is easy to 
compute heteroskedasticity-robust statistics after FD estimation (because when T � 2, FD 
estimation is just a cross-sectional regression).

When T � 3, the FE and FD estimators are not the same. Since both are unbiased under 
Assumptions FE.1 through FE.4, we cannot use unbiasedness as a criterion. Further, both 
are consistent (with T fixed as N → ) under FE.1 through FE.4. For large N and small 
T, the choice between FE and FD hinges on the relative efficiency of the estimators, and 
this is determined by the serial correlation in the idiosyncratic errors, u

it
. (We will assume 

homoskedasticity of the u
it
, since efficiency comparisons require homoskedastic errors.)

When the u
it
 are serially uncorrelated, fixed effects is more efficient than first dif-

ferencing (and the standard errors reported from fixed effects are valid). Since the unob-
served effects model is typically stated (sometimes only implicitly) with serially uncor-
related idiosyncratic errors, the FE estimator is used more than the FD estimator. But we 
should remember that this assumption can be false. In many applications, we can expect 
the unobserved factors that change over time to be serially correlated. If u

it
 follows a ran-

dom walk—which means that there is very substantial, positive serial correlation—then 
the difference �u

it
 is serially uncorrelated, and first differencing is better. In many cases, 

the u
it
 exhibit some positive serial correlation, but perhaps not as much as a random walk. 

Then, we cannot easily compare the efficiency of the FE and FD estimators.
It is difficult to test whether the u

it
 are serially uncorrelated after FE estimation: we 

can estimate the time-demeaned errors, ü
it
, but not the u

it
. However, in Section 13.3, we 

showed how to test whether the differenced errors, �u
it
, are serially uncorrelated. If this 

seems to be the case, FD can be used. If there is substantial negative serial correlation 
in the �u

it
, FE is probably better. It is often a good idea to try both: if the results are not 

sensitive, so much the better.
When T  is large, and especially when N is not very large (for example, N � 20 and T � 30), 

we must exercise caution in using the fixed effects estimator. Although exact  distributional 
results hold for any N and T under the classical fixed effects assumptions, inference can be 
very sensitive to violations of the assumptions when N is small and T is large. In particular, if 
we are using unit root processes—see Chapter 11—the spurious regression problem can arise. 
First differencing has the advantage of turning an integrated time series process into a weakly 
dependent process. Therefore, if we apply first differencing, we can appeal to the central limit 
theorem even in cases where T is larger than N. Normality in the idiosyncratic errors is not 
needed, and heteroskedasticity and serial correlation can be dealt with as we touched on in 
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Chapter 13. Inference with the fixed effects estimator is potentially more sensitive to nonnor-
mality, heteroskedasticity, and serial correlation in the idiosyncratic errors.

Like the first difference estimator, the fixed effects estimator can be very sensitive to 
classical measurement error in one or more explanatory variables. However, if each x

itj
 

is uncorrelated with u
it
, but the strict exogeneity assumption is otherwise violated—for 

example, a lagged dependent variable is included among the regressors or there is feed-
back between u

it
 and future outcomes of the explanatory variable—then the FE estimator 

likely has substantially less bias than the FD estimator (unless T � 2). The important 
theoretical fact is that the bias in the FD estimator does not depend on T, while that for 
the FE estimator tends to zero at the rate 1/T. See Wooldridge (2002, Section 11.1) for 
details.

Generally, it is difficult to choose between FE and FD when they give substantively 
different results. It makes sense to report both sets of results and to try to determine why 
they differ.

Fixed Effects with Unbalanced Panels

Some panel data sets, especially on individuals or firms, have missing years for at least 
some cross-sectional units in the sample. In this case, we call the data set an unbalanced 
panel. The mechanics of fixed effects estimation with an unbalanced panel are not much 
more difficult than with a balanced panel. If T

i
 is the number of time periods for cross-

 sectional unit i, we simply use these T
i
 observations in doing the time-demeaning. The total 

number of observations is then T
1
 � T

2
 � … � T

N
. As in the balanced case, one degree 

of freedom is lost for every cross-sectional observation due to the time-demeaning. Any 
regression package that does fixed effects makes the appropriate adjustment for this loss. 
The dummy variable regression also goes through in exactly the same way as with a bal-
anced panel, and the df is appropriately obtained.

It is easy to see that units for which we have only a single time period play no role in 
a fixed effects analysis. The time-demeaning for such observations yields all zeros, which 
are not used in the estimation. (If T

i 
is at most two for all i, we can use first differencing: 

if T
i
 � 1 for any i, we do not have two periods to difference.)
The more difficult issue with an unbalanced panel is determining why the panel is unbal-

anced. With cities and states, for example, data on key variables are sometimes missing for 
certain years. Provided the reason we have missing data for some i is not correlated with 
the idiosyncratic errors, u

it
, the unbalanced panel causes no problems. When we have data 

on individuals, families, or firms, things are trickier. Imagine, for example, that we obtain 
a  random sample of manufacturing firms in 1990, and we are interested in testing how 
unionization affects firm profitability. Ideally, we can use a panel data analysis to  control 
for  unobserved worker and management characteristics that affect profitability and might 
also be correlated with the fraction of the firm’s work force that is unionized. If we collect 
data again in subsequent years, some firms may be lost because they have gone out of busi-
ness or have merged with other companies. If so, we probably have a nonrandom sample in 
subsequent time periods. The question is: If we apply fixed effects to the unbalanced panel, 
when will the estimators be unbiased (or at least consistent)?

If the reason a firm leaves the sample (called attrition) is correlated with the idiosyn-
cratic error—those unobserved factors that change over time and affect profits—then the 
resulting sample section problem (see Chapter 9) can cause biased estimators. This is a 
serious consideration in this example. Nevertheless, one useful thing about a fixed effects 
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analysis is that it does allow attrition to be correlated with a
i
, the unobserved effect. The 

idea is that, with the initial sampling, some units are more likely to drop out of the survey, 
and this is captured by a

i
.

E x a m p l e  1 4 . 3

[Effect of Job Training on Firm Scrap Rates]

We add two variables to the analysis in Table 14.1: log(sales
it
) and log(employ

it
), where sales is 

annual firm sales and employ is number of employees. Three of the 54 firms drop out of the analysis 
entirely because they do not have sales or employment data. Five additional observations are lost 
due to missing data on one or both of these variables for some years, leaving us with n � 148. Using 
fixed effects on the unbalanced panel does not change the basic story, although the estimated grant 
effect gets larger:  ̂  � 

grant
 � �.297, t

grant
 � �1.89;  ̂  � 

grant�1
 � �.536, t

grant�1
 � �2.389.

 

Solving general attrition problems in panel data is complicated and beyond the scope 
of this text. [See, for example, Wooldridge (2002, Chapter 17).]

14.2 Random Effects Models
We begin with the same unobserved effects model as before,

 y
it
 � �

0
 � �

1
x

it1
 � … � �

k
x

itk
 � a

i
 � u

it
,  14.7

where we explicitly include an intercept so that we can make the assumption that the 
unobserved effect, a

i
, has zero mean (without loss of generality). We would usually allow 

for time dummies among the explanatory variables as well. In using fixed effects or first 
 differencing, the goal is to eliminate a

i
 because it is thought to be correlated with one 

or more of the x
itj

. But suppose we think a
i
 is uncorrelated with each explanatory vari-

able in all time periods. Then, using a transformation to eliminate a
i
 results in inefficient 

 estimators.
Equation (14.7) becomes a random effects model when we assume that the unob-

served effect a
i
 is uncorrelated with each explanatory variable:

 Cov(x
itj

, a
i
) � 0, t � 1, 2, …, T ; j � 1, 2, …, k. 14.8

In fact, the ideal random effects assumptions include all of the fixed effects assumptions 
plus the additional requirement that a

i
 is independent of all explanatory variables in all 

time periods. (See the chapter appendix for the actual assumptions used.) If we think the 
unobserved effect a

i
 is correlated with any explanatory variables, we should use first dif-

ferencing or fixed effects.
Under (14.8) and along with the random effects assumptions, how should we estimate 

the �
j
? It is important to see that, if we believe that a

i
 is uncorrelated with the explanatory 

variables, the �
j
 can be consistently estimated by using a single cross section: there is no 

need for panel data at all. But using a single cross section disregards much useful infor-
mation in the other time periods. We can also use the data in a pooled OLS procedure: 
just run OLS of y

it
 on the explanatory variables and probably the time dummies. This, 
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too, produces consistent estimators of the �
j 
under the random effects assumption. But it 

ignores a key feature of the model. If we define the composite error term as v
it
 � a

i
 � 

u
it
, then (14.7) can be written as

 y
it
 � �

0
 � �

1
x

it1
 � … � �

k
x

itk
 � v

it
. 14.9

Because a
i
 is in the composite error in each time period, the v

it
 are serially correlated across 

time. In fact, under the random effects assumptions,

Corr(v
it
, v

is
) � � 2   a  /(� 2   a  � � 2   u ), t 	 s, 

where � 2   a  � Var(a
i
) and � 2   u  � Var(u

it
). This (necessarily) positive serial correlation in

the error term can be substantial, and, because the usual pooled OLS standard errors ignore 
this correlation, they will be incorrect, as will the usual test statistics. In Chapter 12,
we showed how generalized least squares can be used to estimate models with autoregressive 
serial correlation. We can also use GLS to solve the serial correlation problem here. For 
the procedure to have good properties, we should have large N and relatively small T. We 
assume that we have a balanced panel, although the method can be extended to unbalanced 
panels.

Deriving the GLS transformation that eliminates serial correlation in the errors requires 
sophisticated matrix algebra [see, for example, Wooldridge (2002, Chapter 10)]. But the 
transformation itself is simple. Define

 � � 1 � [� 2   u  /(� 2   u  � T� 2   a )]1/ 2,  14.10

which is between zero and one. Then, the transformed equation turns out to be

 y
it
 � � - y 

i
 � �

0
(1 � �) � �

1
(x

it1
 � � - x 

i1
) � …

 � �
k
(x

itk
 � � - x 

ik
) � (v

it
 � � - v 

i
),

 14.11

where the overbar again denotes the time averages. This is a very interesting equation, as 
it involves quasi-demeaned data on each variable. The fixed effects estimator subtracts 
the time averages from the corresponding variable. The random effects transformation 
 subtracts a fraction of that time average, where the fraction depends on � 2   u  , � 2   a  , and the 
number of time periods, T. The GLS estimator is simply the pooled OLS estimator of 
equation (14.11). It is hardly obvious that the errors in (14.11) are serially uncorrelated, 
but they are. (See Problem 14.3.)

The transformation in (14.11) allows for explanatory variables that are constant over 
time, and this is one advantage of random effects (RE) over either fixed effects or first dif-
ferencing. This is possible because RE assumes that the unobserved effect is uncorrelated 
with all explanatory variables, whether the explanatory variables are fixed over time or not. 
Thus, in a wage equation, we can include a variable such as education even if it does not 
change over time. But we are assuming that education is uncorrelated with a

i
, which con-

tains ability and family background. In many applications, the whole reason for using panel 
data is to allow the unobserved effect to be correlated with the explanatory variables.

The parameter � is never known in practice, but it can always be estimated. There 
are different ways to do this, which may be based on pooled OLS or fixed effects, 
for example. Generally,  ̂  �  takes the form  ̂  �  � 1 � {1/[1 � T( ̂  �  2   a  / ̂  �   2   u )]}1/2, where  ̂  �  2   a  is 
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a  consistent estimator of � 2   a   and  ̂  �  2   u   is a consistent estimator of � 2   u  . These estimators 
can be based on the pooled OLS or fixed effects residuals. One possibility is that

 ̂  �  2   a   � [NT(T � 1)/2 � (k � 1)]�1 �N

i�1
 �T

t�

�

1

1
 �T

s�t�1
  ̂  v 

it
 ̂  v 

is
, where the  ̂  v 

it
 are the residuals 

from estimating (14.9) by pooled OLS. Given this, we can estimate � 2   u   by using  ̂  �  2   u   �  ̂  �  2   v   �
 ̂  �  2   a  , where  ̂  �  2   v   is the square of the usual standard error of the regression from pooled OLS. 
[See Wooldridge (2002, Chapter 10) for additional discussion of these estimators.] 

Many econometrics packages support estimation of random effects models and automati-
cally compute some version of  ̂  � . The feasible GLS estimator that uses  ̂  �  in place of � is 
called the random effects estimator. Under the random effects assumptions in the chapter 
appendix, the estimator is consistent (not unbiased) and asymptotically normally distributed 
as N gets large with fixed T. The properties of the random effects (RE) estimator with small 
N and large T are largely unknown, although it has certainly been used in such situations. 

Equation (14.11) allows us to relate the RE estimator to both pooled OLS and fixed 
effects. Pooled OLS is obtained when � � 0, and FE is obtained when � � 1. In practice, 
the estimate  ̂  �  is never zero or one. But if  ̂  �  is close to zero, the RE estimates will be close 
to the pooled OLS estimates. This is the case when the unobserved effect, a

i
, is relatively 

unimportant (because it has small variance relative to � 2   u  ). It is more common for � 2   a  to 
be large relative to � 2   u , in which case  ̂  �  will be closer to unity. As T gets large,  ̂  �  tends to 
one, and this makes the RE and FE estimates very similar.

We can gain more insight on the relative merits of random effects versus fixed effects by 
writing the quasi-demeaned error in equation (14.11) as v

it
 � � - v 

i
 � (1 � �)a

i
 � u

it
 � � - u 

i
 . This 

simple expression makes it clear that the errors in the transformed equation used in random 
effects estimation weight the unobserved effect by (1 � �). Although correlation between 
a

i
 and one or more x

itj
 causes inconsistency in the random effects estimation, we see that 

the correlation is attenuated by the factor (1 � �). As � → 1, the bias term goes to zero, 
as it must because the RE estimator tends to the FE estimator. If � is close to zero, we are 
leaving a larger fraction of the unobserved effect in the error term, and, as a consequence, 
the asymptotic bias of the RE estimator will be larger.
 In applications of FE and RE, it is usually informative also to compute the pooled 
OLS estimates. Comparing the three sets of estimates can help us determine the nature 
of the biases caused by leaving the unobserved effect, a

i
, entirely in the error term (as 

does pooled OLS) or partially in the error term (as does the RE transformation). But we 
must remember that, even if a

i
 is uncorrelated with all explanatory variables in all time 

periods, the pooled OLS standard errors and test statistics are generally invalid: they 
ignore the often substantial serial correlation in the composite errors, v

it
 � a

i 
� u

it
. As

we mentioned in Chapter 13 (see Example 13.9), it is possible to compute standard errors 
and test statistics that are robust to arbitrary serial correlation (and heteroskedasticity) in 
v

it
 , and popular statistics packages often allow this option. [See, for example, Wooldridge 

(2002, Chapter 10).]

E x a m p l e  1 4 . 4

[A Wage Equation Using Panel Data]

We again use the data in WAGEPAN.RAW to estimate a wage equation for men. We use three 
methods: pooled OLS, random effects, and fixed effects. In the first two methods, we can include 
educ and race dummies (black and hispan), but these drop out of the fixed effects analysis. The time-
varying variables are exper, exper2, union, and married. As we discussed in Section 14.1, exper is 
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dropped in the FE analysis (although exper2 remains). Each regression also contains a full set of year 
dummies. The estimation results are in Table 14.2.

The coefficients on educ, black, and hispan are similar for the pooled OLS and random effects esti-
mations. The pooled OLS standard errors are the usual OLS standard errors, and these underestimate 
the true standard errors because they ignore the positive serial correlation; we report them here for com-
parison only. The experience profile is somewhat different, and both the marriage and union premiums 
fall notably in the random effects estimation. When we eliminate the unobserved effect entirely by 
using fixed effects, the marriage premium falls to about 4.7%, although it is still statistically significant. 
The drop in the marriage premium is consistent with the idea that men who are more able—as captured 
by a higher unobserved effect, a

i
—are more likely to be married. Therefore, in the pooled OLS estima-

tion, a large part of the marriage premium reflects the fact that men who are married would earn more 
even if they were not married. The remaining 4.7% has at least two possible explanations: (1) marriage 
really makes men more productive or (2) employers pay married men a premium because marriage is 

a signal of stability. We cannot distinguish 
between these two hypotheses.
 The estimate of � for the random effects 
estimation is  ̂  �  � .643, which helps explain 
why, on the time-varying variables, the RE 
estimates lie closer to the FE estimates than 
to the pooled OLS estimates.

 

TABLE  14 . 2

Three Different Estimators of a Wage Equation

Dependent Variable: log(wage)

Independent 
Variables

Pooled 
OLS

Random 
Effects

Fixed 
Effects

educ  .091
 (.005)

 .092
 (.011)

———

black  �.139
 (.024)

 �.139
 (.048)

———

hispan  .016
 (.021)

 .022
 (.043)

———

exper  .067
 (.014)

 .106
 (.015)

———

exper2  �.0024
  (.0008)

 �.0047
 (.0007)

 �.0052
 (.0007)

married  .108
 (.016)

 .064
 (.017)

 .047
 (.018)

union  .182
 (.017)

 .106
 (.018)

 .080
 (.019)

Q u e s t i o n  1 4 . 3
The union premium estimated by fixed effects is about 10 percent-
age points lower than the OLS estimate. What does this strongly 
suggest about the correlation between union and the unobserved 
effect?
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Random Effects or Fixed Effects?

Because fixed effects allows arbitrary correlation between a
i
 and the x

itj
, while random 

effects does not, FE is widely thought to be a more convincing tool for estimating ceteris 
paribus effects. Still, random effects is applied in certain situations. Most obviously, if 
the key explanatory variable is constant over time, we cannot use FE to estimate its effect 
on y. For example, in Table 14.2, we must rely on the RE (or pooled OLS) estimate of the 
return to education. Of course, we can only use random effects because we are willing to 
assume the unobserved effect is uncorrelated with all explanatory variables. Typically, if 
one uses random effects, as many time-constant controls as possible are included among 
the explanatory variables. (With an FE analysis, it is not necessary to include such con-
trols.) RE is preferred to pooled OLS because RE is generally more efficient.

If our interest is in a time-varying explanatory variable, is there ever a case to use RE 
rather than FE? Yes, but situations in which Cov(x

itj
, a

i
) � 0 should be considered the 

exception rather than the rule. If the key policy variable is set experimentally—say, each 
year, children are randomly assigned to classes of different sizes—then random effects 
would be appropriate for estimating the effect of class size on performance. Unfortunately, 
in most cases the regressors are themselves outcomes of choice processes and likely to be 
correlated with individual preferences and abilities as captured by a

i
.

It is still fairly common to see researchers apply both random effects and fixed effects, 
and then formally test for statistically significant differences in the coefficients on the time-
varying explanatory variables. (So, in Table 14.2, these would be the coefficients on exper2, 
married, and union.) Hausman (1978) first proposed such a test, and some econometrics 
packages routinely compute the Hausman test under the full set of random effects assump-
tions listed in the appendix to this chapter. The idea is that one uses the random effects esti-
mates unless the Hausman test rejects (14.8). In practice, a failure to reject means either that 
the RE and FE estimates are sufficiently close so that it does not matter which is used, or the 
 sampling variation is so large in the FE estimates that one cannot conclude practically signif-
icant  differences are statistically significant. In the latter case, one is left to wonder whether 
there is enough information in the data to provide precise estimates of the coefficients. A 
rejection using the Hausman test is taken to mean that the key RE assumption, (14.8), is 
false, and then the FE estimates are used. (Naturally, as in all applications of statistical infer-
ence, one should distinguish between a practically significant difference and a statistically 
significant difference.) [See Wooldridge (2002, Section 10.7) for further discussion.]

 A final word of caution. In reading empirical work, you may find that some authors 
decide on FE versus RE estimation based on whether the a

i
 are properly viewed as param-

eters to estimate or as random variables. Such considerations are usually wrongheaded. In 
this chapter, we have treated the a

i
 as random variables in the unobserved effects model 

(14.7), regardless of how we decide to estimate the �
j
. As we have emphasized, the key 

issue that determines whether we use FE or RE is whether we can plausibly assume a
i
 is 

uncorrelated with all x
itj
. Nevertheless, in some applications of panel data methods, we 

cannot treat our sample as a random sample from a large population, especially when the 
unit of observation is a large geographical unit (say, states or provinces). Then, it often 
makes sense to think of each a

i
 as a separate intercept to estimate for each cross-sectional 

unit. In this case, we use fixed effects: remember, using FE is mechanically the same as 
allowing a different intercept for each cross-sectional unit. Fortunately, whether or not we 
engage in the philosophical debate about the nature of a

i
, FE is almost always much more 

convincing than RE for policy analysis using aggregated data.
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14.3 Applying Panel Data Methods 
to Other Data Structures
The various panel data methods can be applied to certain data structures that do not involve 
time. For example, it is common in demography to use siblings (sometimes twins) to 
account for unobserved family and background characteristics. Usually we want to allow 
the unobserved “family effect,” which is common to all siblings within a family, to be cor-
related with observed explanatory variables. If those explanatory variables vary across sib-
lings within a family, differencing across sibling pairs—or, more generally, using the within 
transformation within a family—is preferred as an estimation method. By removing the 
unobserved effect, we eliminate potential bias caused by confounding family background 
characteristics. Implementing fixed effects on such data structures is rather straightforward 
in regression packages that support FE estimation.

As an example, Geronimus and Korenman (1992) used pairs of sisters to study the 
effects of teen childbearing on future economic outcomes. When the outcome is income 
relative to needs—something that depends on the number of children—the model is

log(incneeds
fs
) � �

0
 � �

0
sister2

s
 � �

1
teenbrth

fs

 � �
2
age

fs
 � other factors � a

f
 � u

fs
,
  14.12

where f indexes family and s indexes a sister within the family. The intercept for the first 
sister is �

0
, and the intercept for the second sister is �

0
 � �

0
. The variable of interest is 

teenbrth
fs
, which is a binary variable equal to one if sister s in family f had a child while 

a teenager. The variable age
fs
 is the current age of sister s in family f ; Geronimus and 

Korenman also used some other controls. The unobserved variable a
f 
, which changes only 

across family, is an unobserved family effect or a  family fixed effect. The main concern 
in the analysis is that teenbrth is correlated with the family effect. If so, an OLS analysis 
that pools across families and sisters gives a biased estimator of the effect of teenage 
motherhood on economic outcomes. Solving this problem is simple: within each family, 
difference (14.12) across sisters to get

 �log(incneeds) � �
0
 � �

1
�teenbrth � �

2
�age � . . . � �u; 14.13

this removes the family effect, a
f 
, and the resulting equation can be estimated by OLS. 

Notice that there is no time element here: the differencing is across sisters within a  family. 
Also, we have allowed for differences 
in intercepts across sisters in (14.12), 
which leads to a nonzero intercept in 
the differenced equation, (14.13). If 
in entering the data the order of the 
sisters within each family is essentially 
random, the estimated intercept should 

be close to zero. But even in such cases it does not hurt to include an intercept in (14.13), 
and  having the intercept allows for the fact that, say, the first sister listed might always be 
the neediest.

Using 129 sister pairs from the 1982 National Longitudinal Survey of Young Women, 
Geronimus and Korenman first estimated �

1
 by pooled OLS to obtain �.33 or �.26, where 

Q u e s t i o n  1 4 . 4
When using the differencing method, does it make sense to 
include dummy variables for the mother and father’s race in 
(14.12)? Explain.
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the second estimate comes from controlling for family background variables (such as par-
ents’ education); both estimates are very statistically significant [see Table 3 in Geronimus 
and Korenman (1992)]. Therefore, teenage motherhood has a rather large impact on future 
family income. However, when the differenced equation is estimated, the coefficient on 
teenbrth is �.08, which is small and statistically insignificant. This suggests that it is 
largely a woman’s family background that affects her future income, rather than teenage 
childbearing.

Geronimus and Korenman looked at several other outcomes and two other data sets; 
in some cases, the within family estimates were economically large and statistically sig-
nificant. They also showed how the effects disappear entirely when the sisters’ education 
levels are controlled for.

Ashenfelter and Krueger (1994) used the differencing methodology to estimate the 
return to education. They obtained a sample of 149 identical twins and collected informa-
tion on earnings, education, and other variables. Identical twins were used because they 
should have the same underlying ability. This can be differenced away by using twin 
differences, rather than OLS on the pooled data. Because identical twins are the same in 
age, gender, and race, these factors all drop out of the differenced equation. Therefore, 
 Ashenfelter and Krueger regressed the difference in log(earnings) on the difference in 
 education and estimated the return to education to be about 9.2% (t � 3.83). Interestingly, 
this is actually larger than the pooled OLS estimate of 8.4% (which controls for gender, 
age, and race). Ashenfelter and Krueger also estimated the equation by random effects and 
obtained 8.7% as the return to education. (See Table 5 in their paper.) The random effects 
analysis is mechanically the same as the panel data case with two time periods.

The samples used by Geronimus and Korenman (1992) and Ashenfelter and Krueger 
(1994) are examples of matched pairs samples. Generally, fixed and random effects 
methods can be applied to a cluster sample. These are cross-sectional data sets, but each 
observation belongs to a well-defined cluster. In the previous examples, each family is a 
cluster. As another example, suppose we have participation data on various pension plans, 
where firms offer more than one plan. We can then view each firm as a cluster, and it 
is pretty clear that unobserved firm effects would be an important factor in determining 
participation rates in pension plans within the firm.

Educational data on students sampled from many schools form a cluster sample, where 
each school is a cluster. Because the outcomes within a cluster are likely to be correlated, 
allowing for an unobserved cluster effect is typically important. Fixed effects estimation 
is preferred when we think the unobserved cluster effect—an example of which is a

f
 in 

(14.12)—is correlated with one or more of the explanatory variables. Then, we can only 
include explanatory variables that vary, at least somewhat, within clusters. The cluster sizes 
are rarely the same, so fixed effects methods for unbalanced panels are usually required.

In some cases, the key explanatory variables—often policy variables—change only at 
the level of the cluster, not within the cluster. In such cases the fixed effects approach is not 
applicable. For example, we may be interested in the effects of measured teacher quality 
on student performance, where each cluster is an elementary school classroom. Because 
all students within a cluster have the same teacher, eliminating a “class effect” also elimi-
nates any observed measures of teacher quality. If we have good controls in the equation, 
we may be justified in applying random effects on the unbalanced cluster. As with panel 
data, the key requirement for RE to produce convincing estimates is that the explanatory 
variables are uncorrelated with the unobserved cluster effect. Most econometrics packages 
allow random effects estimation on unbalanced clusters without much effort.
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Pooled OLS is also commonly applied to cluster samples when eliminating a cluster 
effect via fixed effects is infeasible or undesirable. However, as with panel data, the
usual OLS standard errors are incorrect unless there is no cluster effect, and so robust 
standard errors that allow “cluster correlation” (and heteroskedasticity) should be used. 
Some regression packages have simple commands to correct standard errors and the usual 
test statistics for general within cluster correlation (as well as heteroskedasticity). These 
are the same corrections that work for pooled OLS on panel data sets, which we reported 
in Example 13.9. As an example, Papke (1999) estimates linear probability models for the 
continuation of defined benefit pension plans based on whether firms adopted defined con-
tribution plans. Because there is likely to be a firm effect that induces correlation across 
different plans within the same firm, Papke corrects the usual OLS standard errors for 
cluster sampling, as well as for heteroskedasticity in the linear probability model.

K E Y  T E R M S

Cluster Effect
Cluster Sample
Composite Error Term
Dummy Variable Regression
Fixed Effects Estimator

Fixed Effects Transformation
Matched Pairs Samples
Quasi-Demeaned Data
Random Effects Estimator
Random Effects Model

Time-Demeaned Data
Unbalanced Panel
Unobserved Effects Model
Within Estimator
Within Transformation

S U M M A R Y

We have studied two common methods for estimating panel data models with unobserved 
effects. Compared with first differencing, the fixed effects estimator is efficient when the 
idiosyncratic errors are serially uncorrelated (as well as homoskedastic), and we make 
no assumptions about correlation between the unobserved effect a

i
 and the explanatory 

variables. As with first differencing, any time-constant explanatory variables drop out of 
the analysis. Fixed effects methods apply immediately to unbalanced panels, but we must 
assume that the reasons some time periods are missing are not systematically related to 
the idiosyncratic errors.

The random effects estimator is appropriate when the unobserved effect is thought to be
uncorrelated with all the explanatory variables. Then, a

i
 can be left in the error term, and

the resulting serial correlation over time can be handled by generalized least squares 
estimation. Conveniently, feasible GLS can be obtained by a pooled regression on quasi-
demeaned data. The value of the estimated transformation parameter,  ̂  � , indicates whether 
the estimates are likely to be closer to the pooled OLS or the fixed effects estimates. If the 
full set of random effects assumptions holds, the random effects estimator is asymptotically
—as N gets large with T fixed—more efficient than pooled OLS, first differencing, or 
fixed effects (which are all unbiased, consistent, and asymptotically normal).

Finally, the panel data methods studied in Chapters 13 and 14 can be used when work-
ing with matched pairs or cluster samples. Differencing or the within transformation elimi-
nates the cluster effect. If the cluster effect is uncorrelated with the explanatory variables, 
pooled OLS can be used, but the standard errors and test statistics should be adjusted for 
cluster correlation. Random effects estimation is also a possibility.
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P R O B L E M S

14.1  Suppose that the idiosyncratic errors in (14.4), {u
it
: t � 1, 2, …, T}, are serially 

uncorrelated with constant variance, �
u
2. Show that the correlation between adjacent 

 differences, �u
it
 and �u

i,t�1
, is �.5. Therefore, under the ideal FE assumptions, first 

 differencing induces negative serial correlation of a known value.

14.2 With a single explanatory variable, the equation used to obtain the between estimator is

 - y 
i
 � �

0
 � �

1
 - x 

i
 � a

i
 �  - u 

i
, 

  where the overbar represents the average over time. We can assume that E(a
i
) � 0 

because we have included an intercept in the equation. Suppose that  - u 
i
 is uncor-

related with x̄
i
, but Cov(x

it
, a

i
) � �

xa
 for all t (and i because of random sampling in 

the cross section).
(i) Letting  ̃  � 

1
 be the between estimator, that is, the OLS estimator using the time aver-

ages, show that

plim  ̃  � 
1
 � �

1
 � �

xa 
/Var( - x 

i
), 

 where the probability limit is defined as N → . [Hint: See equations (5.5) and 
(5.6).]

(ii) Assume further that the x
it
, for all t � 1, 2, …, T, are uncorrelated with constant 

variance �
x
2. Show that plim  ̃  � 

1
 � �

1
 � T (�

xa
/� 2   x  ).

(iii) If the explanatory variables are not very highly correlated across time, what does 
part (ii) suggest about whether the inconsistency in the between estimator is smaller 
when there are more time periods?

14.3  In a random effects model, define the composite error v
it
 � a

i
 � u

it
, where a

i
 is uncor-

related with u
it
 and the u

it
 have constant variance �

u
2 and are serially uncorrelated. Define 

e
it
 � v

it
 � � - v 

i
, where � is given in (14.10). 

(i) Show that E(e
it
) � 0.

(ii) Show that Var(e
it
) � �

u
2, t � 1, …, T.

(iii) Show that for t 	 s, Cov(e
it
, e

is
) � 0.

14.4  In order to determine the effects of collegiate athletic performance on applicants, you col-
lect data on applications for a sample of Division I colleges for 1985, 1990, and 1995.
(i) What measures of athletic success would you include in an equation? What are 

some of the timing issues?
(ii) What other factors might you control for in the equation?
(iii) Write an equation that allows you to estimate the effects of athletic  success on the 

percentage change in applications. How would you  estimate this equation? Why 
would you choose this method?

14.5  Suppose that, for one semester, you can collect the following data on a random sample 
of college juniors and seniors for each class taken: a standardized final exam score, 
percentage of lectures attended, a dummy variable indicating whether the class is within 
the student’s major, cumulative grade point average prior to the start of the semester, 
and SAT score.
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(i) Why would you classify this data set as a cluster sample? Roughly, how many 
observations would you expect for the typical student?

(ii) Write a model, similar to equation (14.12), that explains final exam  performance 
in terms of attendance and the other characteristics. Use s to subscript student and 
c to subscript class. Which variables do not change within a student?

(iii) If you pool all of the data and use OLS, what are you assuming about unobserved 
student characteristics that affect performance and attendance rate? What roles do 
SAT score and prior GPA play in this regard?

(iv)  If you think SAT score and prior GPA do not adequately capture student ability, 
how would you estimate the effect of attendance on final exam performance?

14.6  Using the “cluster” option in the econometrics package Stata®, the fully robust  standard 
errors for the pooled OLS estimates in Table 14.2—that is, robust to serial  correlation 
and heteroskedasticity in the composite errors, {v

it
: t � 1, …, T}—are obtained as 

se( ̂  � 
educ

) � .011, se(  ̂  � 
black

) � .051, se(  ̂  � 
hispan

) � .039, se(  ̂  � 
exper

) � .020, se(  ̂  � 
exper 2

) � .0010, 
se(  ̂  � 

married
) � .026, and se(  ̂  � 

union
) � .027.

(i) How do these standard errors generally compare with the nonrobust ones, and why?
(ii) How do the robust standard errors for pooled OLS compare with the  standard 

errors for RE? Does it seem to matter whether the explanatory variable is time-
constant or time-varying?

C O M P U T E R  E X E R C I S E S

C14.1  Use the data in RENTAL.RAW for this exercise. The data on rental prices and other 
variables for college towns are for the years 1980 and 1990. The idea is to see whether 
a stronger presence of students affects rental rates. The unobserved effects model is

log(rent
it
) � �

0
 � �

0  
y90

t
 � �

1
log(pop

it
) � �

2
log(avginc

it
)  

 � �
3
pctstu

it
 � a

i
 � u

it 
,

  where pop is city population, avginc is average income, and pctstu is student 
population as a percentage of city population (during the school year).
(i) Estimate the equation by pooled OLS and report the results in standard form. 

What do you make of the estimate on the 1990 dummy variable? What do you 
get for  ̂  � 

pctstu
?

(ii) Are the standard errors you report in part (i) valid? Explain.
(iii) Now, difference the equation and estimate by OLS. Compare your estimate of 

�
pctstu

 with that from part (i). Does the relative size of the student population 
appear to affect rental prices?

(iv) Estimate the model by fixed effects to verify that you get identical estimates and 
standard errors to those in part (iii).

C14.2 Use CRIME4.RAW for this exercise.
(i) Reestimate the unobserved effects model for crime in Example 13.9 but use

fixed effects rather than differencing. Are there any notable sign or magnitude 
changes in the coefficients? What about statistical significance?
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(ii) Add the logs of each wage variable in the data set and estimate the model by 
fixed effects. How does including these variables affect the coefficients on the 
criminal justice variables in part (i)?

(iii) Do the wage variables in part (ii) all have the expected sign? Explain. Are they 
jointly significant?

C14.3  For this exercise, we use JTRAIN.RAW to determine the effect of the job training 
grant on hours of job training per employee. The basic model for the three years is

hrsemp
it
 � �

0
 � �

1
d88

t
 � �

2
d89

t
 � �

1
grant

it
 � �

2
grant

i,t�1
 

 � �
3
log(employ

it
) � a

i
 � u

it
.

(i) Estimate the equation using fixed effects. How many firms are used in the FE 
estimation? How many total observations would be used if each firm had data 
on all variables (in particular, hrsemp) for all three years?

(ii) Interpret the coefficient on grant and comment on its significance.
(iii) Is it surprising that grant

�1
 is insignificant? Explain.

(iv) Do larger firms provide their employees with more or less training, on average? 
How big are the differences? (For example, if a firm has 10% more employees, 
what is the change in average hours of training?)

C14.4  In Example 13.8, we used the unemployment claims data from Papke (1994) to esti-
mate the effect of enterprise zones on unemployment claims. Papke also uses a model 
that allows each city to have its own time trend:

log(uclms
it
) � a

i
 � c

i
t � �

1
ez

it
 � u

it 
,

  where a
i
 and c

i
 are both unobserved effects. This allows for more heterogeneity 

across cities.
(i) Show that, when the previous equation is first differenced, we obtain

�log(uclms
it 
) � c

i
 � �

1
�ez

it
 � �u

it
, t � 2,  …,  T.

 Notice that the differenced equation contains a fixed effect, c
i
.

(ii) Estimate the differenced equation by fixed effects. What is the estimate of �
1
? 

Is it very different from the estimate obtained in Example 13.8? Is the effect of 
enterprise zones still statistically significant?

(iii) Add a full set of year dummies to the estimation in part (ii). What  happens to the 
estimate of �

1
?

C14.5 (i)  In the wage equation in Example 14.4, explain why dummy variables for 
 occupation might be important omitted variables for estimating the union wage 
premium.

(ii) If every man in the sample stayed in the same occupation from 1981 through 
1987, would you need to include the occupation dummies in a fixed effects esti-
mation? Explain.

(iii) Using the data in WAGEPAN.RAW, include eight of the occupation dummy 
variables in the equation and estimate the equation using fixed effects. Does the 
coefficient on union change by much? What about its statistical significance?
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C14.6  Add the interaction term union
it
�t to the equation estimated in Table 14.2 to see if 

wage growth depends on union status. Estimate the equation by random and fixed 
effects and compare the results.

C14.7  Use the state-level data on murder rates and executions in MURDER.RAW for the 
following exercise.
(i)  Consider the unobserved effects model

mrdrte
it
 � �

t
 � �

1
exec

it
 � �

2
unem

it
 � a

i
 � u

it
,

 where �
t
 simply denotes different year intercepts and a

i
 is the unobserved state 

effect. If past executions of convicted murderers have a deterrent effect, what 
should be the sign of �

1
? What sign do you think �

2
 should have? Explain.

(ii) Using just the years 1990 and 1993, estimate the equation from part (i) by pooled 
OLS. Ignore the serial correlation problem in the composite errors. Do you find 
any evidence for a deterrent effect?

(iii) Now, using 1990 and 1993, estimate the equation by fixed effects. You may 
use first differencing since you are only using two years of data. Now, is there 
evidence of a deterrent effect? How strong?

(iv) Compute the heteroskedasticity-robust standard error for the estimation in 
part (iii). It will be easiest to use first differencing.

(v) Find the state that has the largest number for the execution variable in 1993. (The 
variable exec is total executions in 1991, 1992, and 1993.) How much bigger is 
this value than the next highest value?

(vi) Estimate the equation using first differencing, dropping Texas from the analysis. 
Compute the usual and heteroskedasticity-robust standard errors. Now, what do 
you find? What is going on?

(vii) Use all three years of data and estimate the model by fixed effects. Include Texas 
in the analysis. Discuss the size and statistical significance of the deterrent effect 
compared with only using 1990 and 1993.

C14.8  Use the data in MATHPNL.RAW for this exercise. You will do a fixed effects 
version of the first differencing done in Computer Exercise C13.11. The model of 
 interest is

math4
it
 � �

1
y94

t
 � ... � �

5
y98

t
 � �

1
log(rexpp

it
) � �

2
log(rexpp

i,t�1
)

 � �
1
log(enrol

it
) � �

2
lunch

it
 � a

i
 � u

it 
,

  where the first available year (the base year) is 1993 because of the lagged spending 
 variable.
(i) Estimate the model by pooled OLS and report the usual standard errors. You 

should include an intercept along with the year dummies to allow a
i
 to have a 

nonzero expected value. What are the estimated effects of the spending vari-
ables? Obtain the OLS residuals,  ̂  v 

it
.

(ii) Is the sign of the lunch
it
 coefficient what you expected? Interpret the magnitude 

of the coefficient. Would you say that the district poverty rate has a big effect on 
test pass rates?
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(iii) Compute a test for AR(1) serial correlation using the regression  ̂  v 
it
 on  ̂  v 

i,t�1
. You 

should use the years 1994 through 1998 in the regression. Verify that there is 
strong positive serial correlation and discuss why.

(iv) Now, estimate the equation by fixed effects. Is the lagged spending variable still 
significant?

(v) Why do you think, in the fixed effects estimation, the enrollment and lunch 
program variables are jointly insignificant?

(vi) Define the total, or long-run, effect of spending as �
1
 � �

1
 � �

2
. Use the sub-

stitution �
1
 � �

1
 � �

2
 to obtain a standard error for  ̂  � 

1
. [Hint: Standard fixed 

effects estimation using log(rexpp
it
) and z

it
 � log(rexpp

i,  t�1
) � log(rexpp

it
) as 

explanatory variables should do it.]

C14.9  The file PENSION.RAW contains information on participant-directed pension plans 
for U.S. workers. Some of the observations are for couples within the same family, so 
this data set constitutes a small cluster sample (with cluster sizes of two).
(i) Ignoring the clustering by family, use OLS to estimate the model

pctstck � �
0
 � �

1
choice � �

2
prftshr � �

3  
female � �

4
age

 � �
5
educ � �

6  
finc25 � �

7  
finc35 � �

8  
finc50 � �

9  
finc75 

 � �
10  

finc100 � �
11  

finc101 � �
12

wealth89 � �
13

stckin89 

 � �
14

irain89 � u,

   where the variables are defined in the data set. The variable of most interest is 
choice, which is a dummy variable equal to one if the worker has a choice in 
how to allocate pension funds among different  investments. What is the estimated 
effect of choice? Is it statistically significant?

 (ii)  Are the income, wealth, stock holding, and IRA holding control  variables impor-
tant? Explain.

 (iii) Determine how many different families there are in the data set.
 (iv)  Now, obtain the standard errors for OLS that are robust to cluster  correlation 

within a family. Do they differ much from the usual OLS standard errors? Are 
you surprised?

 (v)  Estimate the equation by differencing across only the spouses within a family. 
Why do the explanatory variables asked about in part (ii) drop out in the first-
differenced estimation?

 (vi)  Are any of the remaining explanatory variables in part (v) significant? Are you 
surprised?

C14.10  Use the data in AIRFARE.RAW for this exercise. We are interested in estimating the 
model

log(  fare
it
) � �

t 
� �

1
concen

it 
� �

2
log(dist

i
) � �

3
[log(dist

i
)]2 

  � a
i 
� u

it 
, t � 1, …,  4,

 where �
t
 means that we allow for different year intercepts.

 (i)  Estimate the above equation by pooled OLS, being sure to include year dum-
mies. If �concen � .10, what is the estimated percentage increase in fare?
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 (ii)  What is the usual OLS 95% confidence interval for �
1
? Why is it probably not 

reliable? If you have access to a statistical package that computes fully robust 
standard errors, find the fully robust 95% CI for �

1
. Compare it to the usual CI 

and comment.
 (iii)  Describe what is happening with the quadratic in log(dist). In particular, for what 

value of dist does the relationship between log( fare) and dist become positive? 
[Hint: First figure out the turning point value for log(dist), and then exponentiate.] 
Is the turning point outside the range of the data?

 (iv)  Now estimate the equation using random effects. How does the estimate of �
1
 

change?
 (v)  Now estimate the equation using fixed effects. What is the FE estimate of �

1
? Why 

is it fairly similar to the RE estimate?  (Hint: What is  ̂  �  for RE estimation?)
 (vi)  Name two characteristics of a route (other than distance between stops) that are 

captured by a
i
. Might these be correlated with concen

it
?

 (vii)  Are you convinced that higher concentration on a route increases  airfares? What 
is your best estimate?

C14.11  This question assumes that you have access to a statistical package the computes stan-
dard errors robust to arbitrary serial correlation and heteroskedasticity for panel data 
methods.

 (i)  For the pooled OLS estimates in Table 14.1, obtain the standard errors that allow 
for arbitrary serial correlation (in the composite errors, v

it
 � a

i
 � u

it
) and het-

eroskedasticity. How do the robust standard errors for educ, married, and union 
compare with the nonrobust ones?

 (ii)  Now obtain the robust standard errors for the fixed effects estimates that allow 
arbitrary serial correlation and heteroskedasticity in the idiosyncratic errors, u

it
. 

How do these compare with the nonrobust FE standard errors?
 (iii)  For which method, pooled OLS or FE, is adjusting the standard errors for serial 

correlation more important? Why?

C14.12  Use the data in ELEM94_95 to answer this question. The data are on elementary 
schools in Michigan. In this exercise, we view the data as a cluster sample, where each 
school is part of a district cluster.

 (i)  What are the smallest and largest number of schools in a district? What is the 
average number of schools per district?

 (ii)  Using pooled OLS (that is, pooling across all 1,848 schools), estimate a model 
relating lavgsal to bs, lenrol, lstaff, and lunch; see also Computer Exercise C9.11. 
What are the coefficient and standard error on bs?

 (iii)  Obtain the standard errors that are robust to cluster correlation within district 
(and also heteroskedasticity). What happens to the t statistic for bs?

 (iv)  Still using pooled OLS, drop the four observations with bs � .5 and obtain  ̂  � 
bs

 
and its cluster-robust standard error. Now is there much evidence for a salary-
benefits tradeoff?

 (v)  Estimate the equation by fixed effects, allowing for a common district effect for 
schools within a district. Again drop the observations with bs � .5. Now what 
do you conclude about the salary-benefits tradeoff?

 (vi)  In light of your estimates from parts (iv) and (v), discuss the importance of 
allowing teacher compensation to vary systematically across districts via a dis-
trict fixed effect.
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Appendix 14A

Assumptions for Fixed and Random Effects

In this appendix, we provide statements of the assumptions for fixed and random effects 
estimation. We also provide a discussion of the properties of the estimators under differ-
ent sets of assumptions. Verification of these claims is somewhat involved, but can be 
found in Wooldridge (2002, Chapter 10).

Assumption FE.1

For each i, the model is

y
it
 � �

1
x

it1
 � … � �

k
x

itk
 � a

i
 � u

it
, t � 1, …, T,

where the �j are the parameters to estimate and ai is the unobserved effect.

Assumption FE.2

We have a random sample from the cross section.

Assumption FE.3

Each explanatory variable changes over time (for at least some i ), and no perfect linear 
relationships exist among the explanatory variables.

Assumption FE.4

For each t, the expected value of the idiosyncratic error given the explanatory variables 
in all time periods and the unobserved effect is zero: E(uit�Xi  , ai) � 0.

Under these first four assumptions—which are identical to the assumptions for the 
first-differencing estimator—the fixed effects estimator is unbiased. Again, the key is the 
strict exogeneity assumption, FE.4. Under these same assumptions, the FE estimator is 
consistent with a fixed T as N → .

Assumption FE.5

Var(uit�Xi, ai) � Var(uit) � �u
2, for all t � 1, …, T.
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Assumption FE.6

For all t 	 s, the idiosyncratic errors are uncorrelated (conditional on all explanatory 
variables and ai): Cov(uit,uis�Xi, ai) � 0.

Assumption FE.7

Conditional on Xi and ai, the uit are independent and identically distributed as 
Normal(0, �u

2).

Under Assumptions FE.1 through FE.6, the fixed effects estimator of the �
j
 is 

the best linear unbiased estimator. Since the FD estimator is linear and unbiased, it is 
 necessarily worse than the FE estimator. The assumption that makes FE better than FD 
is FE.6, which implies that the idiosyncratic errors are serially uncorrelated.

Assumption FE.7 implies FE.4, FE.5, and FE.6, but it is stronger because it assumes a 
normal distribution for the idiosyncratic errors. If we add FE.7, the FE estimator is nor-
mally distributed, and t and F statistics have exact t and F distributions. Without FE.7, 
we can rely on asymptotic approximations. But, without making special assumptions, 
these approximations require large N and small T.

The ideal random effects assumptions include FE.1, FE.2, FE.4, FE.5, and FE.6. 
(FE.7 could be added but it gains us little in practice because we have to estimate �.) 
Because we are only subtracting a fraction of the time averages, we can now allow time-
constant explanatory variables. So, FE.3 is replaced with

Assumption RE.3

There are no perfect linear relationships among the explanatory variables.

The cost of allowing time-constant regressors is that we must add assumptions about 
how the unobserved effect, a

i
, is related to the explanatory variables.

Assumption RE.4

In addition to FE.4, the expected value of ai given all explanatory variables is constant: 
E(ai�Xi) � �0.

This is the assumption that rules out correlation between the unobserved effect and 
the explanatory variables, and it is the key distinction between fixed effects and random 
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effects. Because we are assuming a
i
 is uncorrelated with all elements of x

it
, we can 

include time-constant explanatory variables. (Technically, the quasi-time-demeaning 
only removes a fraction of the time average, and not the whole time average.) We allow 
for a nonzero expectation for a

i
 in stating Assumption RE.4 so that the model under the 

random effects assumptions contains an intercept, �
0
, as in equation (14.7). Remember, 

we would typically include a set of time-period intercepts, too, with the first year acting 
as the base year.

We also need to impose homoskedasticity on a
i 
as follows:

Assumption RE.5

In addition to FE.5, the variance of ai given all explanatory variables is constant: 
Var(ai�Xi) � � a

2.

Under the six random effects assumptions (FE.1, FE.2, RE.3, RE.4, RE.5, and FE.6), 
the RE estimator is consistent and asymptotically normally distributed as N gets large 
for fixed T. Actually, consistency and asymptotic normality follow under the first four 
assumptions, but without the last two assumptions the usual RE standard errors and test 
statistics would not be valid. In addition, under the six RE assumptions, the RE estima-
tors are asymptotically efficient. This means that, in large samples, the RE estimators 
will have smaller  standard errors than the corresponding pooled OLS estimators (when 
the proper, robust standard errors are used for pooled OLS). For coefficients on time-
varying explanatory variables (the only ones estimable by FE), the RE estimator is more 
efficient than the FE estimator—often much more efficient. But FE is not meant to be 
efficient under the RE assumptions; FE is intended to be robust to correlation between 
a

i
 and the x

itj
. As often happens in econometrics, there is a tradeoff between robustness 

and efficiency. See Wooldridge (2002, Chapter 10) for verification of the claims made 
here.
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Instrumental Variables Estimation 
and Two Stage Least Squares

C H A P T E R 15

In this chapter, we further study the problem of endogenous explanatory variables in 
multiple regression models. In Chapter 3, we derived the bias in the OLS estimators 
when an important variable is omitted; in Chapter 5, we showed that OLS is generally 

inconsistent under omitted variables. Chapter 9 demonstrated that omitted variables bias 
can be eliminated (or at least mitigated) when a suitable proxy variable is given for an 
unobserved explanatory variable. Unfortunately, suitable proxy variables are not always 
available.
 In the previous two chapters, we explained how fixed effects estimation or first differ-
encing can be used with panel data to estimate the effects of time-varying independent vari-
ables in the presence of time-constant omitted variables. Although such methods are very 
useful, we do not always have access to panel data. Even if we can obtain panel data, it does 
us little good if we are interested in the effect of a variable that does not change over time: 
first differencing or fixed effects estimation eliminates time-constant explanatory variables. 
In addition, the panel data methods that we have studied so far do not solve the problem of 
time-varying omitted variables that are correlated with the explanatory variables.
 In this chapter, we take a different approach to the endogeneity problem. You will 
see how the method of instrumental variables (IV) can be used to solve the problem of 
endogeneity of one or more explanatory variables. The method of two stage least squares 
(2SLS or TSLS) is second in popularity only to ordinary least squares for estimating linear 
equations in applied econometrics.
 We begin by showing how IV methods can be used to obtain consistent estimators in 
the presence of omitted variables. IV can also be used to solve the errors-in-variables 
problem, at least under certain assumptions. The next chapter will demonstrate how to 
estimate simultaneous equations models using IV methods.
 Our treatment of instrumental variables estimation closely follows our development of 
ordinary least squares in Part 1, where we assumed that we had a random sample from an 
underlying population. This is a desirable starting point because, in addition to simplify-
ing the notation, it emphasizes that the important assumptions for IV estimation are stated 
in terms of the underlying population (just as with OLS). As we showed in Part 2, OLS 
can be applied to time series data, and the same is true of instrumental variables methods. 
Section 15.7 discusses some special issues that arise when IV methods are applied to time 
series data. In Section 15.8, we cover applications to pooled cross sections and panel data.
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15.1 Motivation: Omitted Variables 
in a Simple Regression Model
When faced with the prospect of omitted variables bias (or unobserved heterogeneity), 
we have so far discussed three options: (1) we can ignore the problem and suffer the con-
sequences of biased and inconsistent estimators; (2) we can try to find and use a suitable 
proxy variable for the unobserved variable; or (3) we can assume that the omitted variable 
does not change over time and use the fixed effects or first-differencing methods from 
Chapters 13 and 14. The first response can be satisfactory if the estimates are coupled 
with the direction of the biases for the key parameters. For example, if we can say that the 
estimator of a positive parameter, say, the effect of job training on subsequent wages, is 
biased toward zero and we have found a statistically significant positive estimate, we have 
still learned something: job training has a positive effect on wages, and it is likely that 
we have underestimated the effect. Unfortunately, the opposite case, where our estimates 
may be too large in magnitude, often occurs, which makes it very difficult for us to draw 
any useful conclusions.
 The proxy variable solution discussed in Section 9.2 can also produce satisfying 
results, but it is not always possible to find a good proxy. This approach attempts to solve 
the omitted variable problem by replacing the unobservable with a proxy variable.
 Another approach leaves the unobserved variable in the error term, but rather than 
estimating the model by OLS, it uses an estimation method that recognizes the presence 
of the omitted variable. This is what the method of instrumental variables does.
 For illustration, consider the problem of unobserved ability in a wage equation for 
working adults. A simple model is

 log(wage) � �
0
 � �

1
educ � �

2
abil � e,

where e is the error term. In Chapter 9, we showed how, under certain assumptions, a 
proxy variable such as IQ can be substituted for ability, and then a consistent estimator of 
�

1
 is available from the regression of

log(wage) on educ, IQ.

Suppose, however, that a proxy variable is not available (or does not have the properties 
needed to produce a consistent estimator of �

1
). Then, we put abil into the error term, and 

we are left with the simple regression model

 log(wage) � �
0
 � �

1
educ � u, 15.1

where u contains abil. Of course, if equation (15.1) is estimated by OLS, a biased and 
inconsistent estimator of �

1
 results if educ and abil are correlated.

 It turns out that we can still use equation (15.1) as the basis for estimation, provided we 
can find an instrumental variable for educ. To describe this approach, the simple regres-
sion model is written as

 y � �
0
 � �

1
x � u, 15.2
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where we think that x and u are correlated:

 Cov(x,u) 	 0. 15.3

The method of instrumental variables works whether or not x and u are correlated, but, for 
reasons we will see later, OLS should be used if x is uncorrelated with u.
 In order to obtain consistent estimators of �

0
 and �

1
 when x and u are correlated, we 

need some additional information. The information comes by way of a new variable that 
satisfies certain properties. Suppose that we have an observable variable z that satisfies 
these two assumptions: (1) z is uncorrelated with u, that is,

 Cov(z,u) � 0; 15.4

(2) z is correlated with x, that is,

 Cov(z,x) 	 0. 15.5

Then, we call z an instrumental variable for x, or sometimes simply an instrument for x.
 The requirement that the instrument z satisfies (15.4) is summarized by saying “z is 
exogenous in equation (15.2),” and so we often refer to (15.4) as instrument exogeneity. 
In the context of omitted variables, instrument exogeneity means that z should have no 
partial effect on y (after x and omitted variables have been controlled for), and z should 
be uncorrelated with the omitted variables. Equation (15.5) means that z must be related, 
either positively or negatively, to the endogenous explanatory variable x. This condition is 
sometimes referred to as instrument relevance (as in “z is relevant for explaining varia-
tion in x”).
 There is a very important difference between the two requirements for an instrumental 
variable. Because (15.4) involves the covariance between z and the unobservable error u, 
we cannot generally hope to test this assumption: in the vast majority of cases, we must 
maintain Cov(z,u) � 0 by appealing to economic behavior or introspection. (In unusual 
cases, we might have an observable proxy variable for some factor contained in u, in 
which case we can check to see if z and the proxy variable are roughly uncorrelated. Of 
course, if we have a good proxy for an important element of u, we might just add the proxy 
as an explanatory variable and estimate the expanded equation by ordinary least squares. 
See Section 9.2.)
 By contrast, the condition that z is correlated with x (in the population) can be tested, 
given a random sample from the population. The easiest way to do this is to estimate a 
simple regression between x and z. In the population, we have

 x � �
0
 � �

1
z � v. 15.6

Then, because �
1
 � Cov(z,x)/Var(z), assumption (15.5) holds if, and only if, �

1
 	 0. Thus, 

we should be able to reject the null hypothesis

 H
0
: �

1
 � 0 15.7

against the two-sided alternative H
0
: �

1
 	 0, at a sufficiently small significance level (say, 

5% or 1%). If this is the case, then we can be fairly confident that (15.5) holds.
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 For the log(wage) equation in (15.1), an instrumental variable z for educ must be 
(1) uncorrelated with ability (and any other unobservable factors affecting wage) and 
(2) correlated with education. Something such as the last digit of an individual’s social 
security number almost certainly satisfies the first requirement: it is uncorrelated with 
ability because it is determined randomly. However, this variable is not correlated with 
education, so it makes a poor instrumental variable for educ.
 What we have called a proxy variable for the omitted variable makes a poor IV for 
the opposite reason. For example, in the log(wage) example with omitted ability, a proxy 
variable for abil must be as highly correlated as possible with abil. An instrumental vari-
able must be uncorrelated with abil. Therefore, while IQ is a good candidate as a proxy 
variable for abil, it is not a good instrumental variable for educ.
 Whether other possible instrumental variable candidates satisfy the exogeneity require-
ment in (15.4) is less clear-cut. In wage equations, labor economists have used family 
background variables as IVs for education. For example, mother’s education (motheduc) 
is positively correlated with child’s education, as can be seen by collecting a sample of 
data on working people and running a simple regression of educ on motheduc. Therefore, 
motheduc satisfies equation (15.5). The problem is that mother’s education might also be 
correlated with child’s ability (through mother’s ability and perhaps quality of nurturing 
at an early age), in which case (15.4) fails.
 Another IV choice for educ in (15.1) is number of siblings while growing up (sibs). 
Typically, having more siblings is associated with lower average levels of education. Thus, 
if number of siblings is uncorrelated with ability, it can act as an instrumental variable for 
educ.
 As a second example, consider the problem of estimating the causal effect of skipping 
classes on final exam score. In a simple regression framework, we have

 score � �
0
 � �

1
skipped � u, 15.8

where score is the final exam score and skipped is the total number of lectures missed 
during the semester. We certainly might be worried that skipped is correlated with other 
factors in u: more able, highly motivated students might miss fewer classes. Thus, a sim-
ple regression of score on skipped may not give us a good estimate of the causal effect of 
missing classes.
 What might be a good IV for skipped? We need something that has no direct effect on 
score and is not correlated with student ability and motivation. At the same time, the IV 
must be correlated with skipped. One option is to use distance between living quarters and 
campus. Some students at a large university will commute to campus, which may increase 
the likelihood of missing lectures (due to bad weather, oversleeping, and so on). Thus, 
skipped may be positively correlated with distance; this can be checked by regressing 
skipped on distance and doing a t test, as described earlier.
 Is distance uncorrelated with u? In the simple regression model (15.8), some factors 
in u may be correlated with distance. For example, students from low-income families 
may live off campus; if income affects student performance, this could cause distance 
to be correlated with u. Section 15.2 shows how to use IV in the context of multiple 
regression, so that other factors affecting score can be included directly in the model. 
Then, distance might be a good IV for skipped. An IV approach may not be necessary 
at all if a good proxy exists for student ability, such as cumulative GPA prior to the 
semester.



510 Part 3   Advanced Topics

 We now demonstrate that the availability of an instrumental variable can be used 
to consistently estimate the parameters in equation (15.2). In particular, we show that 
assumptions (15.4) and (15.5) serve to identify the parameter �

1
. Identification of a 

parameter in this context means that we can write �
1
 in terms of population moments that 

can be estimated using a sample of data. To write �
1
 in terms of population covariances, 

we use equation (15.2): the covariance between z and y is

 Cov(z,y) � �
1
Cov(z,x) � Cov(z,u).

Now, under assumption (15.4), Cov(z,u) � 0, and under assumption (15.5), Cov(z,x) 	 0. 
Thus, we can solve for �

1
 as

 �
1
 �   

Cov(z,y)
 ________ 

 Cov(z,x)
   . 15.9

[Notice how this simple algebra fails if z and x are uncorrelated, that is, if Cov(z,    x) � 0.] 
Equation (15.9) shows that �

1
 is the population covariance between z and y divided by the pop-

ulation covariance between z and x, which shows that �
1
 is identified. Given a random sample, 

we estimate the population quantities by the sample analogs. After canceling the sample sizes 
in the numerator and denominator, we get the instrumental variables (IV) estimator of �

1
:

  ̂  � 
1
 �   

 ∑ 
i�1

   
n

    (z
i
 �  - z ) ( y

i
 �  - y )

  ________________  

 ∑ 
i�1

   
n

    (z
i
 �  - z ) (x

i
 �  - x )

  . 15.10

Given a sample of data on x, y, and z, it is simple to obtain the IV estimator in (15.10). 
The IV estimator of �

0
 is simply  ̂  � 

0
 �  - y  �  ̂  � 

1
 - x , which looks just like the OLS intercept 

estimator except that the slope estimator,  ̂  � 
1
, is now the IV estimator.

 It is no accident that when z � x we obtain the OLS estimator of �
1
. In other words, 

when x is exogenous, it can be used as its own IV, and the IV estimator is then identical 
to the OLS estimator.
 A simple application of the law of large numbers shows that the IV estimator is consis-
tent for �

1
: plim(    ̂  � 

1
) � �

1
, provided assumptions (15.4) and (15.5) are satisfied. If either 

assumption fails, the IV estimators are not consistent (more on this later). One feature of the 
IV estimator is that, when x and u are in fact correlated—so that instrumental variables estima-
tion is actually needed—it is essentially never unbiased. This means that, in small samples, the 
IV estimator can have a substantial bias, which is one reason why large samples are preferred.

Statistical Inference with the IV Estimator

Given the similar structure of the IV and OLS estimators, it is not surprising that the 
IV estimator has an approximate normal distribution in large sample sizes. To perform 
inference on �

1
, we need a standard error that can be used to compute t statistics and 

confidence intervals. The usual approach is to impose a homoskedasticity assumption, 
just as in the case of OLS. Now, the homoskedasticity assumption is stated conditional on 
the instrumental variable, z, not the endogenous explanatory variable, x. Along with the 
previous assumptions on u, x, and z, we add

 E(u2�z) � �2 � Var(u). 15.11



 Chapter 15   Instrumental Variables Estimation and Two Stage Least Squares 511

It can be shown that, under (15.4), (15.5), and (15.11), the asymptotic variance of  ̂  � 
1
 is

   � 2 ______ 
n�   2   x  � 2   x,z 

  , 15.12

where �  2   x   is the population variance of x, �2 is the population variance of u, and � 2   x,z  is the 
square of the population correlation between x and z. This tells us how highly correlated 
x and z are in the population. As with the OLS estimator, the asymptotic variance of the 
IV estimator decreases to zero at the rate of 1/n, where n is the sample size.
 Equation (15.12) is interesting for two reasons. First, it provides a way to obtain a 
standard error for the IV estimator. All quantities in (15.12) can be consistently estimated 
given a random sample. To estimate � 2   x  , we simply compute the sample variance of x

i
; to 

estimate � 2   x,z , we can run the regression of x
i
 on z

i
 to obtain the R-squared, say, R 2   x,z . Finally, 

to estimate �2, we can use the IV residuals,

  ̂  u 
i
 � y

i
 �  ̂  � 

0
 �  ̂  � 

1
x

i
, i � 1, 2, …, n,

where  ̂  � 
0
 and  ̂  � 

1
 are the IV estimates. A consistent estimator of �2 looks just like the esti-

mator of �2 from a simple OLS regression:

  ̂  � 2 �   1 _____ 
n � 2

    ∑ 
i�1

   
n

     ̂  u  2   i  ,

where it is standard to use the degrees of freedom correction (even though this has little 
effect as the sample size grows).
 The (asymptotic) standard error of  ̂  � 

1
 is the square root of the estimated asymptotic 

variance, the latter of which is given by

    ̂  � 2 ________ 
SST

x
�R 2   x,z 

   , 15.13

where SST
x
 is the total sum of squares of the x

i
 . [Recall that the sample variance of x

i
 is 

SST
x
 �n, and so the sample sizes cancel to give us (15.13).] The resulting standard error can 

be used to construct either t statistics for hypotheses involving �
1
 or confidence intervals 

for �
1
.  ̂  � 

0
 also has a standard error that we do not present here. Any modern econometrics 

package computes the standard error after any IV estimation.
 A second reason (15.12) is interesting is because it allows us to compare the asymp-
totic variances of the IV and the OLS estimators (when x and u are uncorrelated). Under 
the Gauss-Markov assumptions, the variance of the OLS estimator is �2/SST

x
, while the 

comparable formula for the IV estimator is �2/(SSTx�R 2   x,z ); they differ only in that R 2   x,z  
appears in the denominator of the IV variance. Because an R-squared is always less than 
one, the IV variance is always larger than the OLS variance (when OLS is valid). If R 2   x,z  
is small, then the IV variance can be much larger than the OLS variance. Remember, R 2   x,z  
measures the strength of the linear relationship between x and z in the sample. If x and z are 
only slightly correlated, R 2   x,z  can be small, and this can translate into a very large sampling 
variance for the IV estimator. The more highly correlated z is with x, the closer R 2   x,z  is to 
one, and the smaller is the variance of the IV estimator. In the case that z � x, R 2   x,z  � 1, 
and we get the OLS variance, as expected.
 The previous discussion highlights an important cost of performing IV estimation 
when x and u are uncorrelated: the asymptotic variance of the IV estimator is always 
larger, and sometimes much larger, than the asymptotic variance of the OLS estimator.
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E x a m p l e  1 5 . 1

[Estimating the Return to Education for Married Women]

We use the data on married working women in MROZ.RAW to estimate the return to education in 
the simple regression model

 log(wage) � �
0
 � �

1
educ � u. 15.14

For comparison, we first obtain the OLS estimates:

 2log(wage) � �.185 � .109 educ

 (.185) (.014) 15.15

 n � 428, R2 � .118.

The estimate for �
1
 implies an almost 11% return for another year of education.

 Next, we use father’s education (  fatheduc) as an instrumental variable for educ. We have to 
maintain that fatheduc is uncorrelated with u. The second requirement is that educ and fatheduc are 
correlated. We can check this very easily using a simple regression of educ on fatheduc (using only 
the working women in the sample):

 1educ � 10.24 � .269 fatheduc

 (.28) (.029) 15.16

 n � 428, R2 � .173.

The t statistic on fatheduc is 9.28, which indicates that educ and fatheduc have a statistically sig-
nificant positive correlation. (In fact, fatheduc explains about 17% of the variation in educ in the 
sample.) Using fatheduc as an IV for educ gives

 2log(wage) � .441 � .059 educ

 (.446) (.035) 15.17

 n � 428, R2 � .093.

The IV estimate of the return to education is 5.9%, which is barely more than one-half of the OLS 
estimate. This suggests that the OLS estimate is too high and is consistent with omitted ability bias. 
But we should remember that these are estimates from just one sample: we can never know whether 
.109 is above the true return to education, or whether .059 is closer to the true return to education. 
Further, the standard error of the IV estimate is two and one-half times as large as the OLS standard 
error (this is expected, for the reasons we gave earlier). The 95% confidence interval for �

1
 using 

OLS is much tighter than that using the IV; in fact, the IV confidence interval actually contains the 
OLS estimate. Therefore, although the differences between (15.15) and (15.17) are practically large, 
we cannot say whether the difference is statistically significant. We will show how to test this in 
Section 15.5.

 

 In the previous example, the estimated return to education using IV was less than that 
using OLS, which corresponds to our expectations. But this need not have been the case, 
as the following example demonstrates.
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E x a m p l e  1 5 . 2

[Estimating the Return to Education for Men]

We now use WAGE2.RAW to estimate the return to education for men. We use the variable sibs 
(number of siblings) as an instrument for educ. These are negatively correlated, as we can verify 
from a simple regression:

 1educ � 14.14 � .228 sibs

 (.11) (.030)

 n � 935, R2 � .057.

This equation implies that every sibling is associated with, on average, about .23 less of a year of 
education. If we assume that sibs is uncorrelated with the error term in (15.14), then the IV estimator 
is consistent. Estimating equation (15.14) using sibs as an IV for educ gives

 2log(wage) � 5.13 � .122 educ

 (.36) (.026)

 n � 935.

(The R-squared is computed to be negative, so we do not report it. A discussion of R-squared in the 
context of IV estimation follows.) For comparison, the OLS estimate of �

1
 is .059 with a standard 

error of .006. Unlike in the previous example, the IV estimate is now much higher than the OLS 
estimate. While we do not know whether the difference is statistically significant, this does not mesh 
with the omitted ability bias from OLS. It could be that sibs is also correlated with ability: more 
siblings means, on average, less parental attention, which could result in lower ability. Another 
interpretation is that the OLS estimator is biased toward zero because of measurement error in educ. 
This is not entirely convincing because, as we discussed in Section 9.3, educ is unlikely to satisfy 
the classical errors-in-variables model.

 

 In the previous examples, the endogenous explanatory variable (educ) and the instru-
mental variables (  fatheduc, sibs) had quantitative meaning. But nothing prevents the 
explanatory variable or IV from being binary variables. Angrist and Krueger (1991), in 
their simplest analysis, came up with a clever binary instrumental variable for educ, using 
census data on men in the United States. Let frstqrt be equal to one if the man was born in 
the first quarter of the year, and zero otherwise. It seems that the error term in (15.14)—
and, in particular, ability—should be unrelated to quarter of birth. But frstqrt also needs 
to be correlated with educ. It turns out that years of education do differ systematically in 
the population based on quarter of birth. Angrist and Krueger argued persuasively that this 
is due to compulsory school attendance laws in effect in all states. Briefly, students born 
early in the year typically begin school at an older age. Therefore, they reach the compul-
sory schooling age (16 in most states) with somewhat less education than students who 
begin school at a younger age. For students who finish high school, Angrist and Krueger 
verified that there is no relationship between years of education and quarter of birth.
 Because years of education varies only slightly across quarter of birth—which means 
R 2   x,z  in (15.13) is very small—Angrist and Krueger needed a very large sample size to get a 
reasonably precise IV estimate. Using 247,199 men born between 1920 and 1929, the OLS 
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estimate of the return to education was .0801 (standard error .0004), and the IV estimate 
was .0715 (.0219); these are reported in Table III of Angrist and Krueger’s paper. Note 
how large the t statistic is for the OLS estimate (about 200), whereas the t statistic for the 
IV estimate is only 3.26. Thus, the IV estimate is statistically different from zero, but its 
confidence interval is much wider than that based on the OLS estimate.
 An interesting finding by Angrist and Krueger is that the IV estimate does not differ 
much from the OLS estimate. In fact, using men born in the next decade, the IV estimate 
is somewhat higher than the OLS estimate. One could interpret this as showing that there is 
no omitted ability bias when wage equations are estimated by OLS. However, the Angrist 
and Krueger paper has been criticized on econometric grounds. As discussed by Bound, 
Jaeger, and Baker (1995), it is not obvious that season of birth is unrelated to unobserved 
factors that affect wage. As we will explain in the next subsection, even a small amount of 
correlation between z and u can cause serious problems for the IV estimator.
 For policy analysis, the endogenous explanatory variable is often a binary variable. For 
example, Angrist (1990) studied the effect that being a veteran of the Vietnam War had on 
lifetime earnings. A simple model is

 log(earns) � �
0
 � �

1
veteran � u, 15.18

where veteran is a binary variable. The problem with estimating this equation by OLS is 
that there may be a self-selection problem, as we mentioned in Chapter 7: perhaps people 
who get the most out of the military choose to join, or the decision to join is correlated with 
other characteristics that affect earnings. These will cause veteran and u to be correlated.
 Angrist pointed out that the Vietnam draft lottery provided a natural experiment (see 
also Chapter 13) that created an instrumental variable for veteran. Young men were given 
lottery numbers that determined whether they would be called to serve in Vietnam. 
Because the numbers given were (eventually) randomly assigned, it seems plausible that 
draft lottery number is uncorrelated with the error term u. But those with a low enough 

number had to serve in Vietnam, so 
that the probability of being a veteran 
is correlated with lottery number. If 
both of these assertions are true, draft 
lottery number is a good IV candidate 
for veteran.

 It is also possible to have a binary endogenous explanatory variable and a binary 
instrumental variable. See Problem 15.1 for an example.

Properties of IV with a Poor Instrumental Variable

We have already seen that, though IV is consistent when z and u are uncorrelated and z and 
x have any positive or negative correlation, IV estimates can have large standard errors, 
especially if z and x are only weakly correlated. Weak correlation between z and x can have 
even more serious consequences: the IV estimator can have a large asymptotic bias even 
if z and u are only moderately correlated.
 We can see this by studying the probability limit of the IV estimator when z and u are 
possibly correlated. Letting  ̂  � 

1, IV
 denote the IV estimator, we can write

 plim  ̂  � 
1, IV

 � �
1
 �   

Corr(z,u)
 ________ 

Corr(z,x)
   �   

�
u __ �
x
   , 15.19

Q u e s t i o n  1 5 . 1
If some men who were assigned low draft lottery numbers obtained 
additional schooling to reduce the probability of being drafted, is 
lottery number a good instrument for veteran in (15.18)?
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where �
u
 and �

x
 are the standard deviations of u and x in the population, respectively. 

The interesting part of this equation involves the correlation terms. It shows that, even if 
Corr(z,u) is small, the inconsistency in the IV estimator can be very large if Corr(z,x) is 
also small. Thus, even if we focus only on consistency, it is not necessarily better to use 
IV than OLS if the correlation between z and u is smaller than that between x and u. Using 
the fact that Corr(x,u) � Cov(x,u)/(�

x
�

u
) along with equation (5.3), we can write the plim 

of the OLS estimator—call it  ̂  � 
1, OLS

—as

 plim  ̂  � 
1,OLS

 � �
1
 � Corr(x,u) �   

�
u __ �
x
   . 15.20

Comparing these formulas shows that it is possible for the directions of the asymptotic 
biases to be different for IV and OLS. For example, suppose Corr(x,u) � 0, Corr(z,x) � 0, 
and Corr(z,u) � 0. Then the IV estimator has a downward bias, whereas the OLS estimator 
has an upward bias (asymptotically). In practice, this situation is probably rare. More prob-
lematic is when the direction of the bias is the same and the correlation between z and x is 
small. For concreteness, suppose x and z are both positively correlated with u and Corr(z,x) 
� 0. Then the asymptotic bias in the IV estimator is less than that for OLS only if Corr(z,u)/
Corr(z,x) � Corr(x,u). If Corr(z,x) is small, then a seemingly small correlation between z 
and u can be magnified and make IV worse than OLS, even if we restrict attention to bias. 
For example, if Corr(z,x) � .2, Corr(z,u) must be less than one-fifth of Corr(x,u) before 
IV has less asymptotic bias than OLS. In many applications, the correlation between the 
instrument and x is less than .2. Unfortunately, because we rarely have an idea about the 
relative magnitudes of Corr(z,u) and Corr(x,u), we can never know for sure which estima-
tor has the largest asymptotic bias [unless, of course, we assume Corr(z,u) � 0].
 In the Angrist and Krueger (1991) example mentioned earlier, where x is years of 
schooling and z is a binary variable indicating quarter of birth, the correlation between z 
and x is very small. Bound, Jaeger, and Baker (1995) discussed reasons why quarter of 
birth and u might be somewhat correlated. From equation (15.19), we see that this can lead 
to a substantial bias in the IV estimator.
 When z and x are not correlated at all, things are especially bad, whether or not z is 
uncorrelated with u. The following example illustrates why we should always check to see 
if the endogenous explanatory variable is correlated with the IV candidate.

E x a m p l e  1 5 . 3

[Estimating the Effect of Smoking on Birth Weight]

In Chapter 6, we estimated the effect of cigarette smoking on child birth weight. Without other 
explanatory variables, the model is

 log(bwght) � �
0
 � �

1
 packs � u, 15.21

where packs is the number of packs smoked by the mother per day. We might worry that packs is 
correlated with other health factors or the availability of good prenatal care, so that packs and u 
might be correlated. A possible instrumental variable for packs is the average price of cigarettes in 
the state of residence, cigprice. We will assume that cigprice and u are uncorrelated (even though 
state support for health care could be correlated with cigarette taxes).
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 If cigarettes are a typical consumption good, basic economic theory suggests that packs and 
cigprice are negatively correlated, so that cigprice can be used as an IV for packs. To check this, we 
regress packs on cigprice, using the data in BWGHT.RAW:

 1packs � .067 � .0003 cigprice

 (.103) (.0008)

 n � 1,388, R2 � .0000,  
-

 R 2 � �.0006.

This indicates no relationship between smoking during pregnancy and cigarette prices, which is 
perhaps not too surprising given the addictive nature of cigarette smoking.
 Because packs and cigprice are not correlated, we should not use cigprice as an IV for packs in 
(15.21). But what happens if we do? The IV results would be

 2log(bwght) � 4.45 � 2.99 packs

 (.91) (8.70)

 n � 1,388

(the reported R-squared is negative). The coefficient on packs is huge and of an unexpected sign. 
The standard error is also very large, so packs is not significant. But the estimates are meaningless 
because cigprice fails the one requirement of an IV that we can always test: assumption (15.5).

 

 The previous example shows that IV estimation can produce strange results when 
the instrument relevance condition, Corr(z,x) 	 0, fails. Of practically greater interest 
is the so-called problem of weak instruments, which is loosely defined as the problem 
of “low” (but not zero) correlation between z and x. In a particular application, it is 
difficult to define how low is too low, but recent theoretical research, supplemented by 
simulation studies, has shed considerable light on the issue. Staiger and Stock (1997) 
formalized the problem of weak instruments by modeling the correlation between z and 
x as a function of the sample size; in particular, the correlation is assumed to shrink to 
zero at the rate 1/ �

__
 n   . Not surprisingly, the asymptotic distribution of the instrumental 

variables estimator is different compared with the usual asymptotics, where the correla-
tion is assumed to be fixed and nonzero. One of the implications of the Stock-Staiger 
work is that the usual statistical inference, based on t statistics and the standard normal 
distribution, can be seriously misleading. [See Imbens and Wooldridge (2007) for fur-
ther discussion.]

Computing R-Squared after IV Estimation

Most regression packages compute an R-squared after IV estimation, using the standard 
formula: R2 � 1 � SSR/SST, where SSR is the sum of squared IV residuals, and SST is 
the total sum of squares of y. Unlike in the case of OLS, the R-squared from IV estima-
tion can be negative because SSR for IV can actually be larger than SST. Although it 
does not really hurt to report the R-squared for IV estimation, it is not very useful, either. 
When x and u are correlated, we cannot decompose the variance of y into � 2   1 Var(x) � 
Var(u), and so the R-squared has no natural interpretation. In addition, as we will discuss 



 Chapter 15   Instrumental Variables Estimation and Two Stage Least Squares 517

in Section 15.3, these R-squareds cannot be used in the usual way to compute F tests of 
joint restrictions.
 If our goal was to produce the largest R-squared, we would always use OLS. IV methods 
are intended to provide better estimates of the ceteris paribus effect of x on y when x and 
u are correlated; goodness-of-fit is not a factor. A high R-squared resulting from OLS is 
of little comfort if we cannot consistently estimate �

1
.

15.2 IV Estimation of the Multiple 
Regression Model
The IV estimator for the simple regression model is easily extended to the multiple regres-
sion case. We begin with the case where only one of the explanatory variables is correlated 
with the error. In fact, consider a standard linear model with two explanatory variables:

 y
1
 � �

0
 � �

1
y

2
 � �

2
z

1
 � u

1
. 15.22

We call this a structural equation to emphasize that we are interested in the �
j
, which 

simply means that the equation is supposed to measure a causal relationship. We use a 
new notation here to distinguish endogenous from exogenous variables. The dependent 
variable y

1
 is clearly endogenous, as it is correlated with u

1
. The variables y

2
 and z

1
 are the 

explanatory variables, and u
1
 is the error. As usual, we assume that the expected value of 

u
1
 is zero: E(u

1
) � 0. We use z

1
 to indicate that this variable is exogenous in (15.22) (z

1
 is 

uncorrelated with u
1
). We use y

2
 to indicate that this variable is suspected of being corre-

lated with u
1
. We do not specify why y

2
 and u

1
 are correlated, but for now it is best to think 

of u
1
 as containing an omitted variable correlated with y

2
. The notation in equation (15.22) 

originates in simultaneous equations models (which we cover in Chapter 16), but we use 
it more generally to easily distinguish exogenous from endogenous explanatory variables 
in a multiple regression model.
 An example of (15.22) is

 log(wage) � �
0
 � �

1
educ � �

2
exper � u

1
, 15.23

where y
1
 � log(wage), y

2
 � educ, and z

1
 � exper. In other words, we assume that exper is 

exogenous in (15.23), but we allow that educ—for the usual reasons—is correlated with u
1
.

 We know that if (15.22) is estimated by OLS, all of the estimators will be biased and 
inconsistent. Thus, we follow the strategy suggested in the previous section and seek an 
instrumental variable for y

2
. Since z

1
 is assumed to be uncorrelated with u

1
, can we use z

1
 

as an instrument for y
2
, assuming y

2
 and z

1
 are correlated? The answer is no. Since z

1
 itself 

appears as an explanatory variable in (15.22), it cannot serve as an instrumental variable 
for y

2
. We need another exogenous variable—call it z

2
—that does not appear in (15.22). 

Therefore, key assumptions are that z
1
 and z

2
 are uncorrelated with u

1
; we also assume that 

u
1
 has zero expected value, which is without loss of generality when the equation contains 

an intercept:

 E(u
1
) � 0, Cov(z

1
,u

1
) � 0, and Cov(z

2
,u

1
) � 0. 15.24
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Given the zero mean assumption, the latter two assumptions are equivalent to E(z
1
u

1
) � 

E(z
2
u

1
) � 0, and so the method of moments approach suggests obtaining estimators  ̂  � 

0
, 

 ̂  � 
1
, and  ̂  � 

2
 by solving the sample counterparts of (15.24):

  ∑ 
i�1

   
n

    ( y
i1
 �  ̂  � 

0
 �  ̂  � 

1
y

i2
 �  ̂  � 

2
z

i1
) � 0

  ∑ 
i�1

   
n

    z
i1
( y

i1
 �  ̂  � 

0
 �  ̂  � 

1
y

i2
 �  ̂  � 

2
z

i1
) � 0 15.25

  ∑ 
i�1

   
n

    z
i2
( y

i1
 �  ̂  � 

0
 �  ̂  � 

1
y

i2
 �  ̂  � 

2
z

i1
) � 0.

This is a set of three linear equations in the three unknowns  ̂  � 
0
,  ̂  � 

1
, and  ̂  � 

2
, and it is easily 

solved given the data on y
1
, y

2
, z

1
, and z

2
. The estimators are called instrumental vari-

ables estimators. If we think y
2
 is exogenous and we choose z

2
 � y

2
, equations (15.25) 

are exactly the first order conditions for the OLS estimators; see equations (3.13).
 We still need the instrumental variable z

2
 to be correlated with y

2
, but the sense in which 

these two variables must be correlated is complicated by the presence of z
1
 in equation 

(15.22). We now need to state the assumption in terms of partial correlation. The easiest 
way to state the condition is to write the endogenous explanatory variable as a linear func-
tion of the exogenous variables and an error term:

 y
2
 � �

0
 � �

1
z

1
 � �

2
z

2
 � v

2
, 15.26

where, by construction, E(v
2
) � 0, Cov(z

1
,v

2
) � 0, and Cov(z

2
,v

2
) � 0, and the �

j
 are 

unknown parameters. The key identification condition [along with (15.24)] is that

 �
2
 	 0. 15.27

In other words, after partialling out z
1
, 

y
2
 and z

2
 are still correlated. This cor-

relation can be positive or negative, 
but it cannot be zero. Testing (15.27) is 
easy: we estimate (15.26) by OLS and 
use a t test (possibly making it robust 
to heteroskedasticity). We should always 
test this assumption. Unfortunately, we 
cannot test that z

1
 and z

2
 are uncorre-

lated with u
1
; hopefully, we can make 

the case based on economic reasoning 
or introspection.
 Equation (15.26) is an example of a 
reduced form equation, which means 
that we have written an endogenous 

variable in terms of exogenous variables. This name comes from simultaneous equations 
models—which we study in the next chapter—but it is a useful concept whenever we have 
an endogenous explanatory variable. The name helps distinguish it from the structural 
equation (15.22).

Q u e s t i o n  1 5 . 2
Suppose we wish to estimate the effect of marijuana usage on 
college grade point average. For the population of college seniors 
at a university, let daysused denote the number of days in the past 
month on which a student smoked marijuana and consider the 
structural equation

colGPA � �
0
 � �

1
daysused � �

2 
SAT � u.

 (i) Let percHS denote the percentage of a students’s high school 
graduating class that reported regular use of marijuana. If this is an 
IV candidate for daysused, write the reduced form for daysused. 
Do you think (15.27) is likely to be true?
 (ii) Do you think percHS is truly exogenous in the structural 
equation? What problems might there be?
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 Adding more exogenous explanatory variables to the model is straightforward. Write 
the structural model as

 y
1
 � �

0
 � �

1
y

2
 � �

2
z

1
 � … � �

k 
z

k�1
 � u

1
, 15.28

where y
2
 is thought to be correlated with u

1
. Let z

k
 be a variable not in (15.28) that is also 

exogenous. Therefore, we assume that

 E(u
1
) � 0, Cov(z

j
,u

1
) � 0, j � 1, …, k. 15.29

Under (15.29), z
1
, ..., z

k�1
 are the exogenous variables appearing in (15.28). In effect, these 

act as their own instrumental variables in estimating the �
j
 in (15.28). The special case of 

k � 2 is given in the equations in (15.25); along with z
2
, z

1
 appears in the set of moment 

conditions used to obtain the IV estimates. More generally, z
1
, ..., z

k�1
 are used in the 

moment conditions along with the instrumental variable for y
2
, z

k
.

 The reduced form for y
2
 is

 y
2
 � �

0
 � �

1
z

1
 � … � �

k�1
z

k�1
 � �

k
z

k
 � v

2
, 15.30

and we need some partial correlation between z
k
 and y

2
:

 �
k
 	 0. 15.31

Under (15.29) and (15.31), z
k
 is a valid IV for y

2
. [We do not care about the remaining �

j
 

in (15.30); some or all of them could be zero.] A minor additional assumption is that there 
are no perfect linear relationships among the exogenous variables; this is analogous to the 
assumption of no perfect collinearity in the context of OLS.
 For standard statistical inference, we need to assume homoskedasticity of u

1
. We give 

a careful statement of these assumptions in a more general setting in Section 15.3.

E x a m p l e  1 5 . 4

[Using College Proximity as an IV for Education]

Card (1995) used wage and education data for a sample of men in 1976 to estimate the return to edu-
cation. He used a dummy variable for whether someone grew up near a four-year college (nearc4) 
as an instrumental variable for education. In a log(wage) equation, he included other standard con-
trols: experience, a black dummy variable, dummy variables for living in an SMSA and living in 
the South, and a full set of regional dummy variables and an SMSA dummy for where the man was 
living in 1966. In order for nearc4 to be a valid instrument, it must be uncorrelated with the error 
term in the wage equation—we assume this—and it must be partially correlated with educ. To check 
the latter requirement, we regress educ on nearc4 and all of the exogenous variables appearing in 
the equation. (That is, we estimate the reduced form for educ.) Using the data in CARD.RAW, we 
obtain, in condensed form,

 1educ � 16.64 � .320 nearc4 � .413 exper � …

 (.24) (.088) (.034) 15.32

 n � 3,010, R2 � .477.
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We are interested in the coefficient and t statistic on nearc4. The coefficient implies that in 1976, 
other things being fixed (experience, race, region, and so on), people who lived near a college in 
1966 had, on average, about one-third of a year more education than those who did not grow up 
near a college. The t statistic on nearc4 is 3.64, which gives a p-value that is zero in the first three 
decimals. Therefore, if nearc4 is uncorrelated with unobserved factors in the error term, we can use 
nearc4 as an IV for educ.
 The OLS and IV estimates are given in Table 15.1. Interestingly, the IV estimate of the return to 
education is almost twice as large as the OLS estimate, but the standard error of the IV estimate is 
over 18 times larger than the OLS standard error. The 95% confidence interval for the IV estimate 
is between .024 and .239, which is a very wide range. The presence of larger confidence intervals is 
a price we must pay to get a consistent estimator of the return to education when we think educ is 
endogenous.
 As discussed earlier, we should not make anything of the smaller R-squared in the IV estimation: 
by definition, the OLS R-squared will always be larger because OLS minimizes the sum of squared 
residuals.

 

TABLE  15 . 1

Dependent Variable: log(wage)

Explanatory Variables OLS IV

educ .075
(.003)

.132
(.055)

exper .085
(.007)

.108
(.024)

exper 2 �.0023
(.0003)

�.0023
 (.0003)

black �.199
(.018)

�.147
  (.054)

smsa .136
(.020)

.112
(.032)

south �.148
(.026)

�.145
 (.027)

Observations
R-squared

3,010
.300

3,010
.238

Other controls: smsa66, reg662, …, reg669
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15.3 Two Stage Least Squares
In the previous section, we assumed that we had a single endogenous explanatory variable 
(  y

2
), along with one instrumental variable for y

2
. It often happens that we have more than 

one exogenous variable that is excluded from the structural model and might be correlated 
with y

2
, which means they are valid IVs for y

2
. In this section, we discuss how to use mul-

tiple instrumental variables.

A Single Endogenous Explanatory Variable

Consider again the structural model (15.22), which has one endogenous and one exoge-
nous explanatory variable. Suppose now that we have two exogenous variables excluded 
from (15.22): z

2
 and z

3
. Our assumptions that z

2
 and z

3
 do not appear in (15.22) and are 

uncorrelated with the error u
1
 are known as exclusion restrictions.

 If z
2
 and z

3
 are both correlated with y

2
, we could just use each as an IV, as in the previous 

section. But then we would have two IV estimators, and neither of these would, in general, 
be efficient. Since each of z

1
, z

2
, and z

3
 is uncorrelated with u

1
, any linear combination is also 

uncorrelated with u
1
, and therefore any linear combination of the exogenous variables is a 

valid IV. To find the best IV, we choose the linear combination that is most highly correlated 
with y

2
. This turns out to be given by the reduced form equation for y

2
. Write

 y
2
 � �

0
 � �

1
z

1
 � �

2
z

2
 � �

3
z

3
 � v

2
, 15.33

where

 E(v
2
) � 0, Cov(z

1
,v

2
) � 0, Cov(z

2
,v

2
) � 0, and Cov(z

3
,v

2
) � 0.

Then, the best IV for y
2
 (under the assumptions given in the chapter appendix) is the linear 

combination of the z
j
 in (15.33), which we call y*

2
:

 y*
2
 � �

0
 � �

1
z

1
 � �

2
z

2
 � �

3
z

3
. 15.34

For this IV not to be perfectly correlated with z
1
 we need at least one of �

2
 or �

3
 to be 

different from zero:

 �
2
 	 0 or �

3
 	 0. 15.35

This is the key identification assumption, once we assume the z
j
 are all exogenous. (The 

value of �
1
 is irrelevant.) The structural equation (15.22) is not identified if �

2
 � 0 and 

�
3
 � 0. We can test H

0
: �

2
 � 0 and �

3
 � 0 against (15.35) using an F statistic.

 A useful way to think of (15.33) is that it breaks y
2
 into two pieces. The first is y*

2
; this 

is the part of y
2
 that is uncorrelated with the error term, u

1
. The second piece is v

2
, and this 

part is possibly correlated with u
1
—which is why y

2
 is possibly endogenous.

 Given data on the z
j
, we can compute y*

2
 for each observation, provided we know the 

population parameters �
j
. This is never true in practice. Nevertheless, as we saw in the pre-

vious section, we can always estimate the reduced form by OLS. Thus, using the sample, 
we regress y

2
 on z

1
, z

2
, and z

3
 and obtain the fitted values:

  ̂  y 
2
 �  ̂  � 

0
  �   ̂  � 

1
z

1
  �   ̂  � 

2
z

2
  �   ̂  � 

3
z

3 
15.36
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(that is, we have  ̂  y 
i2
 for each i). At this point, we should verify that z

2
 and z

3
 are jointly 

significant in (15.33) at a reasonably small significance level (no larger than 5%). If z
2
 and 

z
3
 are not jointly significant in (15.33) then we are wasting our time with IV estimation.

 Once we have  ̂  y 
2
, we can use it as the IV for y

2
. The three equations for estimating �

0
, 

�
1
, and �

2
 are the first two equations of (15.25), with the third replaced by

  ∑ 
i�1

   
n

     ̂  y 
i2
(y

i1
 �  ̂  � 

0
 �  ̂  � 

1
y

i2
 �  ̂  � 

2
z

i1
) � 0. 15.37

Solving the three equations in three unknowns gives us the IV estimators.
 With multiple instruments, the IV estimator using  ̂  y 

i2
 as the instrument is also called 

the two stage least squares (2SLS) estimator. The reason is simple. Using the algebra of 
OLS, it can be shown that when we use  ̂  y 

2
 as the IV for y

2
, the IV estimates  ̂  � 

0
,  ̂  � 

1
, and  ̂  � 

2
 

are identical to the OLS estimates from the regression of

 y
1
 on  ̂  y 

2
 and z

1
. 15.38

In other words, we can obtain the 2SLS estimator in two stages. The first stage is to run 
the regression in (15.36), where we obtain the fitted values  ̂  y 

2
. The second stage is the 

OLS regression (15.38). Because we use  ̂  y 
2
 in place of y

2
, the 2SLS estimates can differ 

substantially from the OLS estimates.
 Some economists like to interpret the regression in (15.38) as follows. The fitted value,  
ˆ y 

2
, is the estimated version of y*

2
, and y*

2
 is uncorrelated with u

1
. Therefore, 2SLS first 

“purges” y
2
 of its correlation with u

1
 before doing the OLS regression in (15.38). We can 

show this by plugging y
2
 � y*

2
 � v

2
 into (15.22):

 y
1
 � �

0
 � �

1
y*

2
 � �

2
z

1
 � u

1
 � �

1
v

2
. 15.39

Now, the composite error u
1
 � �

1
v

2
 has zero mean and is uncorrelated with y*

2
 and z

1
, 

which is why the OLS regression in (15.38) works.
 Most econometrics packages have special commands for 2SLS, so there is no need 
to perform the two stages explicitly. In fact, in most cases you should avoid doing the 
second stage manually, as the standard errors and test statistics obtained in this way are 
not valid. [The reason is that the error term in (15.39) includes v

2
, but the standard errors 

involve the variance of u
1
 only.] Any regression software that supports 2SLS asks for the 

dependent variable, the list of explanatory variables (both exogenous and endogenous), 
and the entire list of instrumental variables (that is, all exogenous variables). The output is 
typically quite similar to that for OLS.
 In model (15.28) with a single IV for y

2
, the IV estimator from Section 15.2 is identical 

to the 2SLS estimator. Therefore, when we have one IV for each endogenous explanatory 
variable, we can call the estimation method IV or 2SLS.
 Adding more exogenous variables changes very little. For example, suppose the wage 
equation is

 log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
exper2 � u

1
, 15.40

where u
1
 is uncorrelated with both exper and exper2. Suppose that we also think mother’s 

and father’s educations are uncorrelated with u
1
. Then, we can use both of these as IVs for 

educ. The reduced form equation for educ is
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 educ � �
0
 � �

1
exper � �

2
exper2 � �

3
motheduc � �

4
  fatheduc � v

2
, 15.41

and identification requires that �
3
 	 0 or �

4
 	 0 (or both, of course).

E x a m p l e  1 5 . 5

[Return to Education for Working Women]

We estimate equation (15.40) using the data in MROZ.RAW. First, we test H
0
: �

3
 � 0, �

4
 � 0 in 

(15.41) using an F test. The result is F � 55.40, and p-value � .0000. As expected, educ is (partially) 
correlated with parents’ education.
 When we estimate (15.40) by 2SLS, we obtain, in equation form,

 2log(wage) � .048 � .061 educ � .044 exper � .0009 exper2

 (.400) (.031) (.013) (.0004)

 n � 428, R2 � .136.

The estimated return to education is about 6.1%, compared with an OLS estimate of about 10.8%. 
Because of its relatively large standard error, the 2SLS estimate is barely statistically significant at 
the 5% level against a two-sided alternative.

 
 The assumptions needed for 2SLS to have the desired large sample properties are 
given in the chapter appendix, but it is useful to briefly summarize them here. If we write 
the structural equation as in (15.28),

 y
1
 � �

0
 � �

1
y

2
 � �

2
z

1
 � … � �

k
z

k�1
 � u

1
, 15.42

then we assume each z
j
 to be uncorrelated with u

1
. In addition, we need at least one exoge-

nous variable not in (15.42) that is partially correlated with y
2
. This ensures consistency. 

For the usual 2SLS standard errors and t statistics to be asymptotically valid, we also need a 
homoskedasticity assumption: the variance of the structural error, u

1
, cannot depend on any 

of the exogenous variables. For time series applications, we need more assumptions, as we 
will see in Section 15.7.

Multicollinearity and 2SLS

In Chapter 3, we introduced the problem of multicollinearity and showed how correlation 
among regressors can lead to large standard errors for the OLS estimates. Multicollinearity 
can be even more serious with 2SLS. To see why, the (asymptotic) variance of the 2SLS 
estimator of �

1
 can be approximated as

 �2/[1SST
2
(1 �  ̂  R  2   2 )], 15.43

where �2 � Var(u
1
), 1SST

2
 is the total variation in  ̂  y 

2
, and  ̂  R  2   2  is the R-squared from a regres-

sion of  ̂  y 
2
 on all other exogenous variables appearing in the structural equation. There are 

two reasons why the variance of the 2SLS estimator is larger than that for OLS. First,  ̂  y 
2
, 
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by construction, has less variation than y
2
. (Remember: Total sum of squares � explained 

sum of squares � residual sum of squares; the variation in y
2
 is the total sum of squares, 

while the variation in  ̂  y 
2
 is the explained sum of squares from the first stage regression.) 

Second, the correlation between  ̂  y 
2
 and the exogenous variables in (15.42) is often much 

higher than the correlation between y
2
 and these variables. This essentially defines the 

multicollinearity problem in 2SLS.
 As an illustration, consider Example 15.4. When educ is regressed on the exogenous 
variables in Table 15.1 (not including nearc4), R-squared � .475; this is a moderate degree 
of multicollinearity, but the important thing is that the OLS standard error on  ̂  � 

educ
 is quite 

small. When we obtain the first stage fitted values, 1educ, and regress these on the exog-
enous variables in Table 15.1, R-squared � .995, which indicates a very high degree of 
multicollinearity between 1educ and the remaining exogenous variables in the table. (This 
high R-squared is not too surprising because 1educ is a function of all the exogenous vari-
ables in Table 15.1, plus nearc4.) Equation (15.43) shows that an  ̂  R  2   2  close to one can result 
in a very large standard error for the 2SLS estimator. But as with OLS, a large sample size 
can help offset a large  ̂  R  2   2 .

Multiple Endogenous Explanatory Variables

Two stage least squares can also be used in models with more than one endogenous 
explanatory variable. For example, consider the model

 y
1
 � �

0
 � �

1
 y

2
 � �

2
 y

3
 � �

3
z

1
 � �

4
z 

2
 � �

5
 z 

3
 � u

1
, 15.44

where E(u
1
) � 0 and u

1
 is uncorrelated with z

1
, z

2
, and z

3
. The variables y

2
 and y

3
 are endog-

enous explanatory variables: each may be correlated with u
1
.

 To estimate (15.44) by 2SLS, we need at least two exogenous variables that do not 
appear in (15.44) but that are correlated with y

2
 and y

3
. Suppose we have two excluded 

exogenous variables, say z
4
 and z

5
. Then, from our analysis of a single endogenous explana-

tory variable, we need either z
4
 or z

5
 to appear in each reduced form for y

2
 and y

3
. (As 

before, we can use F statistics to test this.) Although this is necessary for identification, 
unfortunately, it is not sufficient. Suppose that z

4
 appears in each reduced form, but z

5
 

appears in neither. Then, we do not really have two exogenous variables partially correlated 
with y

2
 and y

3
. Two stage least squares will not produce consistent estimators of the �

j
.

 Generally, when we have more than one endogenous explanatory variable in a regression 
model, identification can fail in several 
complicated ways. But we can easily state 
a necessary condition for identification, 
which is called the order condition.

Order Condition for Identification 
of an Equation. We need at least as 
many excluded exogenous variables as 
there are included endogenous explana-
tory variables in the structural equation. 
The order condition is simple to check, 
as it only involves counting endogenous 
and exogenous variables. The sufficient 

Q u e s t i o n  1 5 . 3
The following model explains violent crime rates, at the city level, 
in terms of a binary variable for whether gun control laws exist 
and other controls:

violent �  �
0
 � �

1
guncontrol � �

2
unem � �

3 
popul 

� �
4 
percblck � �

5
age18_21 � ….

Some researchers have estimated similar equations using vari-
ables such as the number of National Rifle Association members 
in the city and the number of subscribers to gun magazines as 
instrumental variables for guncontrol [see, for example, Kleck and 
Patterson (1993)]. Are these convincing instruments?
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condition for identification is called the rank condition. We have seen special cases of 
the rank condition before—for example, in the discussion surrounding equation (15.35). 
A general statement of the rank condition requires matrix algebra and is beyond the scope 
of this text. [See Wooldridge (2002, Chapter 5).]

Testing Multiple Hypotheses after 2SLS Estimation

We must be careful when testing multiple hypotheses in a model estimated by 2SLS. It is 
tempting to use either the sum of squared residuals or the R-squared form of the F statistic, 
as we learned with OLS in Chapter 4. The fact that the R-squared in 2SLS can be negative 
suggests that the usual way of computing F statistics might not be appropriate; this is the 
case. In fact, if we use the 2SLS residuals to compute the SSRs for both the restricted and 
unrestricted models, there is no guarantee that SSR

r
 � SSR

ur
; if the reverse is true, the 

F statistic would be negative.
 It is possible to combine the sum of squared residuals from the second stage regres-
sion [such as (15.38)] with SSR

ur
 to obtain a statistic with an approximate F distribution in 

large samples. Because many econometrics packages have simple-to-use test commands 
that can be used to test multiple hypotheses after 2SLS estimation, we omit the details. 
Davidson and MacKinnon (1993) and Wooldridge (2002, Chapter 5) contain discussions 
of how to compute F-type statistics for 2SLS.

15.4 IV Solutions to Errors-in-Variables 
Problems
In the previous sections, we presented the use of instrumental variables as a way to solve 
the omitted variables problem, but they can also be used to deal with the measurement 
error problem. As an illustration, consider the model

 y � �
0
 � �

1
x*

1
 � �

2
x

2
 � u, 15.45

where y and x
2
 are observed but x*

1
 is not. Let x

1
 be an observed measurement of x*

1
: x

1
 � 

x*
1
 � e

1
, where e

1
 is the measurement error. In Chapter 9, we showed that correlation 

between x
1
 and e

1
 causes OLS, where x

1
 is used in place of x*

1
, to be biased and inconsis-

tent. We can see this by writing

 y � �
0
 � �

1
x

1
 � �

2
x

2
 � (u � �

1
e

1
). 15.46

If the classical errors-in-variables (CEV) assumptions hold, the bias in the OLS estimator 
of �

1
 is toward zero. Without further assumptions, we can do nothing about this.

 In some cases, we can use an IV procedure to solve the measurement error problem. In 
(15.45), we assume that u is uncorrelated with x*

1
, x

1
, and x

2
; in the CEV case, we assume 

that e
1
 is uncorrelated with x*

1
 and x

2
. These imply that x

2
 is exogenous in (15.46), but that 

x
1
 is correlated with e

1
. What we need is an IV for x

1
. Such an IV must be correlated with 

x
1
, uncorrelated with u—so that it can be excluded from (15.45)—and uncorrelated with 

the measurement error, e
1
.

 One possibility is to obtain a second measurement on x*
1
, say, z

1
. Because it is x*

1
 that 

affects y, it is only natural to assume that z
1
 is uncorrelated with u. If we write z

1
 � x*

1
 � a

1
, 
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where a
1
 is the measurement error in z

1
, then we must assume that a

1
 and e

1
 are uncor-

related. In other words, x
1
 and z

1
 both mismeasure x*

1
, but their measurement errors are 

uncorrelated. Certainly, x
1
 and z

1
 are correlated through their dependence on x*

1
, so we can 

use z
1
 as an IV for x

1
.

 Where might we get two measurements on a variable? Sometimes, when a group of 
workers is asked for their annual salary, their employers can provide a second measure. 
For married couples, each spouse can independently report the level of savings or family 
income. In the Ashenfelter and Krueger (1994) study cited in Section 14.3, each twin was 
asked about his or her sibling’s years of education; this gives a second measure that can be 
used as an IV for self-reported education in a wage equation. (Ashenfelter and Krueger com-
bined differencing and IV to account for the omitted ability problem as well; more on this in 
Section 15.8.) Generally, though, having two measures of an explanatory variable is rare.
 An alternative is to use other exogenous variables as IVs for a potentially mismeasured 
variable. For example, our use of motheduc and fatheduc as IVs for educ in Example 15.5 
can serve this purpose. If we think that educ � educ* � e

1
, then the IV estimates in 

Example 15.5 do not suffer from measurement error if motheduc and fatheduc are uncor-
related with the measurement error, e

1
. This is probably more reasonable than assuming 

motheduc and fatheduc are uncorrelated with ability, which is contained in u in (15.45).
 IV methods can also be adopted when using things like test scores to control for unob-
served characteristics. In Section 9.2, we showed that, under certain assumptions, proxy 
variables can be used to solve the omitted variables problem. In Example 9.3, we used IQ 
as a proxy variable for unobserved ability. This simply entails adding IQ to the model and 
performing an OLS regression. But there is an alternative that works when IQ does not 
fully satisfy the proxy variable assumptions. To illustrate, write a wage equation as

 log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
exper2 � abil � u, 15.47

where we again have the omitted ability problem. But we have two test scores that are 
indicators of ability. We assume that the scores can be written as

 test
1
 � �

1
abil � e

1

and 

 test
2
 � �

1
abil � e

2
,

where �
1
 � 0, �

1
 � 0. Since it is ability that affects wage, we can assume that test

1
 and 

test
2
 are uncorrelated with u. If we write abil in terms of the first test score and plug the 

result into (15.47), we get

 log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
exper2

 � �
1
test

1
 � (u � �

1
e

1
), 

15.48

where �
1
 � 1/�

1
. Now, if we assume that e

1
 is uncorrelated with all the explanatory vari-

ables in (15.47), including abil, then e
1
 and test

1
 must be correlated. [Notice that educ is 

not endogenous in (15.48); however, test
1
 is.] This means that estimating (15.48) by OLS 

will produce inconsistent estimators of the �
j
 (and �

1
). Under the assumptions we have 

made, test
1
 does not satisfy the proxy variable assumptions.
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 If we assume that e
2
 is also uncorrelated with all the explanatory variables in (15.47) 

and that e
1
 and e

2
 are uncorrelated, then e

1
 is uncorrelated with the second test score, test

2
. 

Therefore, test
2
 can be used as an IV for test

1
.

E x a m p l e  1 5 . 6

[Using Two Test Scores as Indicators of Ability]

We use the data in WAGE2.RAW to implement the preceding procedure, where IQ plays the role 
of the first test score, and KWW (knowledge of the world of work) is the second test score. The 
explanatory variables are the same as in Example 9.3: educ, exper, tenure, married, south, urban, 
and black. Rather than adding IQ and doing OLS, as in column (2) of Table 9.2, we add IQ and 
use KWW as its instrument. The coefficient on educ is .025 (se � .017). This is a low estimate, and 
it is not statistically different from zero. This is a puzzling finding, and it suggests that one of our 
assumptions fails; perhaps e

1
 and e

2
 are correlated.

 

15.5 Testing for Endogeneity and Testing 
Overidentifying Restrictions
In this section, we describe two important tests in the context of instrumental variables 
estimation.

Testing for Endogeneity

The 2SLS estimator is less efficient than OLS when the explanatory variables are exog-
enous; as we have seen, the 2SLS estimates can have very large standard errors. Therefore, 
it is useful to have a test for endogeneity of an explanatory variable that shows whether 
2SLS is even necessary. Obtaining such a test is rather simple.
 To illustrate, suppose we have a single suspected endogenous variable,

 y
1
 � �

0
 � �

1
y

2
 � �

2
z

1
 � �

3
z

2
 � u

1
, 15.49

where z
1
 and z

2
 are exogenous. We have two additional exogenous variables, z

3
 and z

4
, 

which do not appear in (15.49). If y
2
 is uncorrelated with u

1
, we should estimate (15.49) 

by OLS. How can we test this? Hausman (1978) suggested directly comparing the OLS 
and 2SLS estimates and determining whether the differences are statistically significant. 
After all, both OLS and 2SLS are consistent if all variables are exogenous. If 2SLS and 
OLS differ significantly, we conclude that y

2
 must be endogenous (maintaining that the z

j
 

are exogenous).
 It is a good idea to compute OLS and 2SLS to see if the estimates are practically dif-
ferent. To determine whether the differences are statistically significant, it is easier to use a 
regression test. This is based on estimating the reduced form for y

2
, which in this case is

 y
2
 � �

0
 � �

1
z

1
 � �

2
z

2
 � �

3
z

3
 � �

4
z

4
 � v

2
. 15.50

Now, since each z
j
 is uncorrelated with u

1
, y

2
 is uncorrelated with u

1
 if, and only if, v

2
 

is uncorrelated with u
1
; this is what we wish to test. Write u

1
 � �

1
v

2
 � e

1
, where e

1
 is  
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uncorrelated with v
2
 and has zero mean. Then, u

1
 and v

2
 are uncorrelated if, and only if, �

1
 

� 0. The easiest way to test this is to include v
2
 as an additional regressor in (15.49) and to 

do a t test. There is only one problem with implementing this: v
2
 is not observed, because 

it is the error term in (15.50). Because we can estimate the reduced form for y
2
 by OLS, 

we can obtain the reduced form residuals,  ̂  v 
2
. Therefore, we estimate

 y
1
 � �

0
 � �

1
y

2
 � �

2
z

1
 � �

3
z

2
 � �

1
 ̂  v 

2
 � error 15.51

by OLS and test H
0
: �

1
 � 0 using a t statistic. If we reject H

0
 at a small significance level, 

we conclude that y
2
 is endogenous because v

2
 and u

1
 are correlated.

Testing for Endogeneity of a Single Explanatory Variable: 
 (i) Estimate the reduced form for y

2
 by regressing it on all exogenous variables (including 

those in the structural equation and the additional IVs). Obtain the residuals,  ̂  v 
2
.

 (ii) Add  ̂  v 
2
 to the structural equation (which includes y

2
) and test for significance of  ̂  v 

2
 

using an OLS regression. If the coefficient on  ̂  v 
2
 is statistically different from zero, we 

conclude that y
2
 is indeed endogenous. We might want to use a heteroskedasticity-robust 

t test.

E x a m p l e  1 5 . 7

[Return to Education for Working Women]

We can test for endogeneity of educ in (15.40) by obtaining the residuals  ̂  v 
2
 from estimating the 

reduced form (15.41)—using only working women—and including these in (15.40). When we do 
this, the coefficient on  ̂  v 

2
 is  ̂  � 

1
 � .058, and t � 1.67. This is moderate evidence of positive correlation 

between u
1
 and v

2
. It is probably a good idea to report both estimates because the 2SLS estimate of 

the return to education (6.1%) is well below the OLS estimate (10.8%).

 

 An interesting feature of the regression from step (ii) of the test for endogeneity is that 
the coefficient estimates on all explanatory variables (except, of course,  ̂  v 

2
) are identical 

to the 2SLS estimates. For example, estimating (15.51) by OLS produces the same  ̂  � 
j
 as 

estimating (15.49) by 2SLS. One benefit of this equivalence is that it provides an easy 
check on whether you have done the proper regression in testing for endogeneity. But 
it also gives a different, useful interpretation of 2SLS: adding  ̂  v 

2
 to the original equation 

as an explanatory variable, and applying OLS, clears up the endogeneity of y
2
. So, when 

we start by estimating (15.49) by OLS, we can quantify the importance of allowing y
2
 to be 

endogenous by seeing how much  ̂  � 
1
 changes when  ̂  v 

2
 is added to the equation. Irrespective 

of the outcome of the statistical tests, we can see whether the change in  ̂  � 
1
 is expected and 

is practically significant.
 We can also test for endogeneity of multiple explanatory variables. For each suspected 
endogenous variable, we obtain the reduced form residuals, as in part (i). Then, we test 
for joint significance of these residuals in the structural equation, using an F test. Joint 
significance indicates that at least one suspected explanatory variable is endogenous. The 
number of exclusion restrictions tested is the number of suspected endogenous explanatory 
variables.
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Testing Overidentifi cation Restrictions

When we introduced the simple instrumental variables estimator in Section 15.1, we 
emphasized that the instrument must satisfy two requirements: it must be uncorrelated 
with the error (exogeneity) and correlated with the endogenous explanatory variable (rel-
evance). We have now seen that, even in models with additional explanatory variables, 
the second requirement can be tested using a t test (with just one instrument) or an F test 
(when there are multiple instruments). In the context of the simple IV estimator, we noted 
that the exogeneity requirement cannot be tested. However, if we have more instruments 
than we need, we can effectively test whether some of them are uncorrelated with the 
structural error.
 As a specific example, again consider equation (15.49) with two instrumental variables 
for y

2
, z

3
, and z

4
. Remember, z

1
 and z

2
 essentially act as their own instruments. Because we 

have two instruments for y
2
, we can estimate (15.49) using, say, only z

3
 as an IV for y

2
; 

let �̌
1 
call the resulting IV estimator of �

1
. Then, we can estimate (15.49) using only z

4
 as 

an IV for y
2
; call this IV estimator  ̃  � 

1
. If all z

j
 are exogenous, and if z

3
 and z

4
 are each par-

tially correlated with y
2
, then �̌

1
 and  ̃  � 

1
 are both consistent for �

1
. Therefore, if our logic 

for choosing the instruments is sound, �̌
1
 and  ̃  � 

1
 should differ only by sampling error. 

Hausman (1978) proposed basing a test of whether z
3
 and z

4
 are both exogenous on the dif-

ference, �̌
1
 �  ̃  � 

1
. Shortly, we will provide a simpler way to obtain a valid test, but, before 

doing so, we should understand how to interpret the outcome of the test.
 If we conclude that �̌

1
 and  ̃  � 

1
 are statistically different from one another, then we 

have no choice but to conclude that either z
3
, z

4
, or both fail the exogeneity requirement. 

Unfortunately, we cannot know which is the case (unless we simply assert from the begin-
ning that, say, z

3
 is exogenous). For example, if y

2
 denotes years of schooling in a log wage 

equation, z
3
 is mother’s education, and z

4
 is father’s education, a statistically significant 

difference in the two IV estimators implies that one or both of the parents’ education vari-
ables are correlated with u

1
 in (15.54).

 Certainly rejecting one’s instruments as being exogenous is serious and requires a new 
approach. But the more serious, and subtle, problem in comparing IV estimates is that they 
may be similar even though both instruments fail the exogeneity requirement. In the pre-
vious example, it seems likely that if mother’s education is positively correlated with u

1
, 

then so is father’s education. Therefore, the two IV estimates may be similar even though 
each is inconsistent. In effect, because the IVs in this example are chosen using similar 
reasoning, their separate use in IV procedures may very well lead to similar estimates that 
are nevertheless both inconsistent. The point is that we should not feel especially comfort-
able if our IV procedures pass the Hausman test.
 Another problem with comparing two IV estimates is that often they may seem 
practically different yet, statistically, we cannot reject the null hypothesis that they are 
consistent for the same population parameter. For example, in estimating (15.40) by IV 
using motheduc as the only instrument, the coefficient on educ is .049 (.037). If we use 
only fatheduc as the IV for educ, the coefficient on educ is .070 (.034). [Perhaps not sur-
prisingly, the estimate using both parents’ education as IVs is in between these two, .061 
(.031).] For policy purposes, the difference between 5% and 7% for the estimated return 
to a year of schooling is substantial. Yet, as shown in Example 15.8, the difference is not 
statistically significant.
 The procedure of comparing different IV estimates of the same parameter is an example 
of testing overidentifying restrictions. The general idea is that we have more instruments 
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than we need to consistently estimate the parameters. In the previous example, we had one 
more instrument than we need, and this results in one overidentifying restriction that can 
be tested. In the general case, suppose that we have q more instruments than we need. For 
example, with one endogenous explanatory variable, y

2
, and three proposed instruments 

for y
2
, we have q � 3 � 1 � 2 overidentifying restrictions. When q is two or more, com-

paring several IV estimates is cumbersome. Instead, we can easily compute a test statistic 
based on the 2SLS residuals. The idea is that, if all instruments are exogenous, the 2SLS 
residuals should be uncorrelated with the instruments, up to sampling error. But if there
are k � 1 parameters and k � 1 � q instruments, the 2SLS residuals have a zero mean 
and are identically uncorrelated with k linear combinations of the instruments. (This alge-
braic fact contains, as a special case, the fact that the OLS residuals have a zero mean and 
are uncorrelated with the k explanatory variables.) Therefore, the test checks whether the 
2SLS residuals are correlated with q linear functions of the instruments, and we need not 
decide on the functions; the test does that for us automatically.
 The following regression-based test is valid when the homoskedasticity assumption, 
listed as Assumption 2SLS.5 in the chapter appendix, holds.

Testing Overidentifying Restrictions:
 (i) Estimate the structural equation by 2SLS and obtain the 2SLS residuals,  ̂  u 

1
.

 (ii) Regress  ̂  u 
1
 on all exogenous variables. Obtain the R-squared, say, R 2   1 .

 (iii) Under the null hypothesis that all IVs are uncorrelated with u
1
, nR 2   1  ~ª 	 2   q , where 

q is the number of instrumental variables from outside the model minus the total number 
of endogenous explanatory variables. If nR 2   1  exceeds (say) the 5% critical value in the 	 2   q 
distribution, we reject H

0
 and conclude that at least some of the IVs are not exogenous.

E x a m p l e  1 5 . 8

[Return to Education for Working Women]

When we use motheduc and fatheduc as IVs for educ in (15.40), we have a single overidenti-
fying restriction. Regressing the 2SLS residuals  ̂  u 

1
 on exper, exper2, motheduc, and fatheduc 

produces R 2   1  � .0009. Therefore, nR 2   1  � 428(.0009) � .3852, which is a very small value in a 	 2   
1
  

distribution (  p-value � .535). Therefore, the parents’ education variables pass the overidentifi-
cation test. When we add husband’s education to the IV list, we get two overidentifying restric-
tions, and nR 2   1  � 1.11 (p-value � .574). Subject to the preceding cautions, it seems reasonable 
to add huseduc to the IV list, as this reduces the standard error of the 2SLS estimate: the 2SLS 
estimate on educ using all three instruments is .080 (se � .022), so this makes educ much more 
significant than when huseduc is not used as an IV ( ̂  � 

educ
 � .061, se � .031).

 

 When q � 1, a natural question is: How does the test obtained from the regression-
based procedure compare with a test base on directly comparing the estimates? In fact, 
the two procedures are asymptotically the same. As a practical matter, it makes sense to 
compute the two IV estimates to see how they differ. More generally, when q � 2, one can 
compare the 2SLS estimates using all IVs to the IV estimates using single instruments. By 
doing so, one can see if the various IV estimates are practically different, whether or not 
the overidentification test rejects or fails to reject.
 In the previous example, we alluded to a general fact about 2SLS: under the standard 
2SLS assumptions, adding instruments to the list improves the asymptotic efficiency of the 
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2SLS. But this requires that any new instruments are in fact exogenous—otherwise, 2SLS 
will not even be consistent—and it is only an asymptotic result. With the typical sample sizes 
available, adding too many instruments—that is, increasing the number of overidentifying 
restrictions—can cause severe biases in 2SLS. A detailed discussion would take us too far 
afield. A nice illustration is given by Bound, Jaeger, and Baker (1995) who argue that the 
2SLS estimates of the return to education obtained by Angrist and Krueger (1991), using 
many instrumental variables, are likely to be seriously biased (even with hundreds of thou-
sands of observations!).
 The overidentification test can be used whenever we have more instruments than we 
need. If we have just enough instruments, the model is said to be just identified, and the 
R-squared in part (ii) will be identically zero. As we mentioned earlier, we cannot test 
exogeneity of the instruments in the just identified case.
 The test can be made robust to heteroskedasticity of arbitrary form; for details, see 
Wooldridge (2002, Chapter 5).

15.6 2SLS with Heteroskedasticity
Heteroskedasticity in the context of 2SLS raises essentially the same issues as with 
OLS. Most importantly, it is possible to obtain standard errors and test statistics that are 
(asymptotically) robust to heteroskedasticity of arbitrary and unknown form. In fact, 
expression (8.4) continues to be valid if the  ̂  r 

ij
 are obtained as the residuals from regressing  

ˆ x 
ij
 on the other  ̂  x 

ih
, where the “ˆ” denotes fitted values from the first stage regressions (for 

endogenous explanatory variables). Wooldridge (2002, Chapter 5) contains more details. 
Some software packages do this routinely.
 We can also test for heteroskedasticity, using an analog of the Breusch-Pagan test 
that we covered in Chapter 8. Let  ̂  u  denote the 2SLS residuals and let z

1
, z

2
, …, z

m
 denote 

all the exogenous variables (including those used as IVs for the endogenous explanatory 
variables). Then, under reasonable assumptions [spelled out, for example, in Wooldridge 
(2002, Chapter 5)], an asymptotically valid statistic is the usual F statistic for joint sig-
nificance in a regression of  ̂  u 2 on z

1
, z

2
, …, z

m
. The null hypothesis of homoskedasticity is 

rejected if the z
j
 are jointly significant.

 If we apply this test to Example 15.8, using motheduc, fatheduc, and huseduc as 
instruments for educ, we obtain F

5,422
 � 2.53, and p-value � .029. This is evidence of 

heteroskedasticity at the 5% level. We might want to compute heteroskedasticity-robust 
standard errors to account for this.
 If we know how the error variance depends on the exogenous variables, we can use a 
weighted 2SLS procedure, essentially the same as in Section 8.4. After estimating a model for 
Var(u�z

1
, z

2
, …, z

m
), we divide the dependent variable, the explanatory variables, and all the 

instrumental variables for observation i by  √
__

  ̂  h 
i
,   where  ̂  h 

i
 denotes the estimated variance. (The 

constant, which is both an explanatory variable and an IV, is divided by  √
__

  ̂  h 
i
  ; see Section 8.4.) 

Then, we apply 2SLS on the transformed equation using the transformed instruments.

15.7 Applying 2SLS to Time Series Equations
When we apply 2SLS to time series data, many of the considerations that arose for OLS in 
Chapters 10, 11, and 12 are relevant. Write the structural equation for each time period as

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

tk
 � u

t
, 15.52
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where one or more of the explanatory variables x
tj
 might be correlated with u

t
. Denote the 

set of exogenous variables by z
t1
, …, z

tm
:

 E(u
t
) � 0, Cov(z

tj
,u

t
) � 0, j � 1, …, m.

Any exogenous explanatory variable is also a z
tj
. For identification, it is necessary that 

m � k (we have as many exogenous variables as explanatory variables).
 The mechanics of 2SLS are identi-
cal for time series or cross-sectional 
data, but for time series data the statisti-
cal properties of 2SLS depend on the 
trending and correlation properties of 
the underlying sequences. In particular, 
we must be careful to include trends if 
we have trending dependent or explana-
tory variables. Since a time trend is 
exogenous, it can always serve as its 
own instrumental variable. The same 
is true of seasonal dummy variables, if 
monthly or quarterly data are used.

 Series that have strong persistence (have unit roots) must be used with care, just as 
with OLS. Often, differencing the equation is warranted before estimation, and this applies 
to the instruments as well.
 Under analogs of the assumptions in Chapter 11 for the asymptotic properties of OLS, 
2SLS using time series data is consistent and asymptotically normally distributed. In 
fact, if we replace the explanatory variables with the instrumental variables in stating the 
assumptions, we only need to add the identification assumptions for 2SLS. For example, 
the homoskedasticity assumption is stated as

 E(u 2   t  �zt1
, …, z

tm
) � �2, 15.53

and the no serial correlation assumption is stated as

 E(u
t
u

s
�z

t
, z

s
) � 0, for all t 	 s, 15.54

where z
t
 denotes all exogenous variables at time t. A full statement of the assumptions is 

given in the chapter appendix. We will provide examples of 2SLS for time series problems 
in Chapter 16; see also Computer Exercise C15.4.
 As in the case of OLS, the no serial correlation assumption can often be violated with 
time series data. Fortunately, it is very easy to test for AR(1) serial correlation. If we write 
u

t
 � �u

t�1
 � e

t
 and plug this into equation (15.52), we get

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

tk
 � �u

t�1
 � e

t
, t � 2. 15.55

 To test H
0
: �

1
 � 0, we must replace u

t�1
 with the 2SLS residuals,  ̂  u 

t�1
. Further, if 

x
tj
 is endogenous in (15.52), then it is endogenous in (15.55), so we still need to use 

an IV. Because e
t
 is uncorrelated with all past values of u

t
,  ̂  u 

t�1
 can be used as its own 

instrument.

Q u e s t i o n  1 5 . 4
A model to test the effect of growth in government spending on 
growth in output is

gGDP
t
 � �

0
 � �

1
gGOV

t
 � �

2
INVRAT

t
 � �

3
gLAB

t
 � u

t
,

where g indicates growth, GDP is real gross domestic product, 
GOV is real government spending, INVRAT is the ratio of gross 
domestic investment to GDP, and LAB is the size of the labor force. 
[See equation (6) in Ram (1986).] Under what assumptions would 
a dummy variable indicating whether the president in year t � 1 
is a Republican be a suitable IV for gGOVt?
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Testing for AR(1) Serial Correlation after 2SLS:
 (i) Estimate (15.52) by 2SLS and obtain the 2SLS residuals,  ̂  u 

t
.

 (ii) Estimate

 y
t
 � �

0
 � �

1
x

t1
 � … � �

k
x

tk
 � � ̂  u 

t�1
 � error

t
, t � 2, …, n

by 2SLS, using the same instruments from part (i), in addition to  ̂  u 
t�1

. Use the t statistic 
on  ̂  �  to test H

0
: � � 0.

 As with the OLS version of this test from Chapter 12, the t statistic only has asymptotic 
justification, but it tends to work well in practice. A heteroskedasticity-robust version can 
be used to guard against heteroskedasticity. Further, lagged residuals can be added to the 
equation to test for higher forms of serial correlation using a joint F test.
 What happens if we detect serial correlation? Some econometrics packages will com-
pute standard errors that are robust to fairly general forms of serial correlation and hetero-
skedasticity. This is a nice, simple way to go if your econometrics package does this. The 
computations are very similar to those in Section 12.5 for OLS. [See Wooldridge (1995) 
for formulas and other computational methods.]
 An alternative is to use the AR(1) model and correct for serial correlation. The pro-
cedure is similar to that for OLS and places additional restrictions on the instrumental 
variables. The quasi-differenced equation is the same as in equation (12.32):

  ̃  y 
t
 � �

0
(1 � �) � �

1
 ̃  x 

t1
 � … � �

k
 ̃  x 

tk
 � e

t
, t � 2, 15.56

where  ̃  x 
tj
 � x

tj
 � �x

t�1,     j
. (We can use the t � 1 observation just as in Section 12.3, but 

we omit that for simplicity here.) The question is: What can we use as instrumental vari-
ables? It seems natural to use the quasi-differenced instruments,  ̃  z 

tj
 � z

tj
 � �z

t�1,    j
. This 

only works, however, if in (15.52) the original error u
t
 is uncorrelated with the instru-

ments at times t, t � 1, and t � 1. That is, the instrumental variables must be strictly 
exogenous in (15.52). This rules out lagged dependent variables as IVs, for example. 
It also eliminates cases where future movements in the IVs react to current and past 
changes in the error, u

t
.

2SLS with AR(1) Errors:
 (i) Estimate (15.52) by 2SLS and obtain the 2SLS residuals,  ̂  u 

t
, t � 1, 2, …, n.

 (ii) Obtain  ̂  �  from the regression of  ̂  u 
t
 on  ̂  u 

t�1
, t � 2, …, n and construct the quasi-

differenced variables  ̃  y 
t
 � y

t
 �  ̂  � y

t�1
,  ̃  x 

tj
 � x

tj
 �  ̂  � x

t�1,  j
, and  ̃  z 

tj
 � z

tj
 �  ̂  � z

t�1,  j
 for t � 2. 

(Remember, in most cases, some of the IVs will also be explanatory variables.)
 (iii) Estimate (15.56) (where � is replaced with  ̂  � ) by 2SLS, using the  ̃  z 

tj
 as the instru-

ments. Assuming that (15.56) satisfies the 2SLS assumptions in the chapter appendix, the 
usual 2SLS test statistics are asymptotically valid.

 We can also use the first time period as in Prais-Winsten estimation of the model with 
exogenous explanatory variables. The transformed variables in the first time period—the 
dependent variable, explanatory variables, and instrumental variables—are obtained sim-
ply by multiplying all first-period values by (1 �  ̂  � )1/2. (See also Section 12.3.)
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15.8 Applying 2SLS to Pooled Cross Sections 
and Panel Data
Applying instrumental variables methods to independently pooled cross sections raises 
no new difficulties. As with models estimated by OLS, we should often include time 
period dummy variables to allow for aggregate time effects. These dummy variables are 
exogenous—because the passage of time is exogenous—and so they act as their own 
instruments.

E x a m p l e  1 5 . 9

[Effect of Education on Fertility]

In Example 13.1, we used the pooled cross section in FERTIL1.RAW to estimate the effect of edu-
cation on women’s fertility, controlling for various other factors. As in Sander (1992), we allow for 
the possibility that educ is endogenous in the equation. As instrumental variables for educ, we use 
mother’s and father’s education levels (meduc, feduc). The 2SLS estimate of �

educ
 is �.153 (se � 

.039), compared with the OLS estimate �.128 (se � .018). The 2SLS estimate shows a somewhat 
larger effect of education on fertility, but the 2SLS standard error is over twice as large as the OLS 
standard error. (In fact, the 95% confidence interval based on 2SLS easily contains the OLS esti-
mate.) The OLS and 2SLS estimates of �

educ
 are not statistically different, as can be seen by testing 

for endogeneity of educ as in Section 15.5: when the reduced form residual,  ̂  v 
2
, is included with the 

other regressors in Table 13.1 (including educ), its t statistic is .702, which is not significant at any 
reasonable level. Therefore, in this case, we conclude that the difference between 2SLS and OLS 
could be entirely due to sampling error.

 

 Instrumental variables estimation can be combined with panel data methods, particu-
larly first differencing, to consistently estimate parameters in the presence of unobserved 
effects and endogeneity in one or more time-varying explanatory variables. The following 
simple example illustrates this combination of methods.

E x a m p l e  1 5 . 1 0

[Job Training and Worker Productivity]

Suppose we want to estimate the effect of another hour of job training on worker productivity. For 
the two years 1987 and 1988, consider the simple panel data model

 log(scrap
it
) � �

0
 � �

0
d88

t
 � �

1
hrsemp

it
 � a

i
 � u

it
, t � 1, 2,

where scrap
it
 is firm i’s scrap rate in year t, and hrsemp

it
 is hours of job training per employee. As 

usual, we allow different year intercepts and a constant, unobserved firm effect, a
i
.

 For the reasons discussed in Section 13.2, we might be concerned that hrsemp
it
 is correlated with 

a
i
, the latter of which contains unmeasured worker ability. As before, we difference to remove a

i
:

 �log(scrap
i
) � �

0
 � �

1
�hrsemp

i
 � �u

i
. 15.57
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Normally, we would estimate this equation by OLS. But what if �u
i
 is correlated with �hrsemp

i
? For 

example, a firm might hire more skilled workers, while at the same time reducing the level of job 
training. In this case, we need an instrumental variable for �hrsemp

i
. Generally, such an IV would 

be hard to find, but we can exploit the fact that some firms received job training grants in 1988. If 
we assume that grant designation is uncorrelated with �u

i
—something that is reasonable, because 

the grants were given at the beginning of 1988—then �grant
i
 is valid as an IV, provided �hrsemp 

and �grant are correlated. Using the data in JTRAIN.RAW differenced between 1987 and 1988, the 
first stage regression is

 �2hrsemp � .51 � 27.88 �grant

 (1.56) (3.13)

 n � 45, R2 � .392.

This confirms that the change in hours of job training per employee is strongly positively related to 
receiving a job training grant in 1988. In fact, receiving a job training grant increased per-employee 
training by almost 28 hours, and grant designation accounted for almost 40% of the variation in 
�hrsemp. Two stage least squares estimation of (15.57) gives

 �2log(scrap) � �.033 � .014 �hrsemp

 (.127) (.008)

 n � 45, R2 � .016.

This means that 10 more hours of job training per worker are estimated to reduce the scrap rate 
by about 14%. For the firms in the sample, the average amount of job training in 1988 was about 
17 hours per worker, with a minimum of zero and a maximum of 88.
 For comparison, OLS estimation of (15.57) gives  ̂  � 

1
 � �.0076 (se � .0045), so the 2SLS esti-

mate of �
1
 is almost twice as large in magnitude and is slightly more statistically significant.

 
 When T � 3, the differenced equation may contain serial correlation. The same test 
and correction for AR(1) serial correlation from Section 15.7 can be used, where all 
regressions are pooled across i as well as t. Because we do not want to lose an entire time 
period, the Prais-Winsten transformation should be used for the initial time period.
 Unobserved effects models containing lagged dependent variables also require 
IV methods for consistent estimation. The reason is that, after differencing, �y

i,t�1
 is cor-

related with �u
it
 because y

i,t�1
 and u

i,t�1
 are correlated. We can use two or more lags of y 

as IVs for �y
i,t�1

. [See Wooldridge (2002, Chapter 11) for details.]
 Instrumental variables after differencing can be used on matched pairs samples as well. 
Ashenfelter and Krueger (1994) differenced the wage equation across twins to eliminate 
unobserved ability:

 log(wage
2
) � log(wage

1
) � �

0
 � �

1
(educ

2,2
 � educ

1,1
) � (u

2
 � u

1
),

where educ
1,1

 is years of schooling for the first twin as reported by the first twin, and 
educ

2,2
 is years of schooling for the second twin as reported by the second twin. To account 

for possible measurement error in the self-reported schooling measures, Ashenfelter and 
Krueger used (educ

2,1
 � educ

1,2
) as an IV for (educ

2,2
 � educ

1,1
), where educ

2,1
 is years of 
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schooling for the second twin as reported by the first twin, and educ
1,2

 is years of schooling 
for the first twin as reported by the second twin. The IV estimate of �

1
 is .167 (t � 3.88), 

compared with the OLS estimate on the first differences of .092 (t � 3.83) [see Ashenfelter 
and Krueger (1994, Table 3)].

S U M M A R Y

In Chapter 15, we have introduced the method of instrumental variables as a way to con-
sistently estimate the parameters in a linear model when one or more explanatory vari-
ables are endogenous. An instrumental variable must have two properties: (1) it must be 
exogenous, that is, uncorrelated with the error term of the structural equation; (2) it must 
be partially correlated with the endogenous explanatory variable. Finding a variable with 
these two properties is usually challenging.
 The method of two stage least squares, which allows for more instrumental variables 
than we have explanatory variables, is used routinely in the empirical social sciences. 
When used properly, it can allow us to estimate ceteris paribus effects in the presence of 
endogenous explanatory variables. This is true in cross-sectional, time series, and panel 
data applications. But when instruments are poor—which means they are correlated with 
the error term, only weakly correlated with the endogenous explanatory variable, or 
both—then 2SLS can be worse than OLS.
 When we have valid instrumental variables, we can test whether an explanatory vari-
able is endogenous, using the test in Section 15.5. In addition, though we can never test 
whether all IVs are exogenous, we can test that at least some of them are—assuming that 
we have more instruments than we need for consistent estimation (that is, the model is 
overidentified). Heteroskedasticity and serial correlation can be tested for and dealt with 
using methods similar to the case of models with exogenous explanatory variables.
 In this chapter, we used omitted variables and measurement error to illustrate the 
method of instrumental variables. IV methods are also indispensable for simultaneous 
equations models, which we will cover in Chapter 16.

K E Y  T E R M S

Endogenous Explanatory 
Variables

Errors-in-Variables
Exclusion Restrictions
Exogenous Explanatory 

Variables
Exogenous Variables
Identification

Instrumental Variable 
Instrumental Variables (IV) 

Estimator
Instrument Exogeneity
Instrument Relevance
Natural Experiment
Omitted Variables
Order Condition

Overidentifying Restrictions
Rank Condition
Reduced Form Equation
Structural Equation
Two Stage Least Squares 

(2SLS) Estimator
Weak Instruments

P R O B L E M S

15.1  Consider a simple model to estimate the effect of personal computer (PC) ownership on 
college grade point average for graduating seniors at a large public university:

GPA � �
0
 � �

1
PC � u,
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  where PC is a binary variable indicating PC ownership.
 (i) Why might PC ownership be correlated with u?
 (ii)  Explain why PC is likely to be related to parents’ annual income. Does this mean 

parental income is a good IV for PC? Why or why not?
 (iii)  Suppose that, four years ago, the university gave grants to buy computers to 

roughly one-half of the incoming students, and the students who received grants 
were randomly chosen. Carefully explain how you would use this information to 
construct an instrumental variable for PC.

15.2  Suppose that you wish to estimate the effect of class attendance on student performance, 
as in Example 6.3. A basic model is

stndfnl � �
0
 � �

1
atndrte � �

2
 priGPA � �

3
 ACT � u,

  where the variables are defined as in Chapter 6.
 (i)  Let dist be the distance from the students’ living quarters to the lecture hall. Do 

you think dist is uncorrelated with u?
 (ii)  Assuming that dist and u are uncorrelated, what other assumption must dist satisfy 

to be a valid IV for atndrte?
 (iii) Suppose, as in equation (6.18), we add the interaction term priGPA�atndrte:

stndfnl � �
0
 � �

1
atn.drte � �

2
 priGPA � �

3
 ACT � �

4
 priGPA�atndrte � u.

   If atndrte is correlated with u, then, in general, so is priGPA�atndrte. What might be a 
good IV for priGPA�atndrte? [Hint: If E(u�priGPA, ACT, dist) � 0, as happens when 
priGPA, ACT, and dist are all exogenous, then any function of priGPA and dist is uncor-
related with u.]

15.3 Consider the simple regression model

y � �
0
 � �

1
x � u

   and let z be a binary instrumental variable for x. Use (15.10) to show that the IV estimator  
ˆ � 

1
 can be written as

 ̂  � 
1
 � (    - y 

1
 �  - y 

0
)/( - x 

1
 �  - x 

0
),

   where  - y 
0
 and  - x 

0
 are the sample averages of y

i
 and x

i
 over the part of the sample with z

i
 � 0, 

and where  - y 
1
 and  - x 

1
 are the sample averages of y

i
 and x

i
 over the part of the sample with z

i
 � 1. 

This estimator, known as a grouping estimator, was first suggested by Wald (1940).

15.4  Suppose that, for a given state in the United States, you wish to use annual time series 
data to estimate the effect of the state-level minimum wage on the employment of those 
18 to 25 years old (EMP). A simple model is

gEMP
t
 � �

0
 � �

1
gMIN

t
 � �

2
gPOP

t
 � �

3
gGSP

t
 � �

4
gGDP

t
 � u

t
,

   where MIN
t
 is the minimum wage, in real dollars, POP

t
 is the population from 18 to 

25 years old, GSP
t
 is gross state product, and GDP

t
 is U.S. gross domestic product. The 

g prefix indicates the growth rate from year t � 1 to year t, which would typically be 
approximated by the difference in the logs.

 (i)  If we are worried that the state chooses its minimum wage partly based on unob-
served (to us) factors that affect youth employment, what is the problem with OLS 
estimation?

 (ii)  Let USMIN
t
 be the U.S. minimum wage, which is also measured in real terms. Do 

you think gUSMIN
t
 is uncorrelated with u

t
?

 (iii)  By law, any state’s minimum wage must be at least as large as the U.S. minimum. 
Explain why this makes gUSMIN

t
 a potential IV candidate for gMIN

t
.
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15.5  Refer to equations (15.19) and (15.20). Assume that �
u
 � �

x
, so that the population vari-

ation in the error term is the same as it is in x. Suppose that the instrumental variable, z, 
is slightly correlated with u: Corr(z,u) � .1. Suppose also that z and x have a somewhat 
stronger correlation: Corr(z,x) � .2.

 (i) What is the asymptotic bias in the IV estimator?
 (ii)  How much correlation would have to exist between x and u before OLS has more 

asymptotic bias than 2SLS?

15.6 (i)  In the model with one endogenous explanatory variable, one exogenous explanatory 
variable, and one extra exogenous variable, take the reduced form for y

2
, (15.26), and 

plug it into the structural equation (15.22). This gives the reduced form for y
1
:

y
1
 � �

0
 � �

1
z

1
 � �

2
z

2
 � v

1
.

  Find the �
j
 in terms of the �

j
 and the �

j
.

 (ii) Find the reduced form error, v
1
, in terms of u

1
, v

2
, and the parameters.

 (iii) How would you consistently estimate the a
j
?

15.7  The following is a simple model to measure the effect of a school choice program on 
standardized test performance [see Rouse (1998) for motivation]:

score � �
0
 � �

1
choice � �

2
  faminc � u

1
,

  where score is the score on a statewide test, choice is a binary variable indicating 
whether a student attended a choice school in the last year, and faminc is family income. 
The IV for choice is grant, the dollar amount granted to students to use for tuition at 
choice schools. The grant amount differed by family income level, which is why we 
control for faminc in the equation.

 (i) Even with faminc in the equation, why might choice be correlated with u
1
?

 (ii)  If within each income class, the grant amounts were assigned randomly, is grant 
uncorrelated with u

1
?

 (iii)  Write the reduced form equation for choice. What is needed for grant to be par-
tially correlated with choice?

 (iv)  Write the reduced form equation for score. Explain why this is useful. (Hint: How 
do you interpret the coefficient on grant?)

15.8  Suppose you want to test whether girls who attend a girls’ high school do better in math than 
girls who attend coed schools. You have a random sample of senior high school girls from 
a state in the United States, and score is the score on a standardized math test. Let girlhs be 
a dummy variable indicating whether a student attends a girls’ high school.

 (i)  What other factors would you control for in the equation? (You should be able to 
reasonably collect data on these factors.)

 (ii)  Write an equation relating score to girlhs and the other factors you listed in part (i).
 (iii)  Suppose that parental support and motivation are unmeasured factors in the error 

term in part (ii). Are these likely to be correlated with girlhs? Explain.
 (iv)  Discuss the assumptions needed for the number of girls’ high schools within a 

20-mile radius of a girl’s home to be a valid IV for girlhs.

15.9  Suppose that, in equation (15.8), you do not have a good instrumental variable candidate 
for skipped. But you have two other pieces of information on students: combined SAT 
score and cumulative GPA prior to the semester. What would you do instead of IV 
estimation?
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15.10  In a recent article, Evans and Schwab (1995) studied the effects of attending a Catholic 
high school on the probability of attending college. For concreteness, let college be a 
binary variable equal to unity if a student attends college, and zero otherwise. Let CathHS 
be a binary variable equal to one if the student attends a Catholic high school. A linear 
probability model is

college � �
0
 � �

1
CathHS � other factors � u,

  where the other factors include gender, race, family income, and parental education.
 (i) Why might CathHS be correlated with u?
 (ii)  Evans and Schwab have data on a standardized test score taken when each student 

was a sophomore. What can be done with this variable to improve the ceteris pari-
bus estimate of attending a Catholic high school?

 (iii)  Let CathRel be a binary variable equal to one if the student is Catholic. Discuss 
the two requirements needed for this to be a valid IV for CathHS in the preceding 
equation. Which of these can be tested?

 (iv)  Not surprisingly, being Catholic has a significant effect on attending a Catholic 
high school. Do you think CathRel is a convincing instrument for CathHS?

15.11  Consider a simple time series model where the explanatory variable has classical mea-
surement error:

 y
t
 � �

0
 � �

1
x *   t   � u

t
 15.58

 x
t
 � x *   t   � e

t
,

where u
t
 has zero mean and is uncorrelated with x *   t   and e

t
. We observe y

t
 and x

t
 only. 

Assume that e
t
 has zero mean and is uncorrelated with x *   t   and that x *   t   also has a zero 

mean (this last assumption is only to simplify the algebra).
 (i)  Write x *   t   � x

t
 � e

t
 and plug this into (15.58). Show that the error term in the new 

equation, say, v
t
, is negatively correlated with x

t
 if �

1
 � 0. What does this imply 

about the OLS estimator of �
1
 from the regression of y

t
 on x

t
?

 (ii)  In addition to the previous assumptions, assume that u
t
 and e

t
 are uncorrelated with 

all past values of x *   t   and e
t
; in particular, with x *   t  �1 and e

t�1
. Show that E(x

t�1
v

t
) � 0, 

where v
t
 is the error term in the model from part (i).

 (iii) Are x
t
 and x

t�1
 likely to be correlated? Explain.

 (iv)  What do parts (ii) and (iii) suggest as a useful strategy for consistently estimating 
�

0
 and �

1
?

C O M P U T E R  E X E R C I S E S

C15.1 Use the data in WAGE2.RAW for this exercise.
 (i)  In Example 15.2, using sibs as an instrument for educ, the IV estimate of the 

return to education is .122. To convince yourself that using sibs as an IV for educ 
is not the same as just plugging sibs in for educ and running an OLS regression, 
run the regression of log(wage) on sibs and explain your findings.

 (ii)  The variable brthord is birth order (brthord is one for a first-born child, two 
for a second-born child, and so on). Explain why educ and brthord might be 
negatively correlated. Regress educ on brthord to determine whether there is a 
statistically significant negative correlation.

 (iii)  Use brthord as an IV for educ in equation (15.1). Report and interpret the results.
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 (iv)  Now, suppose that we include number of siblings as an explanatory variable in 
the wage equation; this controls for family background, to some extent:

log(wage) � �
0
 � �

1
educ � �

2
sibs � u.

   Suppose that we want to use brthord as an IV for educ, assuming that sibs is 
exogenous. The reduced form for educ is

 educ � �
0
 � �

1
sibs � �

2
brthord � v.

  State and test the identification assumption.
 (v)  Estimate the equation from part (iv) using brthord as an IV for educ (and sibs as 

its own IV). Comment on the standard errors for  ̂  � 
educ

 and  ̂  � 
sibs

.
 (vi)  Using the fitted values from part (iv), 1educ, compute the correlation between 

1educ and sibs. Use this result to explain your findings from part (v).

C15.2  The data in FERTIL2.RAW includes, for women in Botswana during 1988, informa-
tion on number of children, years of education, age, and religious and economic status 
variables.

 (i) Estimate the model

children � �
0
 � �

1
educ � �

2
age � �

3
age2 � u

   by OLS, and interpret the estimates. In particular, holding age fixed, what is the 
estimated effect of another year of education on fertility? If 100 women receive 
another year of education, how many fewer children are they expected to have?

 (ii)  The variable frsthalf is a dummy variable equal to one if the woman was born 
during the first six months of the year. Assuming that frsthalf is uncorrelated 
with the error term from part (i), show that frsthalf is a reasonable IV candidate 
for educ. (Hint: You need to do a regression.)

 (iii)  Estimate the model from part (i) by using frsthalf as an IV for educ. Compare the 
estimated effect of education with the OLS estimate from part (i).

 (iv)  Add the binary variables electric, tv, and bicycle to the model and assume 
these are exogenous. Estimate the equation by OLS and 2SLS and compare the 
estimated coefficients on educ. Interpret the coefficient on tv and explain why 
television ownership has a negative effect on fertility.

C15.3 Use the data in CARD.RAW for this exercise.
 (i) The equation we estimated in Example 15.4 can be written as

log(wage) � �
0
 � �

1
educ � �

2
exper � … � u,

   where the other explanatory variables are listed in Table 15.1. In order for IV 
to be consistent, the IV for educ, nearc4, must be uncorrelated with u. Could 
nearc4 be correlated with things in the error term, such as unobserved ability? 
Explain.

 (ii)  For a subsample of the men in the data set, an IQ score is available. Regress IQ 
on nearc4 to check whether average IQ scores vary by whether the man grew up 
near a four-year college. What do you conclude?

 (iii)  Now, regress IQ on nearc4, smsa66, and the 1966 regional dummy variables 
reg662, …, reg669. Are IQ and nearc4 related after the geographic dummy vari-
ables have been partialled out? Reconcile this with your findings from part (ii).

 (iv)  From parts (ii) and (iii), what do you conclude about the importance of control-
ling for smsa66 and the 1966 regional dummies in the log(wage) equation?
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C15.4  Use the data in INTDEF.RAW for this exercise. A simple equation relating the three-
month T-bill rate to the inflation rate (constructed from the Consumer Price Index) is

i3
t
 � �

0
 � �

1
inf

t
 � u

t
.

 (i)  Estimate this equation by OLS, omitting the first time period for later compari-
sons. Report the results in the usual form.

 (ii)  Some economists feel that the Consumer Price Index mismeasures the true rate 
of inflation, so that the OLS from part (i) suffers from measurement error bias. 
Reestimate the equation from part (i), using inf

t�1
 as an IV for inf

t
. How does the 

IV estimate of �
1
 compare with the OLS estimate?

 (iii) Now, first difference the equation:

�i3
t
 � �

0
 � �

1
�inf

t
 � �u

t
.

   Estimate this by OLS and compare the estimate of �
1
 with the previous 

estimates.
 (iv)  Can you use �inf

t�1
 as an IV for �inf

t
 in the differenced equation in part (iii)? 

Explain. (Hint: Are �inf
t
 and �inf

t�1
 sufficiently correlated?)

C15.5 Use the data in CARD.RAW for this exercise.
 (i)  In Table 15.1, the difference between the IV and OLS estimates of the return to 

education is economically important. Obtain the reduced form residuals,  ̂  v 
2
, from 

(15.32). (See Table 15.1 for the other variables to include in the regression.) 
Use these to test whether educ is exogenous; that is, determine if the difference 
between OLS and IV is statistically significant.

 (ii)  Estimate the equation by 2SLS, adding nearc2 as an instrument. Does the coef-
ficient on educ change much?

 (iii) Test the single overidentifying restriction from part (ii).

C15.6  Use the data in MURDER.RAW for this exercise. The variable mrdrte is the murder 
rate, that is, the number of murders per 100,000 people. The variable exec is the total 
number of prisoners executed for the current and prior two years; unem is the state 
unemployment rate.

 (i)  How many states executed at least one prisoner in 1991, 1992, or 1993? Which 
state had the most executions?

 (ii)  Using the two years 1990 and 1993, do a pooled regression of mrdrte on d93, 
exec, and unem. What do you make of the coefficient on exec?

 (iii)  Using the changes from 1990 to 1993 only (for a total of 51 observations), esti-
mate the equation

�mrdrte � �
0
 � �

1
�exec � �

2
�unem � �u

   by OLS and report the results in the usual form. Now, does capital punishment 
appear to have a deterrent effect?

 (iv)  The change in executions may be at least partly related to changes in the expected 
murder rate, so that �exec is correlated with �u in part (iii). It might be reason-
able to assume that �exec

�1
 is uncorrelated with �u. (After all, �exec

�1
 depends 

on executions that occurred three or more years ago.) Regress �exec on �exec
�1

 
to see if they are sufficiently correlated; interpret the coefficient on �exec

�1
.

 (v)  Reestimate the equation from part (iii), using �exec
�1

 as an IV for �exec. Assume 
that �unem is exogenous. How do your conclusions change from part (iii)?
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C15.7 Use the data in PHILLIPS.RAW for this exercise.
 (i)  In Example 11.5, we estimated an expectations augmented Phillips curve of the 

form

�inf
t
 � �

0
 � �

1
unem

t
 � e

t
,

   where �inf
t
 � inf

t
 � inf

t�1
. In estimating this equation by OLS, we assumed that 

the supply shock, e
t
, was uncorrelated with unem

t
. If this is false, what can be 

said about the OLS estimator of �
1
?

 (ii)  Suppose that e
t
 is unpredictable given all past information: E(e

t
�inf

t�1
, unem

t�1
, …) �

0. Explain why this makes unem
t�1

 a good IV candidate for unem
t
.

 (iii) Regress unem
t
 on unem

t�1
. Are unem

t
 and unem

t�1
 significantly correlated?

 (iv)  Estimate the expectations augmented Phillips curve by IV. Report the results in 
the usual form and compare them with the OLS estimates from Example 11.5.

C15.8  Use the data in 401KSUBS.RAW for this exercise. The equation of interest is a linear 
probability model:

pira � �
0
 � �

1
p401k � �

2
inc � �

3
inc2 � �

4
age � �

5
age2 � u.

   The goal is to test whether there is a tradeoff between participating in a 401(k) plan 
and having an individual retirement account (IRA). Therefore, we want to estimate �

1
.

 (i) Estimate the equation by OLS and discuss the estimated effect of p401k.
 (ii)  For the purposes of estimating the ceteris paribus tradeoff between participation 

in two different types of retirement savings plans, what might be a problem with 
ordinary least squares?

 (iii)  The variable e401k is a binary variable equal to one if a worker is eligible to 
participate in a 401(k) plan. Explain what is required for e401k to be a valid IV 
for p401k. Do these assumptions seem reasonable?

 (iv)  Estimate the reduced form for p401k and verify that e401k has significant partial 
correlation with p401k. Since the reduced form is also a linear probability model, 
use a heteroskedasticity-robust standard error.

 (v)  Now, estimate the structural equation by IV and compare the estimate of �
1
 with the 

OLS estimate. Again, you should obtain heteroskedasticity-robust standard errors.
 (vi)  Test the null hypothesis that p401k is in fact exogenous, using a heteroskedasticity-

robust test.

C15.9  The purpose of this exercise is to compare the estimates and standard errors obtained 
by correctly using 2SLS with those obtained using inappropriate procedures. Use the 
data file WAGE2.RAW.

 (i) Use a 2SLS routine to estimate the equation

log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
tenure � �

4
black � u,

  where sibs is the IV for educ. Report the results in the usual form.
 (ii)  Now, manually carry out 2SLS. That is, first regress educ

i
 on sibs

i
, exper

i
, tenure

i
, 

and black
i
 and obtain the fitted values, 1educ

i
, i � 1, ..., n. Then, run the second 

stage regression log(wage
i
) on 1educ

i
, exper

i
, tenure

i
, and black

i
, i � 1, ..., n. Verify 

that the  ̂  � 
j
 are identical to those obtained from part (i), but that the standard errors 

are somewhat different. The standard errors obtained from the second stage 
regression when manually carrying out 2SLS are generally inappropriate.

 (iii)  Now, use the following two-step procedure, which generally yields inconsistent 
parameter estimates of the �

j
, and not just inconsistent standard errors. In step 

one, regress educ
i
 on sibs

i
 only and obtain the fitted values, say 	educ

i
. (Note 
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that this is an incorrect first stage regression.) Then, in the second step, run the 
regression of log(wage

i
) on 	educ

i
, exper

i
, tenure

i
, and black

i
, i � 1, …, n. How 

does the estimate from this incorrect, two-step procedure compare with the cor-
rect 2SLS estimate of the return to education?

C15.10  Use the data in HTV.RAW for this exercise.
 (i)  Run a simple OLS regression of log(wage) on educ. Without controlling for 

other factors, what is the 95% confidence interval for the return to another year 
of education?

 (ii)  The variable ctuit, in thousands of dollars, is the change in college tuition facing 
students from age 17 to age 18. Show that educ and ctuit are essentially uncor-
related. What does this say about ctuit as a possible IV for educ in a simple 
regression analysis?

 (iii)  Now, add to the simple regression model in part (i) a quadratic in experience 
and a full set of regional dummy variables for current residence and residence 
at age 18. Also include the urban indicators for current and age 18 residences. 
What is the estimated return to a year of education?

 (iv)  Again using ctuit as a potential IV for educ, estimate the reduced form for educ. 
[Naturally, the reduced form for educ now includes the explanatory variables in 
part (iii).] Show that ctuit is now statistically significant in the reduced form 
for educ.

 (v)  Estimate the model from part (iii) by IV, using ctuit as an IV for educ. How 
does the confidence interval for the return to education compare with the OLS 
CI from part (iii)?

 (vi)  Do you think the IV procedure from part (v) is convincing?

Appendix 15A

Assumptions for Two Stage Least Squares

This appendix covers the assumptions under which 2SLS has desirable large sample 
properties. We first state the assumptions for cross-sectional applications under random 
sampling. Then, we discuss what needs to be added for them to apply to time series and 
panel data.

 Assumption 2SLS.1  (Linear in Parameters)

The model in the population can be written as

 y � �
0
 � �

1
x

1 
� �

2
x

2
 � … � �

k
x

k
 � u,

where �
0
, �

1
, …, �

k
 are the unknown parameters (constants) of interest, and u is 

an unobservable random error or random disturbance term. The instrumental vari-
ables are denoted as zj.

 It is worth emphasizing that Assumption 2SLS.1 is virtually identical to MLR.1 (with 
the minor exception that 2SLS.1 mentions the notation for the instrumental variables, z

j
). 
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In other words, the model we are interested in is the same as that for OLS estimation of 
the �

j
. Sometimes it is easy to lose sight of the fact that we can apply different estimation 

methods to the same model. Unfortunately, it is not uncommon to hear researchers say 
“I estimated an OLS model” or “I used a 2SLS model.” Such statements are meaningless. 
OLS and 2SLS are different estimation methods that are applied to the same model. It is 
true that they have desirable statistical properties under different sets of assumptions on 
the model, but the relationship they are estimating is given by the equation in 2SLS.1 (or 
MLR.1). The point is similar to that made for the unobserved effects panel data model 
covered in Chapters 13 and 14: pooled OLS, first differencing, fixed effects, and random 
effects are different estimation methods for the same model.

Assumption 2SLS.2  (Random Sampling)

We have a random sample on y, the xj, and the zj.

Assumption 2SLS.3  (Rank Condition)

(i) There are no perfect linear relationships among the instrumental variables. (ii) The 
rank condition for identification holds.

 With a single endogenous explanatory variable, as in equation (15.42), the rank condi-
tion is easily described. Let z

1
, …, z

m
 denote the exogenous variables, where z

k
, …, z

m
 do 

not appear in the structural model (15.42). The reduced form of y
2
 is

y
2
 � �

0
 � �

1
z

1
 � �

2
z

2
 � … � �

k–1
z

k–1
 � �

k
z

k
 � … � �

m
z

m
 � v

2
.

Then, we need at least one of �
k
, …, �

m
 to be nonzero. This requires at least one exog-

enous variable that does not appear in (15.42) (the order condition). Stating the rank 
condition with two or more endogenous explanatory variables requires matrix algebra. 
[See Wooldridge (2002, Chapter 5).]

Assumption 2SLS.4  (Exogenous Instrumental Variables)

The error term u has zero mean, and each IV is uncorrelated with u.

Remember that any x
j
 that is uncorrelated with u also acts as an IV.

Theorem 15A.1

Under Assumptions 2SLS.1 through 2SLS.4, the 2SLS estimator is consistent.

Assumption 2SLS.5  (Homoskedasticity)

Let z denote the collection of all instrumental variables. Then, E(u2�z) � �2.
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 The 2SLS estimator is also the best IV estimator under the five assumptions given. 
We state the result here. A proof can be found in Wooldridge (2002, Chapter 5).

Theorem 15A.3

Under Assumptions 2SLS.1 through 2SLS.5, the 2SLS estimator is asymptotically efficient 
in the class of IV estimators that uses linear combinations of the exogenous variables 
as instruments.

 If the homoskedasticity assumption does not hold, the 2SLS estimators are still 
asymptotically normal, but the standard errors (and t and F statistics) need to be adjusted; 
many econometrics packages do this routinely. Moreover, the 2SLS estimator is no 
longer the asymptotically efficient IV estimator, in general. We will not study more 
efficient estimators here [see Wooldridge (2002, Chapter 8)].
 For time series applications, we must add some assumptions. First, as with OLS, we 
must assume that all series (including the IVs) are weakly dependent: this ensures that 
the law of large numbers and the central limit theorem hold. For the usual standard errors 
and test statistics to be valid, as well as for asymptotic efficiency, we must add a no serial 
correlation assumption.

Assumption 2SLS.6  (No Serial Correlation)

Equation (15.54) holds.

 A similar no serial correlation assumption is needed in panel data applications. Tests 
and corrections for serial correlation were discussed in Section 15.7.

Theorem 15A.2

Under Assumptions 2SLS.1 through 2SLS.5, the 2SLS estimators are asymptotically 
normally distributed. Consistent estimators of the asymptotic variance are given as in 
equation (15.43), where �2 is replaced with  ̂  � 2 � (n � k � 1)�1  ∑ i�1  

n
     ̂  u i

2, and the  ̂  u i are 
the 2SLS residuals.
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C H A P T E R

In the previous chapter, we showed how the method of instrumental variables can 
solve two kinds of endogeneity problems: omitted variables and measurement error. 
Conceptually, these problems are straightforward. In the omitted variables case, there is 

a variable (or more than one) that we would like to hold fixed when estimating the ceteris 
paribus effect of one or more of the observed explanatory variables. In the measurement 
error case, we would like to estimate the effect of certain explanatory variables on y, but 
we have mismeasured one or more variables. In both cases, we could estimate the param-
eters of interest by OLS if we could collect better data.

Another important form of endogeneity of explanatory variables is simultaneity. This 
arises when one or more of the explanatory variables is jointly determined with the depen-
dent variable, typically through an equilibrium mechanism (as we will see later). In this 
chapter, we study methods for estimating simple simultaneous equations models (SEMs). 
Although a complete treatment of SEMs is beyond the scope of this text, we are able to 
cover models that are widely used.

The leading method for estimating simultaneous equations models is the method of 
instrumental variables. Therefore, the solution to the simultaneity problem is essentially the 
same as the IV solutions to the omitted variables and measurement error problems. However, 
crafting and interpreting SEMs is challenging. Therefore, we begin by  discussing the nature 
and scope of simultaneous equations models in Section 16.1. In  Section 16.2, we confirm that 
OLS applied to an equation in a simultaneous system is generally biased and inconsistent.

Section 16.3 provides a general description of identification and estimation in a two-
equation system, while Section 16.4 briefly covers models with more than two equations. 
Simultaneous equations models are used to model aggregate time series, and in Section 16.5 
we include a discussion of some special issues that arise in such models. Section 16.6 
touches on simultaneous equations models with panel data.

16.1 The Nature of Simultaneous 
Equations Models
The most important point to remember in using simultaneous equations models is that each 
equation in the system should have a ceteris paribus, causal interpretation. Because we 
only observe the outcomes in equilibrium, we are required to use counterfactual reasoning 

16

Simultaneous Equations Models
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in constructing the equations of a simultaneous equations model. We must think in terms 
of potential as well as actual outcomes.

The classic example of an SEM is a supply and demand equation for some commodity 
or input to production (such as labor). For concreteness, let hs 

denote the annual labor hours 
supplied by workers in agriculture, measured at the county level, and let w denote the aver-
age hourly wage offered to such workers. A simple labor supply function is

 h
s
 � �

1
w � �

1
z

1
 � u

1
, 16.1

where z
1
 is some observed variable affecting labor supply—say, the average manufacturing 

wage in the county. The error term, u
1
, contains other factors that affect labor supply. [Many 

of these factors are observed and could be included in equation (16.1); to illustrate the basic 
concepts, we include only one such factor, z

1
.] Equation (16.1) is an example of a structural 

equation. This name comes from the fact that the labor supply function is derivable from 
economic theory and has a causal interpretation. The coefficient �

1
 measures how labor 

supply changes when the wage changes; if h
s
 and w are in logarithmic form, �

1
 is the labor 

supply elasticity. Typically, we expect �
1 
to be positive (although economic theory does not 

rule out �
1 

 0). Labor supply elasticities are important for determining how workers will 

change the number of hours they desire to work when tax rates on wage income change. If z
1
 

is the manufacturing wage, we expect �
1 

 0: other factors equal, if the manufacturing wage 

increases, more workers will go into manufacturing than into agriculture.
When we graph labor supply, we sketch hours as a function of wage, with z

1
 and u

1
 

held fixed. A change in z
1
 shifts the labor supply function, as does a change in u

1
. The 

 difference is that z
1
 is observed while u

1
 is not. Sometimes, z

1
 is called an observed  supply 

shifter, and u
1
 is called an unobserved supply shifter.

How does equation (16.1) differ from those we have studied previously? The differ-
ence is subtle. Although equation (16.1) is supposed to hold for all possible values of 
wage, we cannot generally view wage as varying exogenously for a cross section of coun-
ties. If we could run an experiment where we vary the level of agricultural and manufac-
turing wages across a sample of counties and survey workers to obtain the labor supply h

s
 

for each county, then we could estimate (16.1) by OLS. Unfortunately, this is not a man-
ageable experiment. Instead, we must collect data on average wages in these two sectors 
along with how many person hours were spent in agricultural production. In deciding how 
to analyze these data, we must understand that they are best described by the interaction 
of labor supply and demand. Under the assumption that labor markets clear, we actually 
observe equilibrium values of wages and hours worked.

To describe how equilibrium wages and hours are determined, we need to bring in the 
demand for labor, which we suppose is given by

 h
d
 � �

2
w � �

2 
z 

2
 � u

2
, 16.2

where h
d
 is hours demanded. As with the supply function, we graph hours demanded as 

a function of wage, w, keeping z
2
 and u

2
 fixed. The variable z

2
—say, agricultural land 

area—is an observable demand shifter, while u
2 
is an unobservable demand shifter.

Just as with the labor supply equation, the labor demand equation is a structural equa-
tion: it can be obtained from the profit maximization considerations of farmers. If h

d
 and 

w are in logarithmic form, �
2
 is the labor demand elasticity. Economic theory tells us that 

�
2
 � 0. Because labor and land are complements in production, we expect �

2
 � 0.



548 Part 3   Advanced Topics

Notice how equations (16.1) and (16.2) describe entirely different relationships. 
Labor supply is a behavioral equation for workers, and labor demand is a behavioral 
relationship for farmers. Each equation has a ceteris paribus interpretation and stands 
on its own. They become linked in an econometric analysis only because observed wage 
and hours are determined by the intersection of supply and demand. In other words, for 
each county i, observed hours h

i
 and observed wage w

i
 are determined by the equilib-

rium condition

 h
is
 � h

id  
. 16.3

Because we observe only equilibrium hours for each county i, we denote observed hours 
by h

i
.

When we combine the equilibrium condition in (16.3) with the labor supply and demand 
equations, we get

 h
i
 � �

1
w

i
 � �

1
z

i1
 � u

i1
 16.4

and

 h
i
 � �

2
w

i
 � �

2
z

i2
 � u

i2
, 16.5

where we explicitly include the i subscript to emphasize that h
i
 and w

i
 are the equilibrium 

observed values for county i. These two equations constitute a simultaneous equations 
model (SEM), which has several important features. First, given z

i1
, z

i2
, u

i1
, and u

i2
, these 

two equations determine h
i
 and w

i
. (Actually, we must assume that �

1 
	 �

2
, which means 

that the slopes of the supply and demand functions differ; see Problem 16.1.) For this rea-
son, h

i
 and w

i
 are the endogenous variables in this SEM. What about z

i1
 and z

i2
? Because 

they are determined outside of the model, we view them as exogenous variables. From a 
statistical standpoint, the key assumption concerning z

i1
 and z

i2
 is that they are both uncor-

related with the supply and demand errors, u
i1
 and u

i2
, respectively. These are examples 

of structural errors because they appear in the structural equations.
A second important point is that, without including z

1
 and z

2
 in the model, there is no 

way to tell which equation is the supply function and which is the demand function. When 
z

1
 represents manufacturing wage, economic reasoning tells us that it is a factor in agricul-

tural labor supply because it is a measure of the opportunity cost of working in agriculture; 
when z

2
 stands for agricultural land area, production theory implies that it appears in 

the labor demand function. Therefore, we know that (16.4) represents labor supply and 
(16.5) represents labor demand. If z

1
 and z

2
 are the same—for example, average education level 

of adults in the county, which can affect both supply and demand—then the equations 
look identical, and there is no hope of estimating either one. In a nutshell, this illustrates 
the identification problem in simultaneous equations models, which we will discuss more 
generally in Section 16.3.

The most convincing examples of SEMs have the same flavor as supply and demand 
examples. Each equation should have a behavioral, ceteris paribus interpretation on its 
own. Because we only observe equilibrium outcomes, specifying an SEM requires us to 
ask such counterfactual questions as: How much labor would workers provide if the wage 
were different from its equilibrium value? Example 16.1 provides another illustration of 
an SEM where each equation has a ceteris paribus interpretation.
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E x a m p l e  1 6 . 1

[Murder Rates and Size of the Police Force]

Cities often want to determine how much additional law enforcement will decrease their murder 
rates. A simple cross-sectional model to address this question is

 murdpc � �
1
polpc � �

10
 � �

11
incpc � u

1
, 16.6

where murdpc is murders per capita, polpc is number of police officers per capita, and incpc is income 
per capita. (Henceforth, we do not include an i subscript.) We take income per capita as exogenous 
in this equation. In practice, we would include other factors, such as age and gender distributions, 
education levels, perhaps geographic variables, and variables that measure severity of punishment. 
To fix ideas, we consider equation (16.6).

The question we hope to answer is: If a city exogenously increases its police force, will that 
increase, on average, lower the murder rate? If we could exogenously choose police force sizes for a 
random sample of cities, we could estimate (16.6) by OLS. Certainly, we cannot run such an experi-
ment. But can we think of police force size as being exogenously determined, anyway? Probably 
not. A city’s spending on law enforcement is at least partly determined by its expected murder rate. 
To reflect this, we postulate a second relationship:

 polpc � �
2
murdpc � �

20
 � other factors. 16.7

We expect that �
2
 � 0: other factors being equal, cities with higher (expected) murder rates will 

have more police officers per capita. Once we specify the other factors in (16.7), we have a two-
equation simultaneous equations model. We are really only interested in equation (16.6), but, as we 
will see in Section 16.3, we need to know precisely how the second equation is specified in order 
to estimate the first.

An important point is that (16.7) describes behavior by city officials, while (16.6) describes the 
actions of potential murderers. This gives each equation a clear ceteris paribus interpretation, which 
makes equations (16.6) and (16.7) an appropriate simultaneous equations model.

 

We next give an example of an inappropriate use of SEMs.

E x a m p l e  1 6 . 2

[Housing Expenditures and Saving]

Suppose that, for a random household in the population, we assume that annual housing expenditures 
and saving are jointly determined by

 housing � �
1
saving � �

10
 � �

11
inc � �

12
educ � �

13
age � u

1
 16.8

and

 saving � �
2
housing � �

20
 � �

21
inc � �

22
educ � �

23
age � u

2
, 16.9

where inc is annual income and educ and age are measured in years. Initially, it may seem that these 
equations are a sensible way to view how housing and saving expenditures are determined. But we 
have to ask: What value would one of these equations be without the other? Neither has a ceteris 
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paribus interpretation because housing and saving are chosen by the same household. For example, 
it makes no sense to ask this question: If annual income increases by $10,000, how would housing 
expenditures change, holding saving fixed? If family income increases, a household will generally 
change the optimal mix of housing expenditures and saving. But equation (16.8) makes it seem as if 
we want to know the effect of changing inc, educ, or age while keeping saving fixed. Such a thought 
experiment is not interesting. Any model based on economic principles, particularly utility maxi-
mization, would have households optimally choosing housing and saving as functions of inc and 
the relative prices of housing and saving. The variables educ and age would affect preferences for 
consumption, saving, and risk. Therefore, housing and  saving would each be functions of income, 
education, age, and other variables that affect the utility maximization problem (such as different 
rates of return on housing and other saving).

Even if we decided that the SEM in (16.8) and (16.9) made sense, there is no way to estimate 
the parameters. (We discuss this problem more generally in Section 16.3.) The two equations are 
indistinguishable, unless we assume that income, education, or age appears in one equation but not 
the other, which would make no sense.

Though this makes a poor SEM example, we might be interested in testing whether, other factors 
being fixed, there is a tradeoff between housing expenditures and saving. But then we would just 
estimate, say, (16.8) by OLS, unless there is an omitted variable or measurement error problem.

 

Example 16.2 has the characteristics of all too many SEM applications. The problem is 
that the two endogenous variables are  chosen by the same economic agent. Therefore, neither 
equation can stand on its own. Another example of an inappropriate use of an SEM would be 
to model weekly hours spent studying and weekly hours working. Each student will choose 
these variables simultaneously—presumably as a function of the wage that can be earned 
working, ability as a student, enthusiasm for college, and so on. Just as in Example 16.2, it 
makes no sense to specify two equations where each is a function of the other. The important 
lesson is this: just because two variables are determined simultaneously does not mean that 
a simultaneous equations model is suitable. For an SEM to make sense, each equation in 
the SEM should have a ceteris paribus interpretation in isolation from the other equation. As 

we discussed earlier, supply and demand 
examples, and Example 16.1, have this 
feature. Usually, basic economic reason-
ing, supported in some cases by simple 
economic models, can help us use SEMs 
intelligently (including knowing when 
not to use an SEM).

16.2 Simultaneity Bias in OLS
It is useful to see, in a simple model, that an explanatory variable that is determined simul-
taneously with the dependent variable is generally correlated with the error term, which 
leads to bias and inconsistency in OLS. We consider the two-equation structural model

 y
1
 � �

1
y

2
 � �

1
z

1
 � u

1
 16.10

 y
2
 � �

2
y

1
 � �

2
z

2
 � u

2
 16.11

Q u e s t i o n  1 6 . 1
Pindyck and Rubinfeld (1992, Section 11.6) describe a model of 
advertising where monopolistic firms choose profit maximizing 
levels of price and advertising expenditures. Does this mean we 
should use an SEM to model these variables at the firm level?
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and focus on estimating the first equation. The variables z
1
 and z

2
 are exogenous, so that each 

is uncorrelated with u
1
 and u

2
. For simplicity, we suppress the intercept in each equation.

To show that y
2
 is generally correlated with u

1
, we solve the two equations for y

2
 in 

terms of the exogenous variables and the error term. If we plug the right-hand side of 
(16.10) in for y

1
 in (16.11), we get

y
2
 � �

2
(�

1
y

2
 � �

1
z

1
 � u

1
) � �

2
z

2
 � u

2

or

 (1 � �
2
�

1
)y

2
 � �

2 
�

1
z

1
 � �

2 
z

2
 � �

2
u

1
 � u

2
. 16.12

Now, we must make an assumption about the parameters in order to solve for y
2
:

 �
2
�

1 
	 1. 16.13

Whether this assumption is restrictive depends on the application. In Example 16.1, we 
think that �

1 

 0 and �

2 
� 0, which implies �

1
�

2 

 0; therefore, (16.13) is very reasonable 

for Example 16.1.
Provided condition (16.13) holds, we can divide (16.12) by (1 � �

2
�

1
) and write y

2
 as

 y
2
 � �

21
z

1
 � �

22  
z

2
 � v

2
, 16.14

where �
21

 � �
2   
�

1
/(1 � �

2
�

1
), �

22
 � �

2
/(1 � �

2
�

1
), and v

2
 � (�

2
u

1
 � u

2
)/(1 � �

2
�

1
). 

Equation (16.14), which expresses y
2
 in terms of the exogenous variables and the error 

terms, is the reduced form equation for y
2
, a concept we introduced in Chapter 15 in 

the context of instrumental variables estimation. The parameters �
21

 and �
22

 are called 
reduced form parameters; notice how they are nonlinear functions of the structural 
parameters, which appear in the structural equations, (16.10) and (16.11).

The reduced form error, v
2
, is a linear function of the structural error terms, u

1
 and u

2
. 

Because u
1
 and u

2
 are each uncorrelated with z

1
 and z

2
, v

2 
is also uncorrelated with z

1
 and z

2
. 

Therefore, we can consistently estimate �
21

 and �
22

 by OLS, something that is used for 
two stage least squares estimation (which we return to in the next section). In addition, the 
reduced form parameters are sometimes of direct interest, although we are focusing here 
on estimating equation (16.10).

A reduced form also exists for y
1
 under assumption (16.13); the algebra is similar to that 

used to obtain (16.14). It has the same properties as the reduced form equation for y
2
.

We can use equation (16.14) to show that, except under special assumptions, OLS 
estimation of equation (16.10) will produce biased and inconsistent estimators of �

1
 and �

1
 

in equation (16.10). Because z
1
 and u

1 
are uncorrelated by assumption, the issue is whether 

y
2
 and u

1
 are uncorrelated. From the reduced form in (16.14), we see that y

2
 and u

1
 are cor-

related if and only if v
2
 and u

1
 are correlated (because z

1
 and z

2
 are assumed exogenous). 

But v
2
 is a linear function of u

1
 and u

2
, so it is generally correlated with u

1
. In fact, if we 

assume that u
1
 and u

2
 are uncorrelated, then v

2
 and u

1 
must be correlated whenever �

2 
	 0. 

Even if �
2
 equals zero—which means that y

1
 does not appear in equation (16.11)—v

2
 and 

u
1 
will be correlated if u

1
 and u

2
 are correlated.
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When �
2
 � 0 and u

1
 and u

2
 are uncorrelated, y

2
 and u

1
 are also uncorrelated. These are 

fairly strong requirements: if �
2
 � 0, y

2
 is not simultaneously determined with y

1
. If we 

add zero correlation between u
1
 and u

2
, this rules out omitted variables or measurement 

errors in u
1
 that are correlated with y

2
. We should not be surprised that OLS  estimation of 

equation (16.10) works in this case.
When y

2
 is correlated with u

1
 because of simultaneity, we say that OLS suffers from 

simultaneity bias. Obtaining the direction of the bias in the coefficients is generally com-
plicated, as we saw with omitted variables bias in Chapters 3 and 5. But in simple models, we 
can determine the direction of the bias. For example, suppose that we simplify equation (16.10) 
by dropping z

1
 from the equation, and we assume that u

1
 and u

2
 are uncorrelated. Then, the 

covariance between y
2
 and u

1
 is

 Cov(y
2
,u

1
) � Cov(v

2
,u

1
) � [�

2  
/(1 � �

2
�

1
)]E(u

1
2)

 � [�
2
/(1 � �

2
�

1
)]� 

1
2,

where �  
1
2 � Var(u

1
) � 0. Therefore, the asymptotic bias (or inconsistency) in the OLS 

estimator of �
1
 has the same sign as �

2
/(1 � �

2
�

1
). If �

2
 � 0 and �

2
�

1
 � 1, the asymptotic 

bias is positive. (Unfortunately, just as in our calculation of omitted variables bias from 
Section 3.3, the conclusions do not carry over to more general models. But they do serve 
as a useful guide.) For example, in Example 16.1, we think �

2
 � 0 and �

2
�

1 

 0, which 

means that the OLS estimator of �
1
 would have a positive bias. If �

1 
� 0, OLS would, on 

average, estimate a positive impact of more police on the murder rate; generally, the estima-
tor of �

1
 is biased upward. Because we expect an increase in the size of the police force to 

reduce murder rates (ceteris paribus), the upward bias means that OLS will underestimate 
the effectiveness of a larger police force.

16.3 Identifying and Estimating 
a Structural Equation
As we saw in the previous section, OLS is biased and inconsistent when applied to a 
structural equation in a simultaneous equations system. In Chapter 15, we learned that 
the method of two stage least squares can be used to solve the problem of endogenous 
explanatory variables. We now show how 2SLS can be applied to SEMs.

The mechanics of 2SLS are similar to those in Chapter 15. The difference is that, because 
we specify a structural equation for each endogenous variable, we can immediately see 
whether sufficient IVs are available to estimate either equation. We begin by discussing 
the identification problem.

Identifi cation in a Two-Equation System

We mentioned the notion of identification in Chapter 15. When we estimate a model by 
OLS, the key identification condition is that each explanatory variable is uncorrelated with 
the error term. As we demonstrated in Section 16.2, this fundamental condition no longer 
holds, in general, for SEMs. However, if we have some instrumental variables, we can still 
identify (or consistently estimate) the parameters in an SEM equation, just as with omitted 
variables or measurement error.



 Chapter 16   Simultaneous Equations Models 553

Before we consider a general two-equation SEM, it is useful to gain intuition by con-
sidering a simple supply and demand example. Write the system in equilibrium form (that 
is, with q

s
 � q

d
 � q imposed) as

 q � �
1
p � �

1
z

1
 � u

1
 16.15

and

 q � �
2
p � u

2
. 16.16

For concreteness, let q be per capita milk consumption at the county level, let p be the 
average price per gallon of milk in the county, and let z

1
 be the price of cattle feed, which 

we assume is exogenous to the supply and demand equations for milk. This means that 
(16.15) must be the supply function, as the price of cattle feed would shift supply (�

1
 � 0) 

but not demand. The demand function contains no observed demand shifters.
Given a random sample on (q, p, z

1
), which of these equations can be estimated? 

That is, which is an identified equation? It turns out that the demand equation, (16.16), 
is  identified, but the supply equation is not. This is easy to see by using our rules for IV 
 estimation from Chapter 15: we can use z

1
 as an IV for price in equation (16.16). However, 

because z
1 
appears in equation (16.15), we have no IV for price in the supply equation.

Intuitively, the fact that the demand equation is identified follows because we have an 
observed variable, z

1
, that shifts the supply equation while not affecting the demand equation. 

Given variation in z
1
 and no errors, we can trace out the demand curve, as shown in Figure 16.1. 

The presence of the unobserved demand shifter u
2
 causes us to  estimate the demand equation 

with error, but the estimators will be consistent, provided z
1
 is uncorrelated with u

2
.

F I GURE  16 . 1

Shifting supply equations trace out the demand equation. Each supply equation 
is drawn for a different value of the exogenous variable, z

1
.

price

quantity

demand
equation

supply
equations
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The supply equation cannot be traced out because there are no exogenous observed 
factors shifting the demand curve. It does not help that there are unobserved factors 
shifting the demand function; we need something observed. If, as in the labor demand 
function (16.2), we have an observed exogenous demand shifter—such as income in the 
milk demand function—then the supply function would also be identified.

To summarize: In the system of (16.15) and (16.16), it is the presence of an exog-
enous variable in the supply equation that allows us to estimate the demand equation.

Extending the identification discussion to a general two-equation model is not dif-
ficult. Write the two equations as

 y
1
 � �

10
 � �

1
y

2
 � z

1  
�

1
 � u

1
 16.17

and

 y
2
 � �

20
 � �

2
y

1
 � z

2  
�

2
 � u

2
, 16.18

where y
1
 and y

2
 are the endogenous variables, and u

1
 and u

2
 are the structural error terms. 

The intercept in the first equation is �
10

, and the intercept in the second equation is �
20

. 
The variable z

1
 denotes a set of k

1
 exogenous variables appearing in the first equation: 

z
1
 � (z

11
, z

12
, …, z

1k1
). Similarly, z

2
 is the set of k

2
 exogenous variables in the second 

equation: z
2
 � (z

21
, z

22
, …, z

2k2
). In many cases, z

1
 and z

2
 will overlap. As a shorthand form, 

we use the notation

z
1
�

1
 � �

11
z

11
 � �

12
z

12
 � … � �

1k1
z

1k1

and

z
2
�

2
 � �

21
z

21
 � �

22
z

22
 � … � �

2k2
z

2k2
;

that is, z
1
�

1
 stands for all exogenous variables in the first equation, with each multiplied by 

a coefficient, and similarly for z
2 
�

2
. (Some authors use the notation z   �   1

 �
1
 and z   �   2

  �
2
 instead. 

If you have an interest in the matrix algebra approach to econometrics, see Appendix E.)
The fact that z

1
 and z

2
 generally contain different exogenous variables means that we 

have imposed exclusion restrictions on the model. In other words, we assume that certain 
exogenous variables do not appear in the first equation and others are absent from the 
second equation. As we saw with the previous supply and demand examples, this allows 
us to distinguish between the two structural equations.

When can we solve equations (16.17) and (16.18) for y
1
 and y

2
 (as linear functions of 

all exogenous variables and the structural errors, u
1
 and u

2
)? The condition is the same as 

that in (16.13), namely, �
2
�

1 
	 1. The proof is virtually identical to the simple model in 

Section 16.2. Under this assumption, reduced forms exist for y
1
 and y

2
.

The key question is: Under what assumptions can we estimate the parameters in, 
say, (16.17)? This is the identification issue. The rank condition for identification of 
equation (16.17) is easy to state.

Rank Condition for Identification of a Structural Equation. The first equation in a 
two-equation simultaneous equations model is identified if, and only if, the second equa-
tion contains at least one exogenous variable (with a nonzero coefficient) that is excluded 
from the first equation.
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 This is the necessary and sufficient condition for equation (16.17) to be identified. The 
order condition, which we discussed in Chapter 15, is necessary for the rank condition. 
The order condition for identifying the first equation states that at least one exogenous 
variable is excluded from this equation. The order condition is trivial to check once both 
equations have been specified. The rank condition requires more: at least one of the exoge-
nous variables excluded from the first equation must have a nonzero population coefficient 
in the second equation. This ensures that at least one of the exogenous variables omitted 
from the first equation actually appears in the reduced form of y

2
, so that we can use these 

variables as instruments for y
2
. We can test this using a t or an F test, as in  Chapter 15; 

some examples follow.
Identification of the second equation is, naturally, just the mirror image of the state-

ment for the first equation. Also, if we write the equations as in the labor supply and 
demand example in Section 16.1—so that y

1
 appears on the left-hand side in both equa-

tions, with y
2
 on the right-hand side—the identification condition is identical.

E x a m p l e  1 6 . 3

[Labor Supply of Married, Working Women]

To illustrate the identification issue, consider labor supply for married women already in the work-
force. In place of the demand function, we write the wage offer as a function of hours and the usual 
productivity variables. With the equilibrium condition imposed, the two structural equations are

 hours � �
1
log(wage) � �

10
 � �

11
educ � �

12
age � �

13
kidslt6

 � �
14

nwifeinc � u
1
 

16.19

and

 log(wage) � �
2
hours � �

20
 � �

21
educ � �

22
exper

 � �
23

exper 2 � u
2
. 

16.20

The variable age is the woman’s age, in years, kidslt6 is the number of children less than six years 
old, nwifeinc is the woman’s nonwage income (which includes husband’s earnings), and educ and 
exper are years of education and prior experience, respectively. All variables except hours and 
log(wage) are assumed to be exogenous. (This is a tenuous assumption, as educ might be correlated 
with omitted ability in either equation. But for illustration purposes, we ignore the omitted ability 
problem.) The functional form in this system—where hours appears in level form but wage is in 
logarithmic form—is popular in labor economics. We can write this system as in equations (16.17) 
and (16.18) by defining y

1
 � hours and y

2
 � log(wage).

The first equation is the supply function. It satisfies the order condition because two exogenous 
variables, exper and exper 2, are omitted from the labor supply equation. These exclusion restrictions 
are crucial assumptions: we are assuming that, once wage, education, age, number of small children, 
and other income are controlled for, past experience has no effect on current labor supply. One could 
certainly question this assumption, but we use it for illustration.

Given equations (16.19) and (16.20), the rank condition for identifying the first equation is that 
at least one of exper and exper2 has a nonzero coefficient in equation (16.20). If �

22
 � 0 and �

23
 � 0, 

there are no exogenous variables appearing in the second equation that do not also appear in the first 
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(educ appears in both). We can state the rank condition for identification of (16.19) equivalently in 
terms of the reduced form for log(wage), which is

 log(wage) � �
20

 � �
21

educ � �
22

age � �
23

kidslt6

 � �
24

nwifeinc � �
25

exper � �
26

exper 2 � v
2
. 

16.21

For identification, we need �
25 

	 0 or �
26 

	 0, something we can test using a standard F  statistic, 
as we discussed in Chapter 15.

The wage offer equation, (16.20), is identified if at least one of age, kidslt6, or nwifeinc has a 
nonzero coefficient in (16.19). This is identical to assuming that the reduced form for hours—which 
has the same form as the right-hand side of (16.21)—depends on at least one of age, kidslt6, or 
nwifeinc. In specifying the wage offer equation, we are assuming that age, kidslt6, and nwifeinc have 
no effect on the offered wage, once hours, education, and experience are accounted for. These would 
be poor assumptions if these variables somehow have direct effects on productivity, or if women are 
discriminated against based on their age or number of small children.

 

In Example 16.3, we take the population of interest to be married women who are 
in the workforce (so that equilibrium hours are positive). This excludes the group of 
married women who choose not to work outside the home. Including such women in 
the model raises some difficult problems. For instance, if a woman does not work, we 
cannot observe her wage offer. We touch on these issues in Chapter 17; but for now, 
we must think of equations (16.19) and (16.20) as holding only for women who have 
hours � 0.

E x a m p l e  1 6 . 4

[Inflation and Openness]

Romer (1993) proposes theoretical models of inflation that imply that more “open” countries should 
have lower inflation rates. His empirical analysis explains average annual inflation rates (since 1973) 
in terms of the average share of imports in gross domestic (or national) product since 1973—which 
is his measure of openness. In addition to estimating the key equation by OLS, he uses instrumental 
variables. While Romer does not specify both equations in a simultaneous system, he has in mind 
a two-equation system:

 inf � �
10

 � �
1
open � �

11
log( pcinc) � u

1
 16.22

 open � �
20

 � �
2
inf � �

21
log( pcinc) � �

22
log(land ) � u

2
, 16.23

where pcinc is 1980 per capita income, in U.S. dollars (assumed to be exogenous), and land is the 
land area of the country, in square miles (also assumed to be exogenous). Equation (16.22) is the 
one of interest, with the hypothesis that �

1
 � 0. (More open economies have lower inflation rates.) 

The second equation reflects the fact that 
the degree of openness might depend on 
the average inflation rate, as well as other 
factors. The variable log(pcinc) appears in 
both equations, but log(land ) is assumed to 

Q u e s t i o n  1 6 . 2
If we have money supply growth since 1973 for each country, which 
we assume is exogenous, does this help identify equation (16.23)?
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appear only in the second equation. The idea is that, ceteris paribus, a smaller country is likely to be 
more open (so �

22
 � 0).

 Using the identification rule that was stated earlier, equation (16.22) is identified, provided 
�

22 
	 0. Equation (16.23) is not identified because it contains both exogenous variables. But we are 

interested in (16.22).

 

Estimation by 2SLS

Once we have determined that an equation is identified, we can estimate it by two stage 
least squares. The instrumental variables consist of the exogenous variables appearing in 
either equation.

E x a m p l e  1 6 . 5

[Labor Supply of Married, Working Women]

We use the data on working, married women in MROZ.RAW to estimate the labor supply 
 equation (16.19) by 2SLS. The full set of instruments includes educ, age, kidslt6, nwifeinc, exper, 
and exper 2. The estimated labor supply curve is

 3hours � 2,225.66 � 1,639.56 log(wage) � 183.75 educ

 (574.56) (470.58) (59.10)

 � 7.81 age � 198.15 kidslt6 � 10.17 nwifeinc, n � 428, 
16.24

 (9.38) (182.93) (6.61)

which shows that the labor supply curve slopes upward. The estimated coefficient on log(wage) has 
the following interpretation: holding other factors fixed, �3hours � 16.4(%�wage). We can calculate 
labor supply elasticities by multiplying both sides of this last equation by 100/hours:

100�(�3hours/hours) � (1,640/hours)(%�wage)

or

%�3hours � (1,640/hours)(%�wage),

which implies that the labor supply elasticity (with respect to wage) is simply 1,640/hours. [The 
elasticity is not constant in this model because hours, not log(hours), is the dependent  variable in 
(16.24).] At the average hours worked, 1,303, the estimated elasticity is 1,640/1,303 � 1.26, which 
implies a greater than 1% increase in hours worked given a 1% increase in wage. This is a large 
estimated elasticity. At higher hours, the elasticity will be smaller; at lower hours, such as hours � 
800, the elasticity is over two.
 For comparison, when (16.19) is estimated by OLS, the coefficient on log(wage) is �2.05 (se � 
54.88), which implies no wage effect on hours worked. To confirm that log(wage) is in fact endog-
enous in (16.19), we can carry out the test from Section 15.5. When we add the reduced form residu-
als v̂

2
 to the equation and estimate by OLS, the t statistic on v̂

2
 is �6.61, which is very significant, 

and so log(wage) appears to be endogenous.



558 Part 3   Advanced Topics

 The wage offer equation (16.20) can also be estimated by 2SLS. The result is

  3log(wage) � �.656 � .00013 hours � .110 educ

 (.338) (.00025) (.016)
 16.25

 � .035 exper � .00071 exper 2, n � 428.

  (.019) (.00045)

This differs from previous wage equations in that hours is included as an explanatory variable 
and 2SLS is used to account for endogeneity of hours (and we assume that educ and exper are 
exogenous). The coefficient on hours is statistically insignificant, which means that there is no 
evidence that the wage offer increases with hours worked. The other coefficients are similar to 
what we get by dropping hours and estimating the equation by OLS.

 

Estimating the effect of openness on inflation by instrumental variables is also 
straightforward.

E x a m p l e  1 6 . 6

[Inflation and Openness]

Before we estimate (16.22) using the data in OPENNESS.RAW, we check to see whether open has 
sufficient partial correlation with the proposed IV, log(land ). The reduced form regres sion is

 3open � 117.08 � .546 log( pcinc) � 7.57 log(land )

 (15.85) (1.493) (.81)

 n � 114, R2 � .449.

The t statistic on log(land ) is over nine in absolute value, which verifies Romer’s assertion that 
smaller countries are more open. The fact that log(pcinc) is so insignificant in this regression is 
irrelevant.

Estimating (16.22) using log(land ) as an IV for open gives

 3inf � 26.90 � .337 open � .376 log(pcinc), n � 114.

 (15.40) (.144) (2.015) 
16.26

The coefficient on open is statistically 
significant at about the 1% level against a 
one-sided alternative (�

1
 � 0). The effect is 

economically important as well: for every 
percentage point increase in the import 

share of GDP, annual inflation is about one-third of a percentage point lower. For comparison, the 
OLS estimate is �.215 (se � .095).

 

Q u e s t i o n  1 6 . 3
How would you test whether the difference between the OLS and 
IV estimates on open are statistically different?
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16.4 Systems with More Than Two Equations
Simultaneous equations models can consist of more than two equations. Studying general 
identification of these models is difficult and requires matrix algebra. Once an equation in 
a general system has been shown to be identified, it can be estimated by 2SLS.

Identifi cation in Systems with Three

or More Equations

We will use a three-equation system to illustrate the issues that arise in the identification 
of complicated SEMs. With intercepts suppressed, write the model as

 y
1
 � �

12
y

2
 � �

13
y

3
 � �

11
z

1
 � u

1
 16.27

 y
2
 � �

21
y

1
 � �

21
z

1
 � �

22
z

2
 � �

23
z

3
 � u

2
 16.28

 y
3
 � �

32
y

2
 � �

31
z

1
 � �

32
z

2
 � �

33
z

3 
� �

34
z

4
 � u

3
, 16.29

where the y
g
 are the endogenous variables and the z

j
 are exogenous. The first subscript 

on the parameters indicates the equation number, and the second indicates the variable 
number; we use � for parameters on endogenous variables and � for parameters on exog-
enous variables.

Which of these equations can be estimated? It is generally difficult to show that an equa-
tion in an SEM with more than two equations is identified, but it is easy to see when  certain 
equations are not identified. In system (16.27) through (16.29), we can easily see that (16.29) 
falls into this category. Because every exogenous variable appears in this equation, we have 
no IVs for y

2
. Therefore, we cannot consistently estimate the parameters of this equation. For 

the reasons we discussed in Section 16.2, OLS estimation will not usually be consistent.
What about equation (16.27)? Things look promising because z

2
, z

3
, and z

4
 are all 

excluded from the equation—this is another example of exclusion restrictions. Although 
there are two endogenous variables in this equation, we have three potential IVs for y

2
 and y

3
. 

Therefore, equation (16.27) passes the order condition. For completeness, we state the 
order condition for general SEMs.

Order Condition for Identification. An equation in any SEM satisfies the order condi-
tion for identification if the number of excluded exogenous variables from the equation is 
at least as large as the number of right-hand side endogenous variables.
 The second equation, (16.28), also passes the order condition because there is one 
excluded exogenous variable, z

4
, and one right-hand side endogenous variable, y

1
.

As we discussed in Chapter 15 and in the previous section, the order condition is only 
necessary, not sufficient, for identification. For example, if �

34
 � 0, z

4
 appears nowhere in 

the system, which means it is not correlated with y
1
, y

2
, or y

3
. If �

34
 � 0, then the second 

equation is not identified, because z
4
 is useless as an IV for y

1
. This again illustrates that 

identification of an equation depends on the values of the parameters (which we can never 
know for sure) in the other equations.

There are many subtle ways that identification can fail in complicated SEMs. To obtain 
sufficient conditions, we need to extend the rank condition for identification in two-
equation systems. This is possible, but it requires matrix algebra [see, for example, 
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Wooldridge (2002, Chapter 9)]. In many applications, one assumes that, unless there is 
obviously failure of identification, an equation that satisfies the order condition is identified.

The nomenclature on overidentified and just identified equations from Chapter 15 
originated with SEMs. In terms of the order condition, (16.27) is an overidentified equa-
tion because we need only two IVs (for y

2
 and y

3
) but we have three available (z

2
, z

3
, and z

4
); 

there is one overidentifying restriction in this equation. In general, the number of over-
identifying restrictions equals the total number of exogenous variables in the system, 
minus the total number of explanatory variables in the equation. These can be tested using 
the overidentification test from Section 15.5. Equation (16.28) is a just identified equa-
tion, and the third equation is an unidentified equation.

Estimation

Regardless of the number of equations in an SEM, each identified equation can be esti-
mated by 2SLS. The instruments for a particular equation consist of the exogenous vari-
ables appearing anywhere in the system. Tests for endogeneity, heteroskedasticity, serial 
correlation, and overidentifying restrictions can be obtained, just as in Chapter 15.

It turns out that, when any system with two or more equations is correctly specified 
and certain additional assumptions hold, system estimation methods are generally more 
efficient than estimating each equation by 2SLS. The most common system estimation 
method in the context of SEMs is three stage least squares. These methods, with or with-
out endogenous explanatory variables, are beyond the scope of this text. [See, for example, 
Wooldridge (2002, Chapters 7 and 8).]

16.5 Simultaneous Equations Models
with Time Series
Among the earliest applications of SEMs was estimation of large systems of simultaneous 
equations that were used to describe a country’s economy. A simple Keynesian model of 
aggregate demand (that ignores exports and imports) is

 C
t
 � �

0
 � �

1
(Y

t
 � T

t
) � �

2
r

t
 � u

t1
 16.30

 I
t
 � �

0
 � �

1
r

t
 � u

t2
 16.31

 Y
t 
� C

t
 � I

t
 � G

t
, 16.32

where 
 C

t
 � consumption.

 Y
t
 � income.

 T
t
 � tax receipts.

 r
t 
 � the interest rate.

 I
t
 � investment.

 G
t
 � government spending. 

[See, for example, Mankiw (1994, Chapter 9).] For concreteness, assume t represents year.
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The first equation is an aggregate consumption function, where consumption 
depends on disposable income, the interest rate, and the unobserved structural error u

t1
. 

The second equation is a very simple investment function. Equation (16.32) is an iden-
tity that is a result of national income accounting: it holds by definition, without error. 
Thus, there is no sense in which we estimate (16.32), but we need this equation to round 
out the model.

Because there are three equations in the system, there must also be three endogenous 
variables. Given the first two equations, it is clear that we intend for C

t
 and I

t
 to be endoge-

nous. In addition, because of the accounting identity, Y
t
 is endogenous. We would assume, 

at least in this model, that T
t
, r

t
, and G

t
 are exogenous, so that they are uncorrelated with 

u
t1
 and u

t2
. (We will discuss problems with this kind of assumption later.)

If r
t
 is exogenous, then OLS estimation of equation (16.31) is natural. The consump-

tion function, however, depends on disposable income, which is endogenous because Y
t
 is. 

We have two instruments available under the maintained exogeneity assumptions: T
t
 and 

G
t
. Therefore, if we follow our prescription for estimating cross-sectional equations, we 

would estimate (16.30) by 2SLS using instruments (T
t
,G

t
,r

t
).

Models such as (16.30) through (16.32) are seldom estimated now, for several good 
reasons. First, it is very difficult to justify, at an aggregate level, the assumption that 
taxes, interest rates, and government spending are exogenous. Taxes clearly depend 
directly on income; for example, with a single marginal income tax rate �

t
 in year t, 

T
t
 � �

t
Y

t
. We can easily allow this by replacing (Y

t
 � T

t
) with (1 � �

t
)Y

t
 in (16.30), 

and we can still estimate the equation by 2SLS if we assume that government spending 
is exogenous. We could also add the tax rate to the instrument list, if it is exogenous. 
But are government spending and tax rates really exogenous? They certainly could 
be in principle, if the government sets spending and tax rates independently of what 
is happening in the economy. But it is a difficult case to make in reality: government 
spending generally depends on the level of income, and at high levels of income, the 
same tax receipts are collected for lower marginal tax rates. In addition, assuming that 
interest rates are exogenous is extremely questionable. We could specify a more real-
istic model that includes money demand and supply, and then interest rates could be 
jointly determined with C

t
, I

t
, and Y

t
. But then finding enough exogenous variables to 

identify the equations becomes quite difficult (and the following problems with these 
models still pertain).

Some have argued that certain components of government spending, such as defense 
spending—see, for example, Hall (1988) and Ramey (1991)—are exogenous in a variety 
of simultaneous equations applications. But this is not universally agreed upon, and, in 
any case, defense spending is not always appropriately correlated with the endogenous 
explanatory variables [see Shea (1993) for discussion and Computer Exercise C16.6 for 
an example].

A second problem with a model such as (16.30) through (16.32) is that it is completely 
static. Especially with monthly or quarterly data, but even with annual data, we often 
expect adjustment lags. (One argument in favor of static Keynesian-type models is that 
they are intended to describe the long run without worrying about short-run dynamics.) 
Allowing dynamics is not very difficult. For example, we could add lagged income to 
equation (16.31):

 I
t
 � �

0
 � �

1
r

t
 � �

2
Y

t�1
 � u

t2
. 16.33
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In other words, we add a lagged endogenous variable (but not I
t�1

) to the investment 
equation. Can we treat Y

t�1
 as exogenous in this equation? Under certain assumptions on 

u
t2
, the answer is yes. But we typically call a lagged endogenous variable in an SEM a pre-

determined variable. Lags of exogenous variables are also predetermined. If we assume 
that u

t2
 is uncorrelated with current exogenous variables (which is standard) and all past 

endogenous and exogenous variables, then Y
t�1

 is uncorrelated with u
t2
. Given exogeneity 

of r
t
, we can estimate (16.33) by OLS.
If we add lagged consumption to (16.30), we can treat C

t�1
 as exogenous in this equa-

tion under the same assumptions on u
t1
 that we made for u

t2
 in the previous paragraph. 

Current disposable income is still endogenous in

 C
t
 � �

0
 � �

1
(Y

t
 � T

t
) � �

2
r

t
 � �

3
C

t�1
 � u

t1
, 16.34

so we could estimate this equation by 2SLS using instruments (T
t
,G

t
,r

t
,C

t�1
); if investment 

is determined by (16.33), Y
t�1

 should be added to the instrument list. [To see why, use 
(16.32), (16.33), and (16.34) to find the reduced form for Y

t
 in terms of the exogenous and 

predetermined variables: T
t
, r

t
, G

t
, C

t�1
, and Y

t�1
. Because Y

t�1
 shows up in this reduced 

form, it should be used as an IV.]
The presence of dynamics in aggregate SEMs is, at least for the purposes of forecast-

ing, a clear improvement over static SEMs. But there are still some important problems 
with estimating SEMs using aggregate time series data, some of which we discussed in 
Chapters 11 and 15. Recall that the validity of the usual OLS or 2SLS inference pro cedures 
in time series applications hinges on the notion of weak dependence. Unfortunately, 
series such as aggregrate consumption, income, investment, and even interest rates seem 
to violate the weak dependence requirements. (In the terminology of Chapter 11, they 
have unit roots.) These series also tend to have exponential trends, although this can be 
partly overcome by using the logarithmic transformation and assuming different func-
tional forms. Generally, even the large sample, let alone the small sample, properties of 
OLS and 2SLS are complicated and dependent on various assumptions when they are 
applied to equations with I(1) variables. We will briefly touch on these issues in Chapter 18. 
An advanced, general treatment is given by Hamilton (1994).

Does the previous discussion mean that SEMs are not usefully applied to time series 
data? Not at all. The problems with trends and high persistence can be avoided by speci-
fying systems in first differences or growth rates. But one should recognize that this is 
a different SEM than one specified in levels. [For example, if we specify consumption 
growth as a function of disposable income growth and interest rate changes, this is differ-
ent from (16.30).] Also, as we discussed earlier, incorporating dynamics is not especially 
difficult. Finally, the problem of finding truly exogenous variables to include in SEMs 
is often easier with disaggregated data. For example, for manufacturing industries, Shea 
(1993) describes how output (or, more precisely, growth in output) in other industries 
can be used as an instrument in estimating supply functions. Ramey (1991) also has a 
convincing analysis of estimating industry cost functions by instrumental variables using 
time series data.

The next example shows how aggregate data can be used to test an important eco-
nomic theory, the permanent income theory of consumption, usually called the permanent 
income hypothesis (PIH). The approach used in this example is not, strictly speaking, 
based on a simultaneous equations model, but we can think of consumption and income 
growth (as well as interest rates) as being jointly determined.
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E x a m p l e  1 6 . 7

[Testing the Permanent Income Hypothesis]

Campbell and Mankiw (1990) used instrumental variables methods to test various versions 
of the permanent income hypothesis. We will use the annual data from 1959 through 1995 in 
CONSUMP.RAW to mimic one of their analyses. Campbell and Mankiw used quarterly data 
running through 1985.

One equation estimated by Campbell and Mankiw (using our notation) is

 gc
t
 � �

0
 � �

1
gy

t
 � �

2
r3

t
 � u

t
, 16.35

where 
 gc

t  
� �log(c

t
) � annual growth in real per capita consumption (excluding durables).

 gy
t
 � growth in real disposable income.

 r3
t
 �  the (ex post) real interest rate as measured by the return on three-month T-bill rates: 

r3
t
 � i3

t
 � inf

t
, where the inflation rate is based on the Consumer Price Index. 

 The growth rates of consumption and disposable income are not trending, and they are weakly 
dependent; we will assume this is the case for r3

t
 as well, so that we can apply standard asymptotic 

theory.
The key feature of equation (16.35) is that the PIH implies that the error term u

t
 has a zero mean 

conditional on all information observed at time t � 1 or earlier: E(u
t
�I

t�1
) � 0. However, u

t
 is not neces-

sarily uncorrelated with gy
t
 or r3

t
; a traditional way to think about this is that these variables are jointly 

determined, but we are not writing down a full three-equation system.
Because u

t
 is uncorrelated with all variables dated t � 1 or earlier, valid instruments for estimat-

ing (16.35) are lagged values of gc, gy, and r3 (and lags of other observable variables, but we will 
not use those here). What are the hypotheses of interest? The pure form of the PIH has �

1
 � �

2
 � 0. 

Campbell and Mankiw argue that �
1
 is positive if some fraction of the population consumes current 

income, rather than permanent income. The PIH with a nonconstant real interest rate implies that 
�

2
 � 0.

When we estimate (16.35) by 2SLS, using instruments gc
�1

, gy
�1

, and r3
�1

 for the endogenous 
variables gy

t
 and r3

t
, we obtain

 2gc
t
 � .0081 � .586 gy

t
 � .00027 r3

t

 (.0032) (.135) (.00076) 16.36

 n � 35, R2 � .678.

Therefore, the pure form of the PIH is strongly rejected because the coefficient on gy is economi-
cally large (a 1% increase in disposable income increases consumption by over .5%) and statistically 
significant (t � 4.34). By contrast, the real interest rate coefficient is very small and statistically 
insignificant. These findings are qualitatively the same as Campbell and Mankiw’s.

The PIH also implies that the errors {u
t
} are serially uncorrelated. After 2SLS estimation, we 

obtain the residuals,  ̂  u 
t
, and include  ̂  u 

t�1
 as an additional explanatory variable in (16.36); we still use 

instruments gc
t�1

, gy
t�1

, r3
t�1

, and  ̂  u 
t�1

 acts as its own instrument (see Section 15.7). The coefficient 
on  ̂  u 

t�1
 is   ̂  �   � .187 (se � .133), so there is some evidence of positive serial correlation, although not 

at the 5% significance level. Campbell and Mankiw discuss why, with the available quarterly data, 
positive serial correlation might be found in the errors even if the PIH holds; some of those concerns 
carry over to annual data.
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Using growth rates of trending or 
I(1) variables in SEMs is fairly com-
mon in time series applications. For 
example, Shea (1993) estimates indus-
try supply curves specified in terms of 
growth rates.

If a structural model contains a time 
trend—which may capture exogenous, 
trending factors that are not directly 
modeled—then the trend acts as its 
own IV.

16.6 Simultaneous Equations Models
with Panel Data
Simultaneous equations models also arise in panel data contexts. For example, we can 
imagine estimating labor supply and wage offer equations, as in Example 16.3, for a group 
of people working over a given period of time. In addition to allowing for simultaneous 
determination of variables within each time period, we can allow for unobserved effects in 
each equation. In a labor supply function, it would be useful to allow an unobserved taste 
for leisure that does not change over time.

The basic approach to estimating SEMs with panel data involves two steps: 
(1) eliminate the unobserved effects from the equations of interest using the fixed effects 
 transformation or first differencing and (2) find instrumental variables for the endogenous 
variables in the transformed equation. This can be very challenging because, for a con-
vincing analysis, we need to find instruments that change over time. To see why, write an 
SEM for panel data as

 y
it1

 � �
1
y

it2
 � z

it1
�

1
 � a

i1
 � u

it1
 16.37

 y
it2

 � �
2
y

it1
 � z

it2
�

2
 � a

i2
 � u

it2
, 16.38

where i denotes cross section, t denotes time period, and z
it1

�
1
 or z

it2
�

2 
denotes linear 

functions of a set of exogenous explanatory variables in each equation. The most general 
analysis allows the unobserved effects, a

i1
 and a

i2
, to be correlated with all explanatory 

variables, even the elements in z. However, we assume that the idiosyncratic structural 
errors, u

it1
 and u

it2
, are uncorrelated with the z in both equations and across all time peri-

ods; this is the sense in which the z are exogenous. Except under special circumstances, 
y

it2
 is correlated with u

it1
, and y

it1
 is correlated with u

it2
.

Suppose we are interested in equation (16.37). We cannot estimate it by OLS, as the 
composite error a

i1
 � u

it1
 is potentially correlated with all explanatory variables. Suppose 

we difference over time to remove the unobserved effect, a
i1
:

 �y
it1

 � �
1
�y

it2
 � �z

it1
�

1
 � �u

it1
. 16.39

(As usual with differencing or time-demeaning, we can only estimate the effects of vari-
ables that change over time for at least some cross-sectional units.) Now, the error term 

Q u e s t i o n  1 6 . 4
Suppose that for a particular city you have monthly data on per 
capita consumption of fish, per capita income, the price of fish, 
and the prices of chicken and beef; income and chicken and beef 
prices are exogenous. Assume that there is no seasonality in the 
demand function for fish, but there is in the supply of fish. How 
can you use this information to estimate a constant elasticity 
demand-for-fish equation? Specify an equation and discuss iden-
tification. (Hint: You should have 11 instrumental variables for the 
price of fish.)
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in this equation is uncorrelated with �z
it1

 by assumption. But �y
it 2

 and �u
it1

 are possibly 
correlated. Therefore, we need an IV for �y

it 2
.

As with the case of pure cross-sectional or pure time series data, possible IVs come 
from the other equation: elements in z

it2
 that are not also in z

it1
. In practice, we need time-

varying elements in z
it2

 that are not also in z
it1

. This is because we need an instrument for 
�y

it2
, and a change in a variable from one period to the next is unlikely to be highly cor-

related with the level of exogenous variables. In fact, if we difference (16.38), we see that 
the natural IVs for �y

it2
 are those elements in �z

it2 
that are not also in �z

it1
.

As an example of the problems that can arise, consider a panel data version of the labor 
supply function in Example 16.3. After differencing, suppose we have the  equation

 �hours
it
 � �

0
 � �

1
�log(wage

it
) � �(other factors

it
),

and we wish to use �exper
it
 as an instrument for �log(wage

it
). The problem is that, 

because we are looking at people who work in every time period, �exper
it
 � 1 for all 

i and t. (Each person gets another year of experience after a year passes.) We cannot use 
an IV that is the same value for all i and t, and so we must look elsewhere.

Often, participation in an experimental program can be used to obtain IVs in panel data 
contexts. In Example 15.10, we used receipt of job training grants as an IV for the change 
in hours of training in determining the effects of job training on worker productivity. In fact, 
we could view that in an SEM context: job training and worker productivity are jointly deter-
mined, but receiving a job training grant is exogenous in equation (15.57).

We can sometimes come up with clever, convincing instrumental variables in panel 
data applications, as the following example illustrates.

E x a m p l e  1 6 . 8

[Effect of Prison Population on Violent Crime Rates]

In order to estimate the causal effect of prison population increases on crime rates at the state level, 
Levitt (1996) used instances of prison overcrowding litigation as instruments for the growth in 
prison population. The equation Levitt estimated is in first differences; we can write an underlying 
fixed effects model as

 log(crime
it
) � �

t
 � �

1
log(prison

it
) � z

it1
�

1
 � a

i1
 � u

it1
, 16.40

where �
t
 denotes different time intercepts, and crime and prison are measured per 100,000 people. 

(The prison population variable is measured on the last day of the previous year.) The vector z
it1

 
contains log of police per capita, log of income per capita, the unemployment rate, proportions of 
black and those living in metropolitan areas, and age distribution proportions.
 Differencing (16.40) gives the equation estimated by Levitt:

 �log(crime
it
) � �

t
 � �

1
�log( prison

it
) � �z

it1
�

1
 � �u

it1
. 16.41

Simultaneity between crime rates and prison population, or more precisely in the growth rates, makes 
OLS estimation of (16.41) generally inconsistent. Using the violent crime rate and a subset of the data 
from Levitt (in PRISON.RAW, for the years 1980 through 1993, for 51�14 � 714 total observations), 
we obtain the pooled OLS estimate of �

1
, which is �.181 (se � .048). We also estimate (16.41) by 
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pooled 2SLS, where the instruments for �log(prison) are two binary variables, one each for whether a 
final decision was reached on overcrowding litigation in the current year or in the previous two years. 
The pooled 2SLS estimate of �

1
 is �1.032 (se � .370). Therefore, the 2SLS estimated effect is much 

larger; not surprisingly, it is much less precise, too. Levitt found similar results when using a longer 
time period (but with early observations missing for some states) and more instruments.

 
Testing for AR(1) serial correlation in r

it1
 � �u

it1
 is easy. After the pooled 2SLS esti-

mation, obtain the residuals,  ̂  r 
it1

. Then, include one lag of these residuals in the original 
equation, and estimate the equation by 2SLS, where  ̂  r 

it1
 acts as its own instrument. The first 

year is lost because of the lagging. Then, the usual 2SLS t statistic on the lagged residual is 
a valid test for serial correlation. In Example 16.8, the coefficient on  ̂  r 

it1 
is only about .076 

with t � 1.67. With such a small coefficient and modest t statistic, we can safely assume 
serial independence.

An alternative approach to estimating SEMs with panel data is to use the fixed effects 
transformation and then to apply an IV technique such as pooled 2SLS. A simple procedure 
is to estimate the time-demeaned equation by pooled 2SLS, which would look like

 ÿ
it1

 � �
1
ÿ

t2
 � z̈

it1
�

1
 � ü

it1
, t � 1, 2, …, T, 16.42

where z̈
it1

 and z̈
it2

 are IVs. This is equivalent to using 2SLS in the dummy variable formu-
lation, where the unit-specific dummy variables act as their own instruments. Ayres and 
Levitt (1998) applied 2SLS to a time-demeaned equation to estimate the effect of LoJack 
electronic theft prevention devices on car theft rates in cities. If (16.42) is estimated 
directly, then the df needs to be corrected to N(T � 1) � k

1
, where k

1
 is the total number 

of elements in �
1
 and �

1
. Including unit-specific dummy variables and applying pooled 

2SLS to the original data produces the correct df.

S U M M A R Y

Simultaneous equations models are appropriate when each equation in the system has a 
ceteris paribus interpretation. Good examples are when separate equations describe differ-
ent sides of a market or the behavioral relationships of different economic agents. Supply 
and demand examples are leading cases, but there are many other applications of SEMs in 
economics and the social sciences.

An important feature of SEMs is that, by fully specifying the system, it is clear which 
variables are assumed to be exogenous and which ones appear in each equation. Given 
a full system, we are able to determine which equations can be identified (that is, can 
be estimated). In the important case of a two-equation system, identification of (say) the 
first equation is easy to state: at least one exogenous variable must be excluded from 
the first equation that appears with a nonzero coefficient in the second equation.

As we know from previous chapters, OLS estimation of an equation that contains an 
endogenous explanatory variable generally produces biased and inconsistent estimators. 
Instead, 2SLS can be used to estimate any identified equation in a system. More advanced 
system methods are available, but they are beyond the scope of our treatment.

The distinction between omitted variables and simultaneity in applications is not 
always sharp. Both problems, not to mention measurement error, can appear in the same 
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equation. A good example is the labor supply of married women. Years of education 
(educ) appears in both the labor supply and the wage offer functions [see equations (16.19) 
and (16.20)]. If omitted ability is in the error term of the labor supply function, then wage 
and education are both endogenous. The important thing is that an equation estimated by 
2SLS can stand on its own.

SEMs can be applied to time series data as well. As with OLS estimation, we must be 
aware of trending, integrated processes in applying 2SLS. Problems such as serial correla-
tion can be handled as in Section 15.7. We also gave an example of how to estimate an 
SEM using panel data, where the equation is first differenced to remove the unobserved 
effect. Then, we can estimate the differenced equation by pooled 2SLS, just as in Chapter 15. 
Alternatively, in some cases, we can use time-demeaning of all variables, including the 
IVs, and then apply pooled 2SLS; this is identical to putting in dummies for each cross-
sectional observation and using 2SLS, where the dummies act as their own instruments. 
SEM applications with panel data are very powerful, as they allow us to control for unob-
served heterogeneity while dealing with simultaneity. They are becoming more and more 
common and are not especially difficult to estimate.

K E Y  T E R M S

Endogenous Variables
Exclusion Restrictions
Exogenous Variables
Identified Equation
Just Identified Equation
Lagged Endogenous Variable
Order Condition

Overidentified Equation
Predetermined Variable
Rank Condition
Reduced Form Equation
Reduced Form Error
Reduced Form Parameters
Simultaneity

Simultaneity Bias
Simultaneous Equations 

Model (SEM)
Structural Equation
Structural Errors
Structural Parameters
Unidentified Equation

P R O B L E M S

16.1  Write a two-equation system in “supply and demand form,” that is, with the same vari-
able y

1
 (typically, “quantity”) appearing on the left-hand side:

y
1
 � �

1
y

2
 � �

1
z

1
 � u

1

y
1
 � �

2
y

2
 � �

2
z

2
 � u

2
.

(i)  If �
1
 � 0 or �

2
 � 0, explain why a reduced form exists for y

1
. (Remember, a 

reduced form expresses y
1
 as a linear function of the exogenous variables and the 

structural errors.) If �
1 
	 0 and �

2
 � 0, find the reduced form for y

2
.

(ii) If �
1 
	 0, �

2 
	 0, and �

1 
	 �

2
, find the reduced form for y

1
. Does y

2
 have a reduced 

form in this case?
(iii) Is the condition �

1 
	 �

2
 likely to be met in supply and demand examples? Explain.

16.2  Let corn denote per capita consumption of corn in bushels, at the county level, let price 
be the price per bushel of corn, let income denote per capita county income, and let rainfall 
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be inches of rainfall during the last corn-growing season. The following simultaneous equa-
tions model imposes the equilibrium condition that supply equals demand:

 corn � �
1
price � �

1
income � u

1

corn � �
2
price � �

2
rainfall � �

2
rainfall2 � u

2
.

 Which is the supply equation, and which is the demand equation? Explain.

16.3  In Problem 3.3 of Chapter 3, we estimated an equation to test for a tradeoff between 
minutes per week spent sleeping (sleep) and minutes per week spent working (totwrk) 
for a random sample of individuals. We also included education and age in the equa-
tion. Because sleep and totwrk are jointly chosen by each individual, is the estimated 
tradeoff between sleeping and working subject to a “simultaneity bias” criticism? 
Explain.

16.4 Suppose that annual earnings and alcohol consumption are determined by the SEM

 log(earnings) � �
0
 � �

1
alcohol � �

2
educ � u

1

 
alcohol � �

0
 � �

1
log(earnings) � �

2
educ � �

3
log(price) � u

2
,

  where price is a local price index for alcohol, which includes state and local taxes. 
Assume that educ and price are exogenous. If �

1
, �

2
, �

1
, �

2
, and �

3
 are all different from 

zero, which equation is identified? How would you estimate that equation?

16.5  A simple model to determine the effectiveness of condom usage on reducing sexually 
transmitted diseases among sexually active high school students is

infrate � �
0
 � �

1
conuse � �

2
percmale � �

3
avginc � �

4
city � u

1
,

  where 

  infrate � the percentage of sexually active students who have contracted 
 venereal disease.

 conuse � the percentage of boys who claim to regularly use condoms.
 avginc � average family income.
 city � a dummy variable indicating whether a school is in a city. 

 The model is at the school level.
(i) Interpreting the preceding equation in a causal, ceteris paribus fashion, what should 

be the sign of �
1
?

(ii) Why might infrate and conuse be jointly determined?
(iii) If condom usage increases with the rate of venereal disease, so that �

1
 � 0 in the 

equation

conuse � �
0
 � �

1
infrate � other factors,

  what is the likely bias in estimating �
1
 by OLS?

(iv) Let condis be a binary variable equal to unity if a school has a program to distribute 
condoms. Explain how this can be used to estimate �

1 
(and the other betas) by IV. 

What do we have to assume about condis in each equation?
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16.6  Consider a linear probability model for whether employers offer a pension plan based 
on the percentage of workers belonging to a union, as well as other factors:

pension � �
0
 � �

1
percunion � �

2
avgage � �

3
avgeduc 

 � �
4
percmale � �

5
percmarr � u

1
.

(i) Why might percunion be jointly determined with pension?
(ii) Suppose that you can survey workers at firms and collect information on workers’ 

families. Can you think of information that can be used to  construct an IV for 
percunion?

(iii) How would you test whether your variable is at least a reasonable IV  candidate for 
percunion?

16.7  For a large university, you are asked to estimate the demand for tickets to women’s 
basketball games. You can collect time series data over 10 seasons, for a total of about 
150 observations. One possible model is

lATTEND
t
 � �

0
 � �

1
lPRICE

t
 � �

2
WINPERC

t
 � �

3
RIVAL

t 

  
� �

4
WEEKEND

t
 � �

5
t � u

t
, 

 where 
 PRICE

t
 � the price of admission, probably measured in real terms—say,

  deflating by a regional consumer price index.
 WINPERC

t
 � the team’s current winning percentage.

 RIVAL
t
 � a dummy variable indicating a game against a rival.

 WEEKEND
t
 � a dummy variable indicating whether the game is on a weekend. 

 The l denotes natural  logarithm, so that the demand function has a constant price elasticity.
(i) Why is it a good idea to have a time trend in the equation?
(ii) The supply of tickets is fixed by the stadium capacity; assume this has not changed 

over the 10 years. This means that quantity supplied does not vary with price. Does 
this mean that price is necessarily exogenous in the demand equation? (Hint: The 
answer is no.)

(iii) Suppose that the nominal price of admission changes slowly—say, at the beginning 
of each season. The athletic office chooses price based partly on last season’s aver-
age attendance, as well as last season’s team success. Under what assumptions is 
last season’s winning percentage (SEASPERC

t�1
) a valid instrumental variable for 

lPRICE
t
?

(iv) Does it seem reasonable to include the (log of the) real price of men’s basketball 
games in the equation? Explain. What sign does economic theory predict for its 
coefficient? Can you think of another variable related to men’s basketball that might 
belong in the women’s attendance equation?

(v) If you are worried that some of the series, particularly lATTEND and lPRICE, have 
unit roots, how might you change the estimated equation?

(vi) If some games are sold out, what problems does this cause for estimating the 
demand function? (Hint: If a game is sold out, do you necessarily observe the true 
demand?)

16.8  How big is the effect of per-student school expenditures on local housing values? Let 
HPRICE be the median housing price in a school district and let EXPEND be per-student 
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expenditures. Using panel data for the years 1992, 1994, and 1996, we postulate the 
model

lHPRICE
it
 � �

t
 � �

1
lEXPEND

it
 � �

2
lPOLICE

it
 � �

3
lMEDINC

it
 

 � �
4
PROPTAX

it
 � a

i1
 � u

it1
,

  where POLICE
it
 is per capita police expenditures, MEDINC

it
 is median income, and 

PROPTAX
it
 is the property tax rate; l denotes natural logarithm. Expenditures and hous-

ing price are simultaneously determined because the value of homes directly affects the 
revenues available for funding schools.

    Suppose that, in 1994, the way schools were funded was drastically changed: rather 
than being raised by local property taxes, school funding was largely determined at the 
state level. Let lSTATEALL

it
 denote the log of the state allocation for district i in year t, 

which is exogenous in the preceding equation, once we control for expenditures and a 
district fixed effect. How would you estimate the �

j
?

C O M P U T E R  E X E R C I S E S

C16.1 Use SMOKE.RAW for this exercise.
 (i)  A model to estimate the effects of smoking on annual income (perhaps through 

lost work days due to illness, or productivity effects) is

log(income) � �
0
 � �

1
cigs � �

2
educ � �

3
age � �

4
age2 � u

1
,

   where cigs is number of cigarettes smoked per day, on average. How do you 
interpret �

1
?

 (ii)  To reflect the fact that cigarette consumption might be jointly determined with 
income, a demand for cigarettes equation is

cigs � �
0
 � �

1
log(income) � �

2
educ � �

3
age � �

4
age2 

 � �
5
log(cigpric) � �

6
restaurn � u

2
,

   where cigpric is the price of a pack of cigarettes (in cents), and restaurn is a 
binary variable equal to unity if the person lives in a state with restaurant smok-
ing restrictions. Assuming these are exogenous to the individual, what signs 
would you expect for �

5
 and �

6
?

 (iii) Under what assumption is the income equation from part (i) identified?
 (iv) Estimate the income equation by OLS and discuss the estimate of �

1
.

 (v)  Estimate the reduced form for cigs. (Recall that this entails regressing cigs on all 
exogenous variables.) Are log(cigpric) and restaurn significant in the reduced form?

 (vi)  Now, estimate the income equation by 2SLS. Discuss how the estimate of �
1
 

compares with the OLS estimate.
 (vii)  Do you think that cigarette prices and restaurant smoking restrictions are exog-

enous in the income equation?

C16.2 Use MROZ.RAW for this exercise.
 (i)  Reestimate the labor supply function in Example 16.5, using log(hours) as the 

dependent variable. Compare the estimated elasticity (which is now constant) to 
the estimate obtained from equation (16.24) at the average hours worked.
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 (ii)  In the labor supply equation from part (i), allow educ to be endogenous because 
of omitted ability. Use motheduc and fatheduc as IVs for educ. Remember, you 
now have two endogenous variables in the equation.

 (iii)  Test the overidentifying restrictions in the 2SLS estimation from part (ii). Do the 
IVs pass the test?

C16.3 Use the data in OPENNESS.RAW for this exercise.
 (i)  Because log(pcinc) is insignificant in both (16.22) and the reduced form for 

open, drop it from the analysis. Estimate (16.22) by OLS and IV without 
log(pcinc). Do any important conclusions change? 

 (ii)  Still leaving log(pcinc) out of the analysis, is land or log(land ) a better instru-
ment for open? (Hint: Regress open on each of these separately and jointly.)

 (iii)  Now, return to (16.22). Add the dummy variable oil to the equation and treat it 
as exogenous. Estimate the equation by IV. Does being an oil producer have a 
ceteris paribus effect on inflation?

C16.4 Use the data in CONSUMP.RAW for this exercise.
 (i)  In Example 16.7, use the method from Section 15.5 to test the single overidentify-

ing restriction in estimating (16.35). What do you conclude?
 (ii)  Campbell and Mankiw (1990) use second lags of all variables as IVs because 

of potential data measurement problems and informational lags. Reestimate 
(16.35), using only gc

t�2
, gy

t�2
, and r3

t�2
 as IVs. How do the estimates compare 

with those in (16.36)?
 (iii)  Regress gy

t
 on the IVs from part (ii) and test whether gy

t
 is sufficiently correlated 

with them. Why is this important?

C16.5  Use the Economic Report of the President (2005 or later) to update the data in 
CONSUMP.RAW, at least through 2003. Reestimate equation (16.35). Do any impor-
tant  conclusions change?

C16.6  Use the data in CEMENT.RAW for this exercise.
 (i)  A static (inverse) supply function for the monthly growth in cement price (gprc) 

as a function of growth in quantity (gcem) is

gprc
t
 � �

1
gcem

t
 � �

0
 � �

1
gprcpet � �

2
feb

t
 � … � �

12
dec

t
 � u

t
s,

 where gprcpet (growth in the price of petroleum) is assumed to be exogenous 
and feb,  …,  dec are monthly dummy variables. What signs do you expect 
for �

1 
and �

1
? Estimate the equation by OLS. Does the supply function slope 

upward?
(ii) The variable gdefs is the monthly growth in real defense spending in the United 

States. What do you need to assume about gdefs for it to be a good IV for gcem? 
Test whether gcem is partially correlated with gdefs. (Do not worry about pos-
sible serial correlation in the reduced form.) Can you use gdefs as an IV in esti-
mating the supply function?

(iii) Shea (1993) argues that the growth in output of residential (gres) and nonresi-
dential (gnon) construction are valid instruments for gcem. The idea is that these 
are demand shifters that should be roughly uncorrelated with the supply error u

t
s. 

Test whether gcem is partially correlated with gres and gnon; again, do not worry 
about serial correlation in the reduced form.
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(iv) Estimate the supply function, using gres and gnon as IVs for gcem. What do 
you conclude about the static supply function for cement? [The dynamic supply 
function is, apparently, upward sloping; see Shea (1993).]

C16.7 Refer to Example 13.9 and the data in CRIME4.RAW.
(i) Suppose that, after differencing to remove the unobserved effect, you think 

�log(polpc) is simultaneously determined with �log(crmrte); in particular, 
increases in crime are associated with increases in police officers. How does this 
help to explain the positive coefficient on �log(polpc) in equation (13.33)?

(ii) The variable taxpc is the taxes collected per person in the county. Does it seem 
reasonable to exclude this from the crime equation?

(iii) Estimate the reduced form for �log(polpc) using pooled OLS, including the poten-
tial IV, �log(taxpc). Does it look like �log(taxpc) is a good IV candidate? Explain.

(iv) Suppose that, in several of the years, the state of North Carolina awarded grants 
to some counties to increase the size of their county police force. How could you 
use this information to estimate the effect of additional police officers on the 
crime rate?

C16.8  Use the data set in FISH.RAW, which comes from Graddy (1995), to do this exercise. 
The data set is also used in Computer Exercise C12.9. Now, we will use it to estimate 
a demand function for fish.
(i) Assume that the demand equation can be written, in equilibrium for each time 

period, as

log(totqty
t
) � �

1
log(avgprc

t
) � �

10
 � �

11
mon

t
 � �

12
tues

t
 � �

13
wed

t
 � �

14
thurs

t
 � u

t1
,

 so that demand is allowed to differ across days of the week. Treating the price 
variable as endogenous, what additional information do we need to consistently 
estimate the demand-equation parameters?

(ii) The variables wave2
t
 and wave3

t
 are measures of ocean wave heights over the 

past several days. What two assumptions do we need to make in order to use 
wave2

t
 and wave3

t
 as IVs for log(avgprc

t
) in estimating the demand equation?

(iii) Regress log(avgprc
t
) on the day-of-the-week dummies and the two wave mea-

sures. Are wave2
t
 and wave3

t
 jointly significant? What is the p-value of the test?

(iv) Now, estimate the demand equation by 2SLS. What is the 95% confidence inter-
val for the price elasticity of demand? Is the estimated elasticity reasonable?

(v) Obtain the 2SLS residuals,  ̂  u 
t1
. Add a single lag,  ̂  u 

t�1, 1
 in estimating the demand 

equation by 2SLS. Remember, use  ̂  u 
t�1,1

 as its own instrument. Is there evidence 
of AR(1) serial correlation in the demand equation errors?

(vi) Given that the supply equation evidently depends on the wave  variables, what 
two assumptions would we need to make in order to estimate the price elasticity 
of supply?

(vii) In the reduced form equation for log(avgprc
t
), are the day-of-the-week dummies 

jointly significant? What do you conclude about being able to estimate the 
supply elasticity?

C16.9 For this exercise, use the data in AIRFARE.RAW, but only for the year 1997.
(i) A simple demand function for airline seats on routes in the United States is

log(passen) � �
10 

� �
1
log(fare) � �

11
log(dist) � �

12
[log(dist)]2 � u

1
, 
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 where 
 passen � average passengers per day.
 fare � average airfare. 
 dist � the route distance (in miles). 

 If this is truly a demand function, what should be the sign of �
1
?

(ii) Estimate the equation from part (i) by OLS. What is the estimated price elasticity?
(iii) Consider the variable concen, which is a measure of market concentration. 

(Specifically, it is the share of business accounted for by the largest carrier.) 
Explain in words what we must assume to treat concen as exogenous in the 
demand equation.

(iv) Now assume concen is exogenous to the demand equation. Estimate the reduced 
form for log(fare) and confirm that concen has a positive (partial) effect on 
log(fare).

(v) Estimate the demand function using IV. Now what is the estimate price elasticity 
of demand? How does it compare with the OLS  estimate?

(vi) Using the IV estimates, describe how demand for seats depends on route 
 distance.

C16.10  Use the entire panel data set in AIRFARE.RAW for this exercise. The demand equa-
tion in a simultaneous equations unobserved effects model is

log(passen
it
) � �

t1 
� �

1
log(fare

it
) � a

i1 
� u

it1
,

 where we absorb the distance variables into a
i1
.

(i) Estimate the demand function using fixed effects, being sure to include year 
dummies to account for the different intercepts. What is the estimated elasticity?

(ii) Use fixed effects to estimate the reduced form

log(fare
it
) � �

t2
 � �

21
concen

it
 � a

i2
 � v

it2
.

 Perform the appropriate test to ensure that concen
it
 can be used as an IV for 

log( fare
it
).

(iii) Now estimate the demand function using the fixed effects transformation along 
with IV, as in equation (16.42). Now what is the  estimated  elasticity? Is it statisti-
cally significant?
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C H A P T E R

In Chapter 7, we studied the linear probability model, which is simply an application of 
the multiple regression model to a binary dependent variable. A binary dependent vari-
able is an example of a limited dependent variable (LDV). An LDV is broadly defined 

as a dependent variable whose range of values is substantively restricted. A binary variable 
takes on only two values, zero and one. We have seen several other examples of limited 
dependent variables: participation percentage in a pension plan must be between zero and 
100, the number of times an individual is arrested in a given year is a nonnegative integer, 
and college grade point average is between zero and 4.0 at most colleges.
 Most economic variables we would like to explain are limited in some way, often 
because they must be positive. For example, hourly wage, housing price, and nominal 
interest rates must be greater than zero. But not all such variables need special treatment. 
If a strictly positive variable takes on many different values, a special econometric model 
is rarely necessary. When y is discrete and takes on a small number of values, it makes 
no sense to treat it as an approximately continuous variable. Discreteness of y does not 
in itself mean that linear models are inappropriate. However, as we saw in Chapter 7 for 
binary response, the linear probability model has certain drawbacks. In Section 17.1, we 
discuss logit and probit models, which overcome the shortcomings of the LPM; the disad-
vantage is that they are more difficult to interpret.
 Other kinds of limited dependent variables arise in econometric analysis, especially 
when the behavior of individuals, families, or firms is being modeled. Optimizing 
behavior often leads to a corner solution response for some nontrivial fraction of the 
population. That is, it is optimal to choose a zero quantity or dollar value, for example. 
During any given year, a significant number of families will make zero charitable con-
tributions. Therefore, annual family charitable contributions has a population distribution 
that is spread out over a large range of positive values, but with a pileup at the value 
zero. Although a linear model could be appropriate for capturing the expected value of 
charitable contributions, a linear model will likely lead to negative predictions for some 
families. Taking the natural log is not possible because many observations are zero. The 
Tobit model, which we cover in Section 17.2, is explicitly designed to model corner solu-
tion dependent variables.
 Another important kind of LDV is a count variable, which takes on nonnegative 
integer values. Section 17.3 illustrates how Poisson regression models are well suited for 
modeling count variables.

17
Limited Dependent Variable 
Models and Sample Selection 
Corrections
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 In some cases, we observe limited dependent variables due to data censoring, a topic 
we introduce in Section 17.4. The general problem of sample selection, where we observe 
a nonrandom sample from the underlying population, is treated in Section 17.5.
 Limited dependent variable models can be used for time series and panel data, but 
they are most often applied to cross-sectional data. Sample selection problems are 
 usually confined to cross-sectional or panel data. We focus on cross-sectional appli-
cations in this chapter. Wooldridge (2002) presents these problems in the context of 
panel data models and provides many more details for cross-sectional and panel data 
applications.

17.1 Logit and Probit Models for 
Binary Response
The linear probability model is simple to estimate and use, but it has some drawbacks 
that we discussed in Section 7.5. The two most important disadvantages are that the fitted 
probabilities can be less than zero or greater than one and the partial effect of any explana-
tory variable (appearing in level form) is constant. These limitations of the LPM can be 
overcome by using more sophisticated binary response models.
 In a binary response model, interest lies primarily in the response probability

 P(y � 1�x) � P(y � 1�x
1
, x

2
, …, x

k
), 17.1

where we use x to denote the full set of explanatory variables. For example, when y is an 
employment indicator, x might contain various individual characteristics such as educa-
tion, age, marital status, and other factors that affect employment status, including a binary 
indicator variable for participation in a recent job training program.

Specifying Logit and Probit Models

In the LPM, we assume that the response probability is linear in a set of parameters, �
j
; 

see equation (7.27). To avoid the LPM limitations, consider a class of binary response 
models of the form

 P(y � 1�x) � G(�
0
 � �

1
x

1
 � … � �

k
 x

k
) � G(�

0
 � x�), 17.2

where G is a function taking on values strictly between zero and one: 0 � G(z) � 1, for all 
real numbers z. This ensures that the estimated response probabilities are strictly between 
zero and one. As in earlier chapters, we write x� � �

1
x

1
 � … � �

k
 x

k
.

 Various nonlinear functions have been suggested for the function G to make sure that 
the probabilities are between zero and one. The two we will cover here are used in the 
vast majority of applications (along with the LPM). In the logit model, G is the logistic 
function:

 G(z) � exp(z)/[1 � exp(z)] � �(z), 17.3
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which is between zero and one for all real numbers z. This is the cumulative distribution 
function for a standard logistic random variable. In the probit model, G is the standard 
normal cumulative distribution function (cdf), which is expressed as an integral:

 G(z) � �(z) �
�

�
z

 �(v)dv, 17.4

where �(z) is the standard normal density

 �(z) � (2�)�1/2exp(�z2/2). 17.5

This choice of G again ensures that (17.2) is strictly between zero and one for all values 
of the parameters and the x

j
.

 The G functions in (17.3) and (17.4) are both increasing functions. Each increases 
most quickly at z � 0, G(z) → 0 as z → �, and G(z) → 1 as z → . The logistic func-
tion is plotted in Figure 17.1. The standard normal cdf has a shape very similar to that of 
the logistic cdf.
 Logit and probit models can be derived from an underlying latent variable model. Let 
y* be an unobserved, or latent, variable, determined by

 y* � �
0
 � x� � e, y � 1[y* � 0], 17.6

where we introduce the notation 1[�] to define a binary outcome. The function 1[�] is 
called the indicator function, which takes on the value one if the event in brackets is true, 
and zero otherwise. Therefore, y is one if y* � 0, and y is zero if y* 
 0. We assume that 

F I GURE  17 . 1

Graph of the logistic function G(z) � exp(z)/[1 � exp(z)].

G(z) � exp(z)/[1 � exp(z)]
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e is independent of x and that e either has the standard logistic distribution or the standard 
normal distribution. In either case, e is symmetrically distributed about zero, which means 
that 1 � G(�z) � G(z) for all real numbers z. Economists tend to favor the normality 
assumption for e, which is why the probit model is more popular than logit in economet-
rics. In addition, several specification problems, which we touch on later, are most easily 
analyzed using probit because of properties of the normal distribution.
 From (17.6) and the assumptions given, we can derive the response probability for y:

P(y � 1�x) � P(y* � 0�x) � P[e � �(�
0
 � x�)�x]

� 1 � G[�(�
0
 � x�)] � G(�

0
 � x�),

which is exactly the same as (17.2).
 In most applications of binary response models, the primary goal is to explain the 
effects of the x

j
 on the response probability P(y � 1�x). The latent variable formulation 

tends to give the impression that we are primarily interested in the effects of each x
j
 on y*. 

As we will see, for logit and probit, the direction of the effect of x
j
 on E(y*�x) �  �

0 
� x� 

and on E(y�x) � P(y � 1�x) � G(�
0
 � x�) is always the same. But the latent variable y* 

rarely has a well-defined unit of measurement. (For example, y* might be the difference 
in utility levels from two different actions.) Thus, the magnitudes of each �

j
 are not, by 

themselves, especially useful (in contrast to the linear probability model). For most pur-
poses, we want to estimate the effect of x

j
 on the probability of success P(y � 1�x), but this 

is complicated by the nonlinear nature of G(�).
 To find the partial effect of roughly continuous variables on the response probability, 
we must rely on calculus. If x

j
 is a roughly continuous variable, its partial effect on p(x) � 

P(y � 1�x) is obtained from the partial derivative:

   
∂p(x)

 _____ 
∂x

j

   � g(�
0
 � x�)�

j 
, where g(z) �   dG ___ 

dz
  (z). 17.7

Because G is the cdf of a continuous random variable, g is a probability density function. 
In the logit and probit cases, G(�) is a strictly increasing cdf, and so g(z) � 0 for all z. 
Therefore, the partial effect of x

j
 on p(x) depends on x through the positive quantity 

g(�
0
 � x�), which means that the partial effect always has the same sign as �

j
.

 Equation (17.7) shows that the relative effects of any two continuous explanatory vari-
ables do not depend on x: the ratio of the partial effects for x

j
 and x

h
 is �

j 
/�

h
. In the typical 

case that g is a symmetric density about zero, with a unique mode at zero, the largest effect 
occurs when �

0
 � x� � 0. For example, in the probit case with g(z) � �(z), g(0) � �(0) � 

1/ �
___

 2�   � .40. In the logit case, g(z) � exp(z)/[1 � exp(z)]2, and so g(0) � .25.
 If, say, x

1
 is a binary explanatory variable, then the partial effect from changing x

1
 from 

zero to one, holding all other variables fixed, is simply

 G(�
0
 � �

1
 � �

2
x

2
 � … � �

k 
x

k
) � G(�

0 
� �

2
x

2
 � … � �

k 
x

k
). 17.8

Again, this depends on all the values of the other x
j
. For example, if y is an employment 

indicator and x
1
 is a dummy variable indicating participation in a job training program, 

then (17.8) is the change in the probability of employment due to the job training pro-
gram; this depends on other characteristics that affect employability, such as education 
and experience. Note that knowing the sign of �

1
 is sufficient for determining whether the 
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program had a positive or negative effect. But to find the magnitude of the effect, we have 
to estimate the quantity in (17.8).
 We can also use the difference in (17.8) for other kinds of discrete variables (such 
as number of children). If x

k
 denotes this variable, then the effect on the probability of x

k
 

going from c
k
 to c

k
 � 1 is simply

 G[�
0 
� �

1
x

1
 � �

2  
x

2
 � … � �

k
(c

k
 � 1)]

 � G(�
0 
� �

1
x

1
 � �

2 
x

2
 � … � �

k
c

k
).

 17.9

 It is straightforward to include standard functional forms among the explanatory vari-
ables. For example, in the model

P(y � 1�z) � G(�
0
 � �

1
z

1
 � �

2
z 2   

1
  � �

3
log(z

2
) � �

4
z

3
),

the partial effect of z
1
 on P(y � 1�z) is ∂P(y � 1�z)/∂z

1
 � g(�

0
 � x�)(�

1
 � 2�

2
z

1
), and 

the partial effect of z
2
 on the response probability is ∂P(y � 1�z)/∂z

2
 � g(�

0
 � x�)(�

3
/z

2
), 

where x� � �
1
z

1
 � �

2
z 2   

1
  � �

3
log(z

2
) � �

4
z

3
. Therefore, g(�

0
 � x�)(�

3
/100) is the approxi-

mate change in the response probability when z
2
 increases by 1%.

 Sometimes we want to compute the elasticity of the response probability with respect 
to an explanatory variable, although we must be careful in interpreting percentage changes 
in probabilities. For example, a change in a probability from .04 to .06 represents a
2-percentage-point increase in the probability, but a 50% increase relative to the initial 
value. Using calculus, in the preceding model the elasticity of P(y � 1�z) with respect 
to z

2
 can be shown to be �

3
[g(�

0
 � x �)/G(�

0
 � x �)]. The elasticity with respect to z

3
 is

(�
4
z

3
)[g(�

0
 � x �)/G(�

0
 � x �)]. In the first case, the elasticity is always the same sign as 

�
2
, but it generally depends on all parameters and all values of the explanatory variables. 

If z
3
 � 0, the second elasticity always has the same sign as the parameter �

4
.

 Models with interactions among the explanatory variables can be a bit tricky, but 
one should compute the partial derivatives and then evaluate the resulting partial effects 
at interesting values. When measuring the effects of discrete variables—no matter how 
complicated the model—we should use (17.9). We discuss this further in the subsection 
on interpreting the estimates on page 580.

Maximum Likelihood Estimation of Logit and Probit Models

How should we estimate nonlinear binary response models? To estimate the LPM, we 
can use ordinary least squares (see Section 7.5) or, in some cases, weighted least squares 
(see Section 8.5). Because of the nonlinear nature of E(y�x), OLS and WLS are not appli-
cable. We could use nonlinear versions of these methods, but it is no more difficult to use 
maximum likelihood estimation (MLE) (see Appendix 17A for a brief discussion). Up 
until now, we have had little need for MLE, although we did note that, under the classical 
 linear model assumptions, the OLS estimator is the maximum likelihood estimator (con-
ditional on the explanatory variables). For estimating limited dependent variable models, 
maximum likelihood methods are indispensable. Because maximum likelihood estimation 
is based on the distribution of y given x, the heteroskedasticity in Var(y�x) is automatically 
accounted for.
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 Assume that we have a random sample of size n. To obtain the maximum likelihood 
estimator, conditional on the explanatory variables, we need the density of y

i
 given x

i
. We 

can write this as

 f  (  y�x
i
;�) � [G(x

i 
�)]y[1 � G(x

i 
�)]1�y, y � 0, 1, 17.10

where, for simplicity, we absorb the intercept into the vector x
i
. We can easily see that 

when y � 1, we get G(x
i 
�) and when y � 0, we get 1 � G(x

i 
�). The log-likelihood 

 function for observation i is a function of the parameters and the data (x
i
, y

i
) and is obtained 

by taking the log of (17.10):

 �
i
(�) � y

i   
log[G(x

i 
�)] � (1 � y

i
)log[1 � G(x

i 
�)]. 17.11

Because G(�) is strictly between zero and one for logit and probit, �
i
(

 
�) is well defined 

for all values of 
 
�.

 The log-likelihood for a sample size of n is obtained by summing (17.11) across
all observations: �(

 
�) �  ∑ 

i�1
  

n
    �

i
(�). The MLE of �, denoted by  ̂  � , maximizes this 

log- likelihood. If G(�) is the standard logit cdf, then  ̂  �  is the logit estimator; if G(�) is the 
standard normal cdf, then  ̂  �  is the probit estimator.
 Because of the nonlinear nature of the maximization problem, we cannot write formu-
las for the logit or probit maximum likelihood estimates. In addition to raising computa-
tional issues, this makes the statistical theory for logit and probit much more difficult than 
OLS or even 2SLS. Nevertheless, the general theory of MLE for random samples implies 
that, under very general conditions, the MLE is consistent, asymptotically normal, and 
asymptotically efficient. [See Wooldridge (2002, Chapter 13) for a general dis cussion.] 
We will just use the results here; applying logit and probit models is fairly easy, provided 
we understand what the statistics mean.
 Each  ̂  � 

j
 comes with an (asymptotic) standard error, the formula for which is compli-

cated and presented in the chapter appendix. Once we have the standard errors—and these 
are reported along with the coefficient estimates by any package that supports logit and 
probit—we can construct (asymptotic) t tests and confidence intervals, just as with OLS, 
2SLS, and the other estimators we have encountered. In particular, to test H

0
: �

j
 � 0, we 

form the t statistic  ̂  � 
j 
/se( ̂  � 

j
) and carry out the test in the usual way, once we have decided 

on a one- or two-sided alternative.

Testing Multiple Hypotheses

We can also test multiple restrictions in logit and probit models. In most cases, these 
are tests of multiple exclusion restrictions, as in Section 4.5. We will focus on exclusion 
restrictions here.
 There are three ways to test exclusion restrictions for logit and probit models. The 
Lagrange multiplier or score test only requires estimating the model under the null hypoth-
esis, just as in the linear case in Section 5.2; we will not cover the score test here, since 
it is rarely needed to test exclusion restrictions. [See Wooldridge (2002, Chapter 15) for 
other uses of the score test in binary response models.]
 The Wald test requires estimation of only the unrestricted model. In the linear model 
case, the Wald statistic, after a simple transformation, is essentially the F statistic, so 
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there is no need to cover the Wald statistic separately. The formula for the Wald statistic 
is given in Wooldridge (2002, Chapter 15). This statistic is computed by econometrics 
packages that allow exclusion restrictions to be tested after the unrestricted model has 
been estimated. It has an asymptotic chi-square distribution, with df equal to the number 
of restrictions being tested.
 If both the restricted and unrestricted models are easy to estimate—as is usually the 
case with exclusion restrictions—then the likelihood ratio (LR) test becomes very attrac-
tive. The LR test is based on the same concept as the F test in a linear model. The F test 
measures the increase in the sum of squared residuals when variables are dropped from 
the model. The LR test is based on the difference in the log-likelihood functions for the 
unrestricted and restricted models. The idea is this. Because the MLE maximizes the 
log-likelihood function, dropping variables generally leads to a smaller—or at least no 
larger—log-likelihood. (This is similar to the fact that the R-squared never increases 
when variables are dropped from a regression.) The question is whether the fall in the log-
likelihood is large enough to conclude that the dropped variables are important. We can 
make this decision once we have a test statistic and a set of critical values.
 The likelihood ratio statistic is twice the difference in the log-likelihoods:

 LR � 2(�
ur

 � �
r
), 17.12

where �
ur
 is the log-likelihood value for the unrestricted model and �

r
 is the log- likelihood 

value for the restricted model. Because �
ur
 � �

r
, LR is nonnegative and  usually strictly posi-

tive. In computing the LR statistic for binary response models, it is important to know that the 
log-likelihood function is always a negative number. This fact follows from equation (17.11), 

because y
i
 is either zero or one and both 

variables inside the log function are strictly 
between zero and one, which means their 
natural logs are negative. That the log-
likelihood functions are both negative 
does not change the way we compute the 
LR statistic; we simply preserve the nega-
tive signs in equation (17.12).
 The multiplication by two in (17.12) 
is needed so that LR has an approximate 
chi-square distribution under H

0
. If we 

are testing q exclusion restrictions, 
LR 	ª 	

q
2. This means that, to test H

0
 

at the 5% level, we use as our critical 
value the 95th percentile in the 	

q
2 dis-

tribution. Computing p-values is easy 
with most software packages.

Interpreting the Logit and Probit Estimates

Given modern computers, from a practical perspective the most difficult aspect of logit 
or probit models is presenting and interpreting the results. The coefficient estimates, their 
standard errors, and the value of the log-likelihood function are reported by all software 
packages that do logit and probit, and these should be reported in any application. The 
coefficients give the signs of the partial effects of each x

j
 on the response probability, and 

Q u e s t i o n  1 7 . 1
A probit model to explain whether a firm is taken over by another 
firm during a given year is

P(takeover � 1�x) �  �(�
0
 � �

1
avgprof � �

2
mktval 

� �
3
debtearn � �

4
ceoten 

� �
5
ceosal � �

6
ceoage),

where takeover is a binary response variable, avgprof is the firm’s 
average profit margin over several prior years, mktval is market 
value of the firm, debtearn is the debt-to-earnings ratio, and 
 ceoten, ceosal, and ceoage are the tenure, annual salary, and age 
of the chief executive officer, respectively. State the null hypoth-
esis that, other factors being equal, variables related to the CEO 
have no effect on the probability of takeover. How many df are in 
the chi-square distribution for the LR or Wald test?
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the statistical significance of x
j
 is determined by whether we can reject H

0
: �

j
 � 0 at a suf-

ficiently small significance level.
 As we briefly discussed in Section 7.5 for the linear probability model, we can com-
pute a goodness-of-fit measure called the percent correctly predicted. As before, we 
define a binary predictor of y

i
 to be one if the predicted probability is at least .5, and zero 

otherwise. Mathematically,  ̃  y 
i
 � 1 if G( ̂  � 

0
 � x

i 
 ̂  � ) � .5 and  ̃  y 

i
 � 0 if G( ̂  � 

0
 � x

i 
 ̂  � ) � .5.

Given { ̃  y 
i 
: i � 1, 2, ..., n}, we can see how well  ̃  y 

i
 predicts y

i
 across all observations. There 

are four possible outcomes on each pair, (y
i
,   ̃  y 

i
); when both are zero or both are one, we 

make the correct prediction. In the two cases where one of the pair is zero and the other is 
one, we make the incorrect prediction. The percentage correctly predicted is the percent-
age of times that  ̃  y 

i
 � y

i
.

 Although the percentage correctly predicted is useful as a goodness-of-fit measure, it can 
be misleading. In particular, it is possible to get rather high percentages correctly predicted 
even when the least likely outcome is very poorly predicted. For example, suppose that n � 
200, 160 observations have y

i
 � 0, and, out of these 160 observations, 140 of the  ̃  y 

i
 are also 

zero (so we correctly predict 87.5% of the zero outcomes). Even if none of the predictions 
is correct when y

i
 � 1, we still correctly predict 70% of all outcomes (140/200 � .70). 

Often, we hope to have some ability to predict the least likely outcome (such as whether 
someone is arrested for committing a crime), and so we should be up front about how 
well we do in predicting each outcome. Therefore, it makes sense to also compute the 
percentage correctly predicted for each of the outcomes. Problem 17.1 asks you to show 
that the overall percentage correctly predicted is a weighted average of  ̂  q 

0
 (the percentage 

correctly predicted for y
i
 � 0) and  ̂  q 

1
 (the percentage correctly predicted for y

i
 � 1), where 

the weights are the fractions of zeros and ones in the sample, respectively.
 Some have criticized the prediction rule just described for using a threshold value of .5, 
especially when one of the outcomes is unlikely. For example, if  - y  �.08 (only 8% “suc-
cesses” in the sample), it could be that we never predict y

i
 � 1 because the estimated prob-

ability of success is never greater than .5. One alternative is to use the fraction of  successes 
in the sample as the threshold—.08 in the previous example. In other words, define  ̃  y 

i
 � 1 

when G( ̂  � 
0
 � x

i 
 ̂  � ) � .08 and zero otherwise. Using this rule will certainly increase the 

number of predicted successes, but not without cost: we will necessarily make more 
 mistakes—perhaps many more—in predicting zeros (“failures”). In terms of the overall 
percentage correctly predicted, we may do worse than using the .5 threshold.
 A third possibility is to choose the threshold such that the fraction of  ̃  y 

i
 � 1 in the 

sample is the same as (or very close to)  - y . In other words, search over threshold values �,

0 � � � 1, such that if we define  ̃  y 
i
 � 1 when G( ̂  � 

0
 � x

i 
 ̂  � ) � �, then �n

i�1
  ̃  y 

i 
� �n

i�1
 y

i
. 

(The trial-and-error required to find the desired value of � can be tedious but it is feasible. 
In some cases, it will not be possible to make the number of predicted successes exactly 
the same as the number of successes in the sample.) Now, given this set of  ̃  y 

i
, we can 

compute the percentage correctly predicted for each of the two outcomes as well as the 
overall percentage correctly predicted.
 There are also various pseudo R-squared measures for binary response. McFadden 
(1974) suggests the measure 1 � �

ur 
/�

o
, where �

ur
 is the log-likelihood function for

the estimated model, and �
o
 is the log-likelihood function in the model with only an 

 intercept. Why does this measure make sense? Recall that the log-likelihoods are nega-
tive, and so �

ur 
/�

o
 � ��

ur
�/��

o
�. Further, ��

ur
� 
 ��

o
�. If the covariates have no explanatory 

power, then �
ur     

/�
o
 � 1, and the pseudo R-squared is zero, just as the usual R-squared 

is zero in a linear regression when the covariates have no explanatory power. Usually,  
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��
ur

� � ��
o
�, in which case 1 � �

ur 
/�

o
 � 0. If �

ur
 were zero, the pseudo R-squared would 

equal unity. In fact, �
ur

 cannot reach zero in a probit or logit model, as that would require 
the estimated probabilities when y

i
 � 1 all to be unity and the estimated probabilities when 

y
i
 � 0 all to be zero.

 Alternative pseudo R-squareds for probit and logit are more directly related to the 
usual R-squared from OLS estimation of a linear probability model. For either probit or 
logit, let  ̂  y 

i
 � G(  ̂  � 

0
 � x

i 
 ̂  � ) be the fitted probabilities. Since these probabilities are also 

estimates of E( y
i
�x

i
), we can base an R-squared on how close the  ̂  y 

i
 are to the y

i
. One pos-

sibility that suggests itself from standard regression analysis is to compute the squared 
correlation between y

i
 and  ̂  y 

i
. Remember, in a linear regression framework, this is an 

algebraically equivalent way to obtain the usual R-squared; see equation (3.29). Therefore, 
we can  compute a pseudo R-squared for probit and logit that is directly comparable to the 
usual R-squared from estimation of a linear probability model. In any case, goodness-of-fit 
is usually less important than trying to obtain convincing estimates of the ceteris paribus 
effects of the explanatory variables.
 Often, we want to estimate the effects of the x

j
 on the response probabilities,

P(y � 1�x). If x
j
 is (roughly) continuous, then

 � ̂  P (y � 1�x) � [g( ̂  � 
0
 � x  ̂  � ) ̂  � 

j
]� x

j
, 17.13

for “small” changes in x
j
. So, for �x

j
 � 1, the change in the estimated success probabi lity 

is roughly g( ̂  � 
0
 � x   ̂  � ) ̂  � 

j
. Compared with the linear probability model, the cost of using 

probit and logit models is that the partial effects in equation (17.13) are harder to sum-
marize because the scale factor, g( ̂  � 

0
 � x   ̂  � ), depends on x (that is, on all of the explana-

tory variables). One possibility is to plug in interesting values for the x
j
—such as means, 

medians, minimums, maximums, and lower and upper quartiles—and then see how 
g( ̂  � 

0
 � x   ̂  � ) changes. Although attractive, this can be tedious and result in too much infor-

mation even if the number of explanatory variables is moderate.
 As a quick summary for getting at the magnitudes of the partial effects, it is handy to 
have a single scale factor that can be used to multiply each  ̂  � 

j
 (or at least those coefficients 

on roughly continuous variables). One method, commonly used in econometrics packages 
that routinely estimate probit and logit models, is to replace each explanatory variable with 
its sample average. In other words, the adjustment factor is

 g( ̂  � 
0
 �    - x   ̂  � ) � g( ̂  � 

0
 �  ̂  � 

1
 - x 

1
 �  ̂  � 

2
 - x 

2
 � ... �  ̂  � 

k      
 - x 

k
), 17.14

where g(�) is the standard normal density in the probit case and g(z) � exp(z)/[1 � exp(z)]2 
in the logit case. The idea behind (17.14) is that, when it is multiplied by  ̂  � 

j
, we obtain the 

partial effect of x
j
 for the “average” person in the sample. Thus, if we multiply a coefficient 

by (17.14), we generally obtain the partial effect at the average (PEA). 
 There are at least two potential problems with using PEAs to summarize the partial 
effects of the explanatory variables. First, if some of the explanatory variables are discrete, 
the averages of them represent no one in the sample (or population, for that matter). For 
example, if x

1
 � female and 47.5% of the sample is female, what sense does it make to plug in 

 - x 
1
 � .475 to represent the “average” person? Second, if a continuous explanatory variable 

appears as a nonlinear function—say, as a natural log or in a quadratic—it is not clear 
whether we want to average the nonlinear function or plug the average into the nonlinear 
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function. For example, should we use log(sales) or log(sales) to represent average firm 
size? Econometrics packages that compute the scale factor in (17.14) default to the former: 
the software is written to compute the averages of the regressors included in the probit or 
logit estimation.
 A different approach to computing a scale factor circumvents the issue of which  values to 
plug in for the explanatory variables. Instead, the second scale factor results from averaging 
the individual partial effects across the sample, leading to what is sometimes called the 
average partial effect (APE). For a continuous explanatory variable x

j
, the average partial

effect is n�1�n

i�1
 [g(  ̂  � 

0
 � x

i 
 ̂  � ) ̂  � 

j
] � �n�1�n

i�1
 g( ̂  � 

0
 � x

i 
 ̂  � )�  ̂  � 

j
. The term multiplying  ̂  � 

j
 acts 

as a scale factor:

 n�1 ∑ 
i�1

   
n

    g( ̂  � 
0
 � x

i 
 ̂  � ). 17.15

Equation (17.15) is easily computed after probit or logit estimation, where g( ̂  � 
0
 � x

i 
 ̂  � ) � 

�( ̂  � 
0
 � x

i 
 ̂  � ) in the probit case and g( ̂  � 

0
 � x

i 
 ̂  � ) � exp( ̂  � 

0
 � x

i 
 ̂  � )/[1 � exp( ̂  � 

0
 � x

i 
 ̂  � )]2 in the 

logit case. The two scale factors differ—and are possibly quite different—because in 
(17.15) we are using the average of the nonlinear function rather than the nonlinear func-
tion of the average [as in (17.14)].
 Because both of the scale factors just described depend on the calculus approximation 
in (17.13), neither makes much sense for discrete explanatory variables. Instead, it is  better 
to use equation (17.9) to directly estimate the change in the probability. For a change in x

k
 

from c
k
 to c

k
 � 1, the discrete analog of the partial effect based on (17.14) is

G[ ̂  � 
0
 �  ̂  � 

1
 - x 

1
 � ... �  ̂  � 

k�1

 
 - x 

k�1 
�  ̂  � 

k
(c

k
 � 1)]

 � G( ̂  � 
0
 �  ̂  � 

1
 - x 

1
 � ... �  ̂  � 

k�1
 - x 

k�1 
�  ̂  � 

k
c

k
),

 17.16

where G is the standard normal cdf in the probit case and G(z) � exp(z)/[1 � exp(z)] 
in the logit case. [For binary x

k
, (17.16) is computed routinely by certain econometrics 

packages, such as Stata®.] The average partial effect, which usually is more comparable 
to LPM estimates, is

 n�1 ∑ 
i�1

   
n

   {G[ ̂  � 
0
 �  ̂  � 

1
x

i1
 � ... �  ̂  � 

k�1
x

ik�1 
�  ̂  � 

k
(c

k
 � 1)]

 � G(  ̂  � 
0
 �  ̂  � 

1
x

i1
 � ... �  ̂  � 

k�1
x

ik�1 
�  ̂  � 

k
c

k
)}.

 17.17

Obtaining expression (17.17) for either probit or logit is actually rather simple. First, for 
each observation, we estimate the probability of success for the two chosen values of x

k
, 

plugging in the actual outcomes for the other explanatory variables. (So, we would have n 
estimated differences.) Then, we average the differences in estimated probabilities across 
all observations. 
 The expression in (17.17) has a particularly useful interpretation when x

k
 is a binary 

variable. For each unit i, we estimate the predicted difference in the probability that y
i
 � 

1 when x
k
 � 1 and x

k
 � 0, namely,

G(  ̂  � 
0
 �  ̂  � 

1
x

i1
 � ... �  ̂  � 

k�1
x

i,k�1
 �  ̂  � 

k
) � G(  ̂  � 

0
 �  ̂  � 

1
x

i1
 � ... �  ̂  � 

k�1
x

i,k�1
).
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For each i, this difference is the estimated effect of switching x
k
 from zero to one, whether 

unit i had x
ik 

� 1 or x
ik 

� 0. For example, if y is an employment indicator (equal to one 
if the person is employed) after participation in a job training program, indicated by x

k
, 

then we can estimate the difference in employment probabilities for each person in both 
states of the world. This counterfactual reasoning is similar to that in Chapter 16, which 
we used to motivate simultaneous equations models. The estimated effect of the job train-
ing program on the employment probability is the average of the estimated differences in 
probabilities. As another example, suppose that y indicates whether a family was approved 
for a mortgage, and x

k
 is a binary race indicator (say, equal to one for nonwhites). Then 

for each family we can estimate the predicted difference in having the mortgage approved 
as a function of income, wealth, credit rating, and so on—which would be elements of 
(x

i1
, x

i2
, ..., x

i,k�1
)—under the two scenarios that the household head is nonwhite versus 

white. Hopefully, we have controlled for enough factors so that averaging the differences 
in probabilities results in a convincing estimate of the race effect.
 In applications where one applies probit, logit, and the LPM, it makes sense to 
 compute the scale factors described above for probit and logit in making comparisons of 
partial effects. Still, sometimes one wants a quicker way to compare magnitudes of the 
different estimates. As mentioned earlier, for probit g(0) � .4 and for logit, g(0) �.25. 
Thus, to make the magnitudes of probit and logit roughly comparable, we can multiply the 
probit coefficients by .4/.25 � 1.6, or we can multiply the logit estimates by .625. In the 
LPM, g(0) is effectively one, so the logit slope estimates can be divided by four to make 
them comparable to the LPM estimates; the probit slope estimates can be divided by 2.5 
to make them comparable to the LPM estimates. Still, in most cases, we want the more 
accurate comparisons obtained by using the scale factors in (17.15) for logit and probit.

E x a m p l e  1 7 . 1

[Married Women’s Labor Force Participation]

We now use the MROZ.RAW data to estimate the labor force participation model from  Example 8.8—
see also Section 7.5—by logit and probit. We also report the linear probability model estimates from 
Example 8.8, using the heteroskedasticity-robust standard errors. The results, with standard errors in 
parentheses, are given in Table 17.1.
 The estimates from the three models tell a consistent story. The signs of the coefficients are the 
same across models, and the same variables are statistically significant in each model. The pseudo 
R-squared for the LPM is just the usual R-squared reported for OLS; for logit and probit, the pseudo 
R-squared is the measure based on the log-likelihoods described earlier.
 As we have already emphasized, the magnitudes of the coefficient estimates across models are 
not directly comparable. Instead, we compute the scale factors in equations (17.14) and (17.15). If 
we evaluate the standard normal probability density function �(  ̂  � 

0
 �  ̂  � 

1
x

1
 �  ̂  � 

2 
x

2
 � … �  ̂  � 

k 
x

k
) at the 

sample averages of the explanatory variables (including the average of exper2, kidslt6, and kidsge6), 
the result is approximately .391. When we 
compute (17.14) for the logit case, we obtain 
about .243. The ratio of these, .391/.243 � 
1.61, is very close to the simple rule of 
thumb for scaling up the probit estimates 
to make them comparable to the logit esti-
mates: multiply the probit estimates by 1.6. 

Q u e s t i o n  1 7 . 2
Using the probit estimates and the calculus approximation, what 
is the approximate change in the response probability when 
exper increases from 10 to 11?
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Nevertheless, for comparing probit and logit to the LPM estimates, it is better to use (17.15). These 
scale factors are about .301 (probit) and .179 (logit). For example, the scaled logit coefficient on 
educ is about .179(.221) � .040, and the scaled probit coefficient on educ is about .301(.131) � .039; 
both are remarkably close to the LPM estimate of .038. Even on the discrete variable kidslt6, 
the scaled logit and probit coefficients are similar to the LPM coefficient of �.262. These are 
.179(�1.443) � �.258 (logit) and .301(�.868) � �.261 (probit).
 The biggest difference between the LPM model and the logit and probit models is that the LPM 
assumes constant marginal effects for educ, kidslt6, and so on, while the logit and probit models imply 
diminishing magnitudes of the partial effects. In the LPM, one more small child is estimated to reduce 
the probability of labor force participation by about .262, regardless of how many young children 
the woman already has (and regardless of the levels of the other explanatory variables). We can 
contrast this with the estimated marginal effect from probit. For concreteness, take a woman with 

TABLE  17 . 1

LPM, Logit, and Probit Estimates of Labor Force Participation

Dependent Variable: inlf

Independent 
Variables

LPM 
(OLS)

Logit 
(MLE)

Probit 
(MLE)

nwifeinc  �.0034
 (.0015)

�.021
  (.008)

�.012
  (.005)

educ .038
(.007)

.221
(.043)

.131
(.025)

exper .039
(.006)

.206
(.032)

.123
(.019)

exper2 �.00060
  (.00018)

�.0032
  (.0010)

�.0019
  (.0006)

age �.016
  (.002)

�.088
  (.015)

�.053
  (.008)

kidslt6 �.262
  (.032)

�1.443
   (.204)

�.868
  (.119)

kidsge6 .013
(.013)

.060
(.075)

.036
(.043)

constant .586
(.151)

.425
(.860)

.270
(.509)

Percentage correctly predicted 
Log-likelihood value
Pseudo R-squared

73.4
—

.264

73.6
�401.77

.220

73.4
�401.30

.221
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 nwifeinc � 20.13, educ � 12.3, exper � 10.6, and age � 42.5—which are roughly the sample ave r-
ages—and kidsge6 � 1. What is the estimated decrease in the probability of working in going from zero 
to one small child? We evaluate the standard normal cdf, �(  ̂  � 

0
 �  ̂  � 

1
x

1
 � … �  ̂  � 

k 
x

k
), with kidslt6 � 1 

and kidslt6 � 0, and the other independent variables set at the preceding values. We get roughly 
.373 � .707 � �.334, which means that the labor force participation probability is about .334 lower 
when a woman has one young child. If the woman goes from one to two young  children, the prob-
ability falls even more, but the marginal effect is not as large: .117 � .373 � �.256. Interestingly, 
the estimate from the linear probability model, which is supposed to estimate the effect near the 
average, is in fact between these two estimates.

 
 Figure 17.2 illustrates how the estimated response probabilities from nonlinear
binary response models can differ from the linear probability model. The estimated prob-
ability of labor force participation is graphed against years of education for the linear prob-
ability model and the probit model. (The graph for the logit model is very similar to that 
for the probit model.) In both cases, the explanatory variables, other than educ, are set at 
their sample averages. In particular, the two equations graphed are 1inlf  � .102 � .038 educ
for the linear model and 1inlf � �(�1.403 � .131 educ). At lower levels of education, 
the linear probability model estimates higher labor force participation probabilities than 
the probit model. For example, at eight years of education, the linear probability model 
 estimates a .406 labor force participation probability while the probit model estimates 
about .361. The estimates are the same at around 111�3 years of education. At higher  levels 
of education, the probit model gives higher labor force participation probabilities. In this 

F I GURE  17 . 2

Estimated response probabilities with respect to education for the linear probability 
and probit models.
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sample, the smallest years of education is 5 and the largest is 17, so we really should not 
make comparisons outside this range.
 The same issues concerning endogenous explanatory variables in linear models also 
arise in logit and probit models. We do not have the space to cover them, but it is pos-
sible to test and correct for endogenous explanatory variables using methods related to 
two stage least squares. Evans and Schwab (1995) estimated a probit model for whether 
a student attends college, where the key explanatory variable is a dummy variable for 
whether the student attends a Catholic school. Evans and Schwab estimated a model by 
maximum likelihood that allows attending a Catholic school to be considered endogenous. 
[See Wooldridge (2002, Chapter 15) for an explanation of these methods.]
 Two other issues have received attention in the context of probit models. The first 
is nonnormality of e in the latent variable model (17.6). Naturally, if e does not have a 
standard normal distribution, the response probability will not have the probit form. Some 
authors tend to emphasize the inconsistency in estimating the �

j
, but this is the wrong 

focus unless we are only interested in the direction of the effects. Because the response 
probability is unknown, we could not estimate the magnitude of partial effects even if we 
had consistent estimates of the �

j
.

 A second specification problem, also defined in terms of the latent variable model, is 
heteroskedasticity in e. If Var(e�x) depends on x, the response probability no longer has 
the form G(�

0
 � x�); instead, it depends on the form of the variance and requires more 

general estimation. Such models are not often used in practice, since logit and probit with 
flexible functional forms in the independent variables tend to work well.
 Binary response models apply with little modification to independently pooled cross 
sections or to other data sets where the observations are independent but not necessarily 
identically distributed. Often, year or other time period dummy variables are included to 
account for aggregate time effects. Just as with linear models, logit and probit can be used 
to evaluate the impact of certain policies in the context of a natural experiment.
 The linear probability model can be applied with panel data; typically, it would be 
 estimated by fixed effects (see Chapter 14). Logit and probit models with unobserved 
effects have recently become popular. These models are complicated by the nonlinear 
nature of the response probabilities, and they are difficult to estimate and interpret. [See 
Wooldridge (2002, Chapter 15).]

17.2 The Tobit Model 
for Corner Solution Responses
As mentioned in the chapter introduction, another important kind of limited dependent 
variable is a corner solution response. Such a variable is zero for a nontrivial fraction of 
the population but is roughly continuously distributed over positive values. An example is 
the amount an individual spends on alcohol in a given month. In the population of people 
over age 21 in the United States, this variable takes on a wide range of values. For some 
significant fraction, the amount spent on alcohol is zero. The following treatment omits 
verification of some details concerning the Tobit model. [These are given in Wooldridge 
(2002, Chapter 16).]
 Let y be a variable that is essentially continuous over strictly positive values but that 
takes on zero with positive probability. Nothing prevents us from using a linear model for 
y. In fact, a linear model might be a good approximation to E(y�x

1
, x

2
, …, x

k
), especially for 
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x
j
 near the mean values. But we would possibly obtain negative fitted values, which leads 

to negative predictions for y; this is analogous to the problems with the LPM for binary 
outcomes. Also, the assumption that an explanatory variable appearing in level form 
has a constant partial effect on E( y�x) can be misleading. Probably, Var( y�x) would be 
 heteroskedastic, although we can easily deal with general heteroskedasticity by comput-
ing robust standard errors and test statistics. Because the distribution of y piles up at zero,
y clearly cannot have a conditional normal distribution. So all inference would have only 
asymptotic justification, as with the linear probability model.
 In some cases, it is important to have a model that implies nonnegative predicted 
 values for y, and which has sensible partial effects over a wide range of the explanatory 
variables. Plus, we sometimes want to estimate features of the distribution of y given
x

1
, ..., x

k
 other than the conditional expectation. The Tobit model is quite convenient for 

these purposes. Typically, the Tobit model expresses the observed response, y, in terms of 
an underlying latent variable:

 y* � �
0
 � x� � u, u�x ~ Normal(0, �2) 17.18

 y � max(0,y*). 17.19

The latent variable y* satisfies the classical linear model assumptions; in particular, it has 
a normal, homoskedastic distribution with a linear conditional mean. Equation (17.19) 
implies that the observed variable, y, equals y* when y* � 0, but y � 0 when y* � 0. 
Because y* is normally distributed, y has a continuous distribution over strictly positive 
values. In particular, the density of y given x is the same as the density of y* given x for 
positive values. Further,

P( y � 0�x) � P(y* � 0�x) � P(u � �x��x)

� P(u/� � �x�/��x) � �(�x�/�) � 1 � �(x�/�),

because u/� has a standard normal distribution and is independent of x; we have absorbed 
the intercept into x for notational simplicity. Therefore, if (x

i
, y

i
) is a random draw from 

the population, the density of y
i
 given x

i
 is

 (2��2)�1/2exp[�( y � x
i
 �)2/(2�2)] � (1/�)�[( y � x

i  
�)/�], y � 0 17.20

 P(y
i
 � 0�x

i
) � 1 � �(x

i   
�/�), 17.21

where � is the standard normal density function.
 From (17.20) and (17.21), we can obtain the log-likelihood function for each observa-
tion i:

 �
i
( �,�) � 1( y

i
 � 0)log[1 � �(x

i 
�/�)]

 � 1( y
i
 � 0)log{(1/�)�[(y

i
 � x

i 
�)/�]};

 17.22

notice how this depends on �, the standard deviation of u, as well as on the �
j
. The log-

likelihood for a random sample of size n is obtained by summing (17.22) across all i. The 
maximum likelihood estimates of � and � are obtained by maximizing the log-likelihood; 
this requires numerical methods, although in most cases this is easily done using a pack-
aged routine.
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 As in the case of logit and probit, 
each Tobit estimate comes with a stan-
dard error, and these can be used to con-
struct t statistics for each  ̂  � 

j
; the matrix 

formula used to find the standard errors 
is complicated and will not be presented 
here. [See, for example, Wooldridge 
(2002, Chapter 16).]
 Testing multiple exclusion restrictions is easily done using the Wald test or the likeli-
hood ratio test. The Wald test has a similar form to the logit or probit case; the LR test is 
always given by (17.12), where, of course, we use the Tobit log-likelihood functions for the 
restricted and unrestricted models.

Interpreting the Tobit Estimates

Using modern computers, the maximum likelihood estimates for Tobit models are usu-
ally not much more difficult to obtain than the OLS estimates of a linear model. Further, 
the outputs from Tobit and OLS are often similar. This makes it tempting to interpret the 
 ̂  � 

j
 from Tobit as if these were estimates from a linear regression. Unfortunately, things are 

not so easy.
 From equation (17.18), we see that the �

j
 measure the partial effects of the x

j
 on 

E(y*�x), where y* is the latent variable. Sometimes, y* has an interesting economic mean-
ing, but more often it does not. The variable we want to explain is y, as this is the observed 
outcome (such as hours worked or amount of charitable contributions). For example, as a 
policy matter, we are interested in the sensitivity of hours worked to changes in marginal 
tax rates.
 We can estimate P(y � 0�x) from (17.21), which, of course, allows us to estimate 
P(y � 0�x). What happens if we want to estimate the expected value of y as a function 
of x? In Tobit models, two expectations are of particular interest: E(y�y � 0,x), which is 
sometimes called the “conditional expectation” because it is conditional on y � 0, and 
E(y�x), which is, unfortunately, called the “unconditional expectation.” (Both expectations 
are conditional on the explanatory variables.) The expectation E(y�y � 0,x) tells us, for 
given values of x, the expected value of y for the subpopulation where y is positive. Given 
E(y�y � 0,x), we can easily find E(y�x):

 E(y�x) � P(y � 0�x)�E(y�y � 0,x) � �(x�/�)�E(y�y � 0,x). 17.23

 To obtain E(y�y � 0,x), we use a result for normally distributed random variables: 
if z ~ Normal(0,1), then E(z�z � c) � �(c)/[1 � �(c)] for any constant c. But E(y�y � 
0,x) � x� � E(u�u � �x�) � x� � �E[(u/�)�(u/�) � �x�/�] � x� � ��(x�/�)/
�(x�/�), because �(�c) � �(c), 1 � �(�c) � �(c), and u/� has a standard normal 
distribution independent of x.
 We can summarize this as

 E(y�y � 0,x) � x� � ��(x�/�), 17.24

where �(c) � �(c)/�(c) is called the inverse Mills ratio; it is the ratio between the stan-
dard normal pdf and standard normal cdf, each evaluated at c.

Q u e s t i o n  1 7 . 3
Let y be the number of extramarital affairs for a married woman 
from the U.S. population; we would like to explain this variable 
in terms of other characteristics of the woman—in particular, 
whether she works outside of the home—her husband, and her 
family. Is this a good candidate for a Tobit model?
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 Equation (17.24) is important. It shows that the expected value of y conditional on 
y � 0 is equal to x � plus a strictly positive term, which is � times the inverse Mills ratio 
evaluated at x �/�. This equation also shows why using OLS only for observations where 
y

i
 � 0 will not always consistently estimate �; essentially, the inverse Mills ratio is an 

omitted variable, and it is generally correlated with the elements of x.
 Combining (17.23) and (17.24) gives

 E(y�x) � �(x�/�)[x� � ��(x�/�)] � �(x�/�)x� � ��(x�/�), 17.25

where the second equality follows because �(x�/�)�(x�/�) � �(x�/�). This equation 
shows that when y follows a Tobit model, E( y�x) is a nonlinear function of x and �. 
Although it is not obvious, the right-hand side of equation (17.25) can be shown to be 
positive for any values of x and �. Therefore, once we have estimates of �, we can be sure 
that predicted values for y—that is, estimates of E(y�x)—are positive. The cost of ensuring 
positive predictions for y is that equation (17.25) is more complicated than a linear model 
for E(y�x). Even more importantly, the partial effects from (17.25) are more complicated 
than for a linear model. As we will see, the partial effects of x

j
 on E( y�y � 0,x) and E( y�x) 

have the same sign as the coefficient, �
j
, but the magnitude of the effects depends on the 

values of all explanatory variables and parameters. Because � appears in (17.25), it is not 
surprising that the partial effects depend on �, too.
 If x

j
 is a continuous variable, we can find the partial effects using calculus. First,

 ∂E( y�y � 0,x)/∂x
j
 � �

j
 � �

j 
�   d �  ___ 

dc
   (x�/�),

assuming that x
j
 is not functionally related to other regressors. By differentiating �(c) � 

�(c)/�(c) and using d�/dc � �(c) and d�/dc � �c�(c), it can be shown that d�/dc � ��(c)
[c � �(c)]. Therefore,

 ∂E(y�y � 0,x)/∂x
j
 � �

j
{1 � �(x�/�)[x�/� � �(x�/�)]}. 17.26

This shows that the partial effect of x
j
 on E(y�y � 0,x) is not determined just by �

j
. 

The adjustment factor is given by the term in brackets, {�}, and depends on a linear 
function of x, x�/� � (�

0
 � �

1
x

1
 � … � �

k 
x

k
)/�. It can be shown that the adjustment 

 factor is strictly between zero and one. In practice, we can estimate (17.26) by plugging 
in the MLEs of the �

j
 and �. As with logit and probit models, we must plug in values for

the x
j
, usually the mean values or other interesting values. Equation (17.26) reveals a subtle

point that is sometimes lost in applying the Tobit model to corner solution responses: the 
parameter � appears directly in the partial effects, so having an estimate of � is  crucial 
for estimating the partial effects. Sometimes, � is called an “ancillary” parameter (which 
means it is auxiliary, or unimportant). Although it is true that the value of � does not affect 
the sign of the partial effects, it does affect the magnitudes, and we are often interested 
in the economic importance of the explanatory variables. Therefore, characterizing � as 
ancillary is misleading and comes from a confusion between the Tobit model for corner 
solution applications and applications to true data censoring. (See Section 17.4.)
 All of the usual economic quantities, such as elasticities, can be computed. For exam-
ple, the elasticity of y with respect to x

1
, conditional on y � 0, is

   
∂E(y�y � 0,x)

  ____________ 
∂x

1

   �   
x

1 ___________ 
E(y�y � 0,x)

  . 17.27
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This can be computed when x
1
 appears in various functional forms, including level, loga-

rithmic, and quadratic forms.
 If x

1
 is a binary variable, the effect of interest is obtained as the difference between 

E(y�y � 0, x), with x
1
 � 1 and x

1
 � 0. Partial effects involving other discrete variables 

(such as number of children) can be handled similarly.
 We can use (17.25) to find the partial derivative of E(y�x) with respect to continuous 
x

j
. This derivative accounts for the fact that people starting at y � 0 might choose y � 0 

when x
j
 changes:

   ∂E(y�x)
 _______ 

∂x
j

   �   ∂P(y � 0�x)
 __________ 

∂x
j

   � E(y�y � 0,x) � P(y � 0�x) �   ∂E(y�y � 0,x)
  ____________ 

∂x
j

  . 17.28

Because P( y � 0�x) � �(x�/�),

   ∂P(y � 0�x)
 __________ 

∂x
j

   � (�
j
 /�)�(x�/�), 17.29

so we can estimate each term in (17.28), once we plug in the MLEs of the �
j
 and � and 

particular values of the x
j
.

 Remarkably, when we plug (17.26) and (17.29) into (17.28) and use the fact that 
�(c)�(c) � �(c) for any c, we obtain

   ∂E(y�x)
 _______ 

∂x
j

   � �
j
�(x�/�). 17.30

Equation (17.30) allows us to roughly compare OLS and Tobit estimates. [Equation (17.30) 
also can be derived directly from equation (17.25) using the fact that d�(z)/dz � 
�z�(z).] The OLS slope coefficients, say,  ̂  � 

j
, from the regression of y

i
 on x

i1
, x

i2
, ..., x

ik
, 

i � 1, ..., n—that is, using all of the data—are direct estimates of ∂E(y�x)/∂x
j
. To make the 

Tobit coefficient,  ̂  � 
j
, comparable to  ̂  � 

j
, we must multiply  ̂  � 

j
 by an adjustment factor.

 As in the probit and logit cases, there are two common approaches for computing an 
adjustment factor for obtaining partial effects—at least for continuous explanatory vari-
ables. Both are based on equation (17.30). First, the partial effect at the average, PEA, is 
obtained by evaluating �(x  ̂  � / ̂  � ), which we denote �( - x   ̂  � / ̂  � ). We can then use this single 
factor to multiply the coefficients on the continuous explanatory variables. The PEA has 
the same drawbacks here as in the probit and logit cases: we may not be interested in the 
partial effect for the  “average” because the average is either uninteresting or meaningless. 
Plus, we must decide whether to use averages of nonlinear functions or plug the averages 
into the nonlinear functions.
 The average partial effect, APE, is preferred in most cases. Here, we compute the 
scale factor as n�1  ∑ 

i�1
  

n
  �(x

i
  ̂  � / ̂  � ) . Unlike the PAE, the APE does not require us to plug 

in a fictitious or nonexistent unit from the population, and there are no decisions to make 
about plugging averages into nonlinear functions. Like the PAE, the APE scale factor is 
always between zero and one because 0 � �(x  ̂  � / ̂  � ) � 1 for any values of the explanatory 
variables. In fact,  ̂  P (y

i
 � 0|x

i
) � �(x

i 
 ̂  � / ̂  � ), and so the APE scale factor and the PAE scale 

factor tend to be closer to one when there are few observations with y
i
 � 0. In the case that 

y
i
 � 0 for all i, the Tobit and OLS estimates of the parameters are identical. [Of course, 

if y
i
 � 0 for all i, we cannot justify the use of a Tobit model anyway. Using log (y

i
) in a 

linear regression model makes much more sense.]
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 Unfortunately, for discrete explanatory variables, comparing OLS and Tobit estimates 
is not so easy (although using the scale factor for continuous explanatory variables often 
is a useful approximation). For Tobit, the partial effect of a discrete explanatory variable, 
for example, a binary variable, should really be obtained by estimating E(y|x) from 
equation (17.25). For example, if x

1
 is a binary, we should first plug in x

1
 � 1 and then 

x
1
 � 0. If we set the other explanatory variables at their sample averages, we obtain a 

measure analogous to (17.16) for the logit and probit cases. If we compute the difference 
in expected values for each individual, and then average the difference, we get an APE 
analogous to (17.17).

E x a m p l e  1 7 . 2

[Married Women’s Annual Labor Supply]

The file MROZ.RAW includes data on hours worked for 753 married women, 428 of whom worked 
for a wage outside the home during the year; 325 of the women worked zero hours. For the women 
who worked positive hours, the range is fairly broad, extending from 12 to 4,950. Thus, annual 
hours worked is a good candidate for a Tobit model. We also estimate a linear model (using all 753 
observations) by OLS. The results are given in Table 17.2.
 This table has several noteworthy features. First, the Tobit coefficient estimates have the same 
sign as the corresponding OLS estimates, and the statistical significance of the estimates is similar. 
(Possible exceptions are the coefficients on nwifeinc and kidsge6, but the t statistics have similar 
magnitudes.) Second, though it is tempting to compare the magnitudes of the OLS and Tobit esti-
mates, this is not very informative. We must be careful not to think that, because the Tobit coeffi-
cient on kidslt6 is roughly twice that of the OLS coefficient, the Tobit model implies a much greater 
response of hours worked to young children.
 We can multiply the Tobit estimates by appropriate adjustment factors to make them roughly 
comparable to the OLS estimates. The APE scale factor n�1 ∑ 

i�1
  

n
    �(x

i
  ̂  � / ̂  � ) turns out to be about .589, 

which we can use to obtain the average partial effects for the Tobit estimation. If, for example, we 
multiply the educ coefficient by .589 we get .589(80.65) � 47.50 (that is, 47.5 hours more), which 
is quite a bit larger than the OLS partial effect, about 28.8 hours. So, even for estimating an average 
effect, the Tobit estimates are notably larger in magnitude than the  corresponding OLS estimate. If, 
instead, we want the estimated effect of another year of education starting at the average values of all 
explanatory variables, then we compute the PEA scale factor �( - x   ̂  � / ̂  � ). This turns out to be about .645 
[when we use the squared average of experience, (exper)2, rather than the average of exper2]. This 
partial effect, which is about 52 hours, is almost twice as large as the OLS estimate. With the excep-
tion of kidsge6, the scaled Tobit slope coefficients are all greater in magnitude than the corresponding 
OLS coefficient.
 We have reported an R-squared for both the linear regression and the Tobit models. The
R-squared for OLS is the usual one. For Tobit, the R-squared is the square of the correlation coeffi-
cient between y

i
 and  ̂  y 

i
, where  ̂  y 

i
 � �(x

i 
 ̂  � / ̂  � )x

i 
 ̂  �  �  ̂  �  �(x

i 
 ̂  � / ̂  � ) is the estimate of E(y�x � x

i
). This is 

motivated by the fact that the usual R-squared for OLS is equal to the squared correlation between 
the y

i
 and the fitted values [see equation (3.29)]. In nonlinear models such as the Tobit model, the 

squared correlation coefficient is not identical to an R-squared based on a sum of squared residuals 
as in (3.28). This is because the fitted values, as defined earlier, and the residuals, y

i
 �  ̂  y 

i
, are not 

uncorrelated in the sample. An R-squared defined as the squared correlation coefficient between y
i
 

and  ̂  y 
i
 has the advantage of always being between zero and one; an R-squared based on a sum of 

squared residuals need not have this feature.
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 We can see that, based on the R-squared measures, the Tobit conditional mean function fits the 
hours data somewhat, but not substantially, better. However, we should remember that the Tobit 
estimates are not chosen to maximize an R-squared—they maximize the log-likelihood function—
whereas the OLS estimates are the values that do produce the highest R-squared given the linear 
functional form.
 By construction, all of the Tobit fitted values for hours are positive. By contrast, 39 of the OLS 
fitted values are negative. Although negative predictions are of some concern, 39 out of 753 is just 
over 5% of the observations. It is not entirely clear how negative fitted values for OLS translate into 
differences in estimated partial effects. Figure 17.3 plots estimates of E(hours�x) as a function of 
education; for the Tobit model, the other explanatory variables are set at their average values. For 
the linear model, the equation graphed is 1hours � 387.19 � 28.76 educ. For the Tobit model, the 

TABLE  17 . 2

OLS and Tobit Estimation of Annual Hours Worked

Dependent Variable: hours

Independent 
Variables

Linear 
(OLS)

Tobit 
(MLE)

nwifeinc �3.45 
  (2.54)

�8.81 
  (4.46)

educ 28.76 
(12.95)

80.65 
(21.58)

exper 65.67 
 (9.96)

131.56  
 (17.28) 

exper2 �.700
  (.325)

�1.86
  (0.54)

age �30.51
   (4.36)

�54.41
   (7.42)

kidslt6 �442.09
   (58.85)

�894.02 
  (111.88)

kidsge6 �32.78 
  (23.18)

�16.22 
  (38.64)

constant 1,330.48 
  (270.78)

965.31 
  (446.44)

Log-likelihood value
R-squared
 ̂  � 

—
.266

750.18

�3,819.09
.274

1,122.02
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equation graphed is 1hours � �[(�694.12 � 80.65 educ)/1,122.02] � (�694.12 � 80.65 educ) � 
1,122.02 � �[(�694.12 � 80.65 educ)/1,122.02]. As can be seen from the figure, the linear model 
gives notably higher estimates of the expected hours worked at even fairly high levels of education. 
For example, at eight years of education, the OLS predicted value of hours is about 617.5, while 
the Tobit estimate is about 423.9. At 12 years of education, the predicted hours are about 732.7 and 
598.3, respectively. The two prediction lines cross after 17 years of education, but no woman in the 
sample has more than 17 years of education. The increasing slope of the Tobit line clearly indicates 
the increasing marginal effect of education on expected hours worked.

 

Specifi cation Issues in Tobit Models

The Tobit model, and in particular the formulas for the expectations in (17.24) and (17.25), 
rely crucially on normality and homoskedasticity in the underlying latent variable model. 
When E( y�x) � �

0
 � �

1
x

1
 � … � �

k 
x

k
, we know from Chapter 5 that conditional nor-

mality of y does not play a role in unbiasedness, consistency, or large sample inference. 
Heteroskedasticity does not affect unbiasedness or consistency of OLS, although we 
must compute robust standard errors and test statistics to perform approximate inference. 
In a Tobit model, if any of the assumptions in (17.18) fail, then it is hard to know what 
the Tobit MLE is estimating. Nevertheless, for moderate departures from the assumptions, 
the Tobit model is likely to provide good estimates of the partial effects on the conditional 
means. It is possible to allow for more general assumptions in (17.18), but such models 
are much more complicated to estimate and interpret.
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F I GURE  17 . 3

Estimated expected values of hours with respect to education for the linear and 
Tobit models.
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 One potentially important limitation of the Tobit model, at least in certain applications, 
is that the expected value conditional on y � 0 is closely linked to the probability that 
y � 0. This is clear from equations (17.26) and (17.29). In particular, the effect of x

j
 on

P( y � 0�x) is proportional to �
j
, as is the effect on E( y�y � 0,x), where both functions mul-

tiplying �
j
 are positive and depend on x only through x�/�. This rules out some interest-

ing possibilities. For example, consider the relationship between amount of life insurance 
coverage and a person’s age. Young people may be less likely to have life insurance at 
all, so the probability that y � 0 increases with age (at least up to a point). Conditional on 
having life insurance, the value of policies might decrease with age, since life insurance 
becomes less important as people near the end of their lives. This possibility is not allowed 
for in the Tobit model.
 One way to informally evaluate whether the Tobit model is appropriate is to estimate 
a probit model where the binary outcome, say, w, equals one if y � 0, and w � 0 if y � 0. 
Then, from (17.21), w follows a probit model, where the coefficient on x

j
 is �

j
 � �

j 
/�. 

This means we can estimate the ratio of �
j
 to � by probit, for each j. If the Tobit model 

holds, the probit estimate,  ̂  � 
j
, should be “close” to  ̂  � 

j 
/ ̂  � , where  ̂  � 

j
 and  ̂  �  are the Tobit 

estimates. These will never be identical because of sampling error. But we can look for 
certain problematic signs. For example, if  ̂  � 

j
 is significant and negative, but  ̂  � 

j
 is positive, 

the Tobit model might not be appropriate. Or, if  ̂  � 
j
 and  ̂  � 

j
 are the same sign, but �  ̂  � 

j 
/ ̂  �  � is 

much larger or smaller than � ̂  � 
j
�, this could also indicate problems. We should not worry 

too much about sign changes or magnitude differences on explanatory variables that are 
insignificant in both models.
 In the annual hours worked example,  ̂  �  � 1,122.02. When we divide the Tobit 
coefficient on nwifeinc by  ̂  � , we obtain �8.81/1,122.02 � �.0079; the probit coef ficient 
on nwifeinc is about �.012, which is different, but not dramatically so. On kidslt6, the 
coefficient estimate over  ̂  �   is about �.797, compared with the probit estimate of �.868. 
Again, this is not a huge difference, but it indicates that having small children has a larger 
effect on the initial labor force participation decision than on how many hours a woman 
chooses to work once she is in the labor force. (Tobit effectively averages these two effects 
together.) We do not know whether the effects are statistically different, but they are of 
the same order of magnitude.
 What happens if we conclude that the Tobit model is inappropriate? There are 
models, usually called hurdle or two-part models, that can be used when Tobit seems 
unsuitable. These all have the property that P(y � 0�x) and E(y�y � 0,x) depend on dif-
ferent parameters, so x

j
 can have dissimilar effects on these two functions. [See Woold-

ridge (2002, Chapter 16) for a description of these models.]

17.3 The Poisson Regression Model
Another kind of nonnegative dependent variable is a count variable, which can take on 
nonnegative integer values: {0, 1, 2, …}. We are especially interested in cases where y 
takes on relatively few values, including zero. Examples include the number of children 
ever born to a woman, the number of times someone is arrested in a year, or the number 
of patents applied for by a firm in a year. For the same reasons discussed for binary and 
Tobit responses, a linear model for E(y�x

1
, …, x

k
) might not provide the best fit over all 

values of the explanatory variables. (Nevertheless, it is always informative to start with a 
linear model, as we did in Example 3.5.)
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 As with a Tobit outcome, we cannot take the logarithm of a count variable because it 
takes on the value zero. A profitable approach is to model the expected value as an expo-
nential function:

 E(y�x
1
, x

2
, …, x

k
) � exp(�

0
 � �

1
x

1
 � … � �

k
 x

k
). 17.31

Because exp(�) is always positive, (17.31) ensures that predicted values for y will also be 
positive. The exponential function is graphed in Figure A.5 of Appendix A.
 Athough (17.31) is more complicated than a linear model, we basically already know 
how to interpret the coefficients. Taking the log of equation (17.31) shows that

 log[E(y�x
1
, x

2
, …, x

k
)] � �

0
 � �

1
x

1
 � … � �

k
 x

k
, 17.32

so that the log of the expected value is linear. Therefore, using the approximation proper-
ties of the log function that we have used often in previous chapters,

%�E(y�x) � (100�
j
)�x

j
.

In other words, 100�
j
 is roughly the percentage change in E( y�x), given a one-unit increase 

in x
j
. Sometimes, a more accurate estimate is needed, and we can easily find one by look-

ing at discrete changes in the expected value. Keep all explanatory variables except x
k
 

fixed and let x 0   
k
   be the initial value and x 1   

k
   the subsequent value. Then, the proportionate 

change in the expected value is

[exp(�
0
 � x

k�1
�

k�1
 � �

k
x 1   

k
  )/exp(�

0
 � x

k�1
�

k�1
 � �

k
 x 0   

k
  )] � 1 � exp( �

k 
�x

k
) � 1,

where x
k�1

�
k�1

 is shorthand for �
1
x

1
 � … � �

k�1
x

k�1
, and �x

k
 � x 1   

k
   � x 0   

k
  . When

�x
k
 � 1—for example, if x

k
 is a dummy variable that we change from zero to one—then 

the change is exp(�
k
) � 1. Given  ̂  � 

k
, we obtain exp( ̂  � 

k
) � 1 and multiply this by 100 to 

turn the proportionate change into a percentage change.
 If, say, x

j
 � log(z

j
) for some variable z

j
 � 0, then its coefficient, �

j
, is interpreted as an 

elasticity with respect to z
j 
. Technically, it is an elasticity of the expected value of y with 

respect to z
j
 because we cannot compute the percentage change in cases where y � 0. For 

our purposes, the distinction is unimportant. The bottom line is that, for practical purposes, 
we can interpret the coefficients in equation (17.31) as if we have a linear model, with log(y) 
as the dependent variable. There are some subtle differences that we need not study here.
 Because (17.31) is nonlinear in its parameters—remember, exp(�) is a nonlinear 
 function—we cannot use linear regression methods. We could use nonlinear least squares, 
which, just as with OLS, minimizes the sum of squared residuals. It turns out, however, that 
all standard count data distributions exhibit heteroskedasticity, and nonlinear least squares 
does not exploit this [see Wooldridge (2002, Chapter 12)]. Instead, we will rely on maximum 
likelihood and the important related method of quasi-maximum likelihood estimation.
 In Chapter 4, we introduced normality as the standard distributional assumption for 
linear regression. The normality assumption is reasonable for (roughly) continuous depen-
dent variables that can take on a large range of values. A count variable cannot have a nor-
mal distribution (because the normal distribution is for continuous variables that can take 
on all values), and if it takes on very few values, the distribution can be very different from 
normal. Instead, the nominal distribution for count data is the Poisson distribution.
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 Because we are interested in the effect of explanatory variables on y, we must look at 
the Poisson distribution conditional on x. The Poisson distribution is entirely determined 
by its mean, so we only need to specify E(y�x). We assume this has the same form as 
(17.31), which we write in shorthand as exp(x�). Then, the probability that y equals the 
value h, conditional on x, is

P(y � h�x) � exp[�exp(x�)][exp(x�)]h/h!, h � 0, 1, ...,

where h! denotes factorial (see Appendix B). This distribution, which is the basis for the 
Poisson regression model, allows us to find conditional probabilities for any values of 
the explanatory variables. For example, P(y � 0�x) � exp[�exp(x�)]. Once we have esti-
mates of the �

j
, we can plug them into the probabilities for various values of x.

 Given a random sample {(x
i
, y

i
): i � 1, 2, ..., n}, we can construct the log-likelihood 

function:

 �(�) �  ∑ 
i�1

   
n

    �
i
(�) �  ∑ 

i�1

   
n

   {y
i 
x

i 
� � exp(x

i 
�)}, 17.33

where we drop the term �log(y
i
!) because it does not depend on �. This log-likelihood 

function is simple to maximize, although the Poisson MLEs are not obtained in closed 
form.
 The standard errors of the Poisson estimates  ̂  � 

j
 are easy to obtain after the log- likelihood 

function has been maximized; the formula is in Appendix 17B. These are reported along 
with the  ̂  � 

j
 by any software package.

 As with the probit, logit, and Tobit models, we cannot directly compare the magnitudes 
of the Poisson estimates of an exponential function with the OLS estimates of a  linear 
function. Nevertheless, a rough comparison is possible, at least for continuous explana-
tory variables. If (17.31) holds, then the partial effect of x

j
 with respect to E(y�x

1
, x

2
, ..., x

k
) 

is ∂E(y�x
1
, x

2
, ..., x

k
)/x

j
 � exp(�

0
 � �

1
x

1
 � ... � �

k 
x

k
) ∙ �

j
. This expression follows 

from the chain rule in calculus because the derivative of the exponential function is just 
the exponential function. If we let  ̂  � 

j 
denote an OLS slope coefficient from the regression 

y on x
1
, x

2
, ..., x

k
, then we can roughly compare the magnitude of the  ̂  � 

j
 and the  average 

 partial effect for an exponential regression function. Interestingly, the APE scale 
factor in this case, n�1  ∑ 

i�1
  

n
  exp (  ̂  � 

0
 �  ̂  � 

1
x

i1
 � ... �  ̂  � 

k 
x

ik
) � n�1  ∑ 

i�1
  

      n
    ̂  y 

i
 , is simply 

the sample average  - y  of y
i
, where we define the fitted values as  ̂  y 

i
� exp(  ̂  � 

0
 � x

i 
 ̂  � ). In 

other words, for Poisson regression with an exponential mean function, the average 
of the fitted values is the same as the average of the original outcomes on y

i
—just as 

in the linear regression case. This makes it simple to scale the Poisson estimates,  ̂  � 
j
, 

to make them comparable to the corresponding OLS estimates,  ̂  � 
j
: for a continuous explan-

atory variable, we can compare  ̂  � 
j
 to  - y  ·  ̂  � 

j
.

 Although Poisson MLE analysis is a natural first step for count data, it is often much 
too restrictive. All of the probabilities and higher moments of the Poisson distribution are 
determined entirely by the mean. In particular, the variance is equal to the mean:

 Var(y�x) � E(y�x). 17.34

This is restrictive and has been shown to be violated in many applications. Fortunately, 
the Poisson distribution has a very nice robustness property: whether or not the Poisson 
distribution holds, we still get consistent, asymptotically normal estimators of the �

j
. [See 
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Wooldridge (2002, Chapter 19) for details.] This is analogous to the OLS estimator, which 
is consistent and asymptotically normal whether or not the normality assumption holds; 
yet OLS is the MLE under normality.
 When we use Poisson MLE, but we do not assume that the Poisson distribution is 
entirely correct, we call the analysis quasi-maximum likelihood estimation (QMLE). 
The Poisson QMLE is very handy because it is programmed in many econometrics pack-
ages. However, unless the Poisson variance assumption (17.34) holds, the standard errors 
need to be adjusted.
 A simple adjustment to the standard errors is available when we assume that the vari-
ance is proportional to the mean:

 Var(y�x) � � 2E(y�x), 17.35

where � 2 � 0 is an unknown parameter. When � 2 � 1, we obtain the Poisson variance 
assumption. When � 2 � 1, the variance is greater than the mean for all x; this is called 
overdispersion because the variance is larger than in the Poisson case, and it is observed 
in many applications of count regressions. The case � 2 � 1, called underdispersion, is less 
common but is allowed in (17.35).
 Under (17.35), it is easy to adjust the usual Poisson MLE standard errors. Let  ̂  � 

j
 

denote the Poisson QMLE and define the residuals as  ̂  u 
i
 � y

i
 �  ̂  y 

i
, where  ̂  y 

i
 � exp(  ̂  � 

0
 � 

 ̂  � 
1
x

i1
 � … �  ̂  � 

k 
x

ik
) is the fitted value. As usual, the residual for observation i is the 

 difference between y
i
 and its fitted value. A consistent estimator of �2 is (n � k � 1)�1

 ∑ 
i�1

  
n
     ̂    ̂  u  2   i  / ̂  y 

i
, where the division by  ̂  y 

i
 is the proper heteroskedasticity adjustment, and 

n � k � 1 is the df given n observations and k � 1 estimates  ̂  � 
0
,  ̂  � 

1
, …,  ̂  � 

k
. Letting

 ̂  �  be the positive square root of  ̂  �  2, we multiply the usual Poisson standard errors by  ̂  � . If  
ˆ �  is notably greater than one, the corrected standard errors can be much bigger than the 
nominal, generally incorrect, Poisson MLE standard errors.
 Even (17.35) is not entirely general. Just as in the linear model, we can obtain stan-
dard errors for the Poisson QMLE that do not restrict the variance at all. [See Wooldridge 
(2002, Chapter 19) for further explanation.]
 Under the Poisson distributional assumption, we can use the likelihood ratio statistic  
to test exclusion restrictions, which, as always, has the form in (17.12). If we have q 
exclusion restrictions, the statistic is distributed approximately as 	 2   q  under the null. Under 

the less restrictive assumption (17.35), 
a simple adjustment is available (and 
then we call the statistic the quasi-
likelihood ratio statistic): we divide 
(17.12) by  ̂  �  2, where  ̂  �  2 is obtained 
from the unrestricted model.

E x a m p l e  1 7 . 3

[Poisson Regression for Number of Arrests]

We now apply the Poisson regression model to the arrest data in CRIME1.RAW, used, among other 
places, in Example 9.1. The dependent variable, narr86, is the number of times a man is arrested 
during 1986. This variable is zero for 1,970 of the 2,725 men in the sample, and only eight values of 
narr86 are greater than five. Thus, a Poisson regression model is more appropriate than a linear regres-
sion model. Table 17.3 also presents the results of OLS estimation of a linear regression model.

Q u e s t i o n  1 7 . 4
Suppose that we obtain  ̂  �  2 � 2. How will the adjusted standard 
errors compare with the usual Poisson MLE standard errors? How 
will the quasi-LR statistic compare with the usual LR statistic?
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 The standard errors for OLS are the usual ones; we could certainly have made these robust to 
heteroskedasticity. The standard errors for Poisson regression are the usual maximum likelihood 
standard errors. Because  ̂  �  � 1.232, the standard errors for Poisson regression should be inflated 
by this factor (so each corrected standard error is about 23% higher). For example, a more reliable 
standard error for tottime is 1.23(.015) � .0185, which gives a t statistic of about 1.3. The adjust-
ment to the standard errors reduces the significance of all variables, but several of them are still very 
statistically significant.
 The OLS and Poisson coefficients are not directly comparable, and they have very different 
meanings. For example, the coefficient on pcnv implies that, if �pcnv � .10, the expected number 

TABLE  17 . 3

Determinants of Number of Arrests for Young Men

Dependent Variable: narr86

Independent 
Variables

Linear 
(OLS)

Exponential 
(Poisson QMLE)

pcnv �.132
  (.040)

�.402
  (.085)

avgsen �.011
  (.012)

�.024
  (.020)

tottime .012
(.009)

.024
(.015)

ptime86 �.041
  (.009)

�.099
  (.021)

qemp86 �.051
  (.014)

�.038
  (.029)

inc86 �.0015
  (.0003)

�.0081
  (.0010)

black .327
(.045)

.661
(.074)

hispan .194
(.040)

.500
(.074)

born60 �.022
  (.033)

�.051
  (.064)

constant .577
(.038)

�.600
  (.067)

Log-likelihood value
R-squared
 ̂  �  

  —
.073
.829

�2,248.76
.077

1.232
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of arrests falls by .013 ( pcnv is the proportion of prior arrests that led to conviction). The Poisson 
coefficient implies that �pcnv � .10 reduces expected arrests by about 4% [.402(.10) � .0402, and 
we multiply this by 100 to get the percentage effect]. As a policy matter, this suggests we can reduce 
overall arrests by about 4% if we can increase the probability of conviction by .1.
 The Poisson coefficient on black implies that, other factors being equal, the expected number 
of arrests for a black man is estimated to be about 100 � [exp(.661) �1] � 93.7% higher than for a 
white man with the same values for the other explanatory variables.
 As with the Tobit application in Table 17.2, we report an R-squared for Poisson regression: the 
squared correlation coefficient between y

i 
and  ̂  y 

i
 � exp(  ̂  � 

0
 �  ̂  � 

1
x

i1
 � … �  ̂  � 

k 
x

ik
). The motivation for 

this goodness-of-fit measure is the same as for the Tobit model. We see that the exponential regres-
sion model, estimated by Poisson QMLE, fits slightly better. Remember that the OLS estimates are 
chosen to maximize the R-squared, but the Poisson estimates are not. (They are selected to maximize 
the log-likelihood function.)

 
Other count data regression models have been proposed and used in applications, which 
generalize the Poisson distribution in a variety of ways. If we are interested in the effects 
of the x

j
 on the mean response, there is little reason to go beyond Poisson regression: it is 

simple, often gives good results, and has the robustness property discussed earlier. In fact, 
we could apply Poisson regression to a y that is a Tobit-like outcome, provided (17.31) 
holds. This might give good estimates of the mean effects. Extensions of Poisson regres-
sion are more useful when we are interested in estimating probabilities, such as P(y � 1�x). 
[See, for example, Cameron and Trivedi (1998).]

17.4 Censored and Truncated 
Regression Models
The models in Sections 17.1, 17.2, and 17.3 apply to various kinds of limited dependent 
variables that arise frequently in applied econometric work. In using these methods, it is 
important to remember that we use a probit or logit model for a binary response, a Tobit 
model for a corner solution outcome, or a Poisson regression model for a count response 
because we want models that account for important features of the distribution of y. There 
is no issue of data observability. For example, in the Tobit application to women’s labor 
supply in Example 17.2, there is no problem with observing hours worked: it is simply the 
case that a nontrivial fraction of married women in the population choose not to work for 
a wage. In the Poisson regression application to annual arrests, we observe the dependent 
variable for every young man in a random sample from the population, but the dependent 
variable can be zero as well as other small integer values.
 Unfortunately, the distinction between lumpiness in an outcome variable (such as 
taking on the value zero for a nontrivial fraction of the population) and problems of data 
censoring can be confusing. This is particularly true when applying the Tobit model. In 
this book, the standard Tobit model described in Section 17.2 is only for corner solution 
outcomes. But the literature on Tobit models usually treats another situation within the 
same framework: the response variable has been censored above or below some threshold. 
Typically, the censoring is due to survey design and, in some cases, institutional con-
straints. Rather than treat data censoring problems along with corner solution outcomes, we 
solve data censoring by applying a censored regression model. Essentially, the problem 
solved by a censored regression model is one of missing data on the response variable, y. 
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Although we are able to randomly draw units from the population and obtain information 
on the explanatory variables for all units, the outcome on y

i
 is missing for some i. Still, we 

know whether the missing values are above or below a given threshold, and this knowl-
edge provides useful information for estimating the parameters.
 A truncated regression model arises when we exclude, on the basis of y, a subset of 
the population in our sampling scheme. In other words, we do not have a random sample 
from the underlying population, but we know the rule that was used to include units in the 
sample. This rule is determined by whether y is above or below a certain threshold. We 
explain more fully the difference between censored and truncated regression models later.

Censored Regression Models

While censored regression models can be defined without distributional assumptions, in 
this subsection we study the censored normal regression model. The variable we would 
like to explain, y, follows the classical linear model. For emphasis, we put an i subscript 
on a random draw from the population:

 y
i
 � �

0
 � x

i 
� � u

i
, u

i
�x

i
, c

i
 ~ Normal(0, �2) 17.36

 w
i
 � min(y

i
,c

i
). 17.37

Rather than observing y
i
, we observe it only if it is less than a censoring value, c

i
. Notice 

that (17.36) includes the assumption that u
i
 is independent of c

i
. (For concreteness, we 

explicitly consider censoring from above, or right censoring; the problem of cen soring 
from below, or left censoring, is  handled similarly.)
 One example of right data censoring is top coding. When a variable is top coded, we 
know its value only up to a certain threshold. For responses greater than the threshold, we 
only know that the variable is at least 
as large as the threshold. For exam-
ple, in some surveys family wealth is 
top coded. Suppose that respondents 
are asked their wealth, but people are 
allowed to respond with “more than 
$500,000.” Then, we observe actual 
wealth for those respondents whose 
wealth is less than $500,000 but not 
for those whose wealth is greater than 
$500,000. In this case, the censoring 
threshold, c

i
, is the same for all i. In 

many situations, the censoring thresh-
old changes with individual or family characteristics.
 If we observed a random sample for (x, y), we would simply estimate � by OLS, and sta-
tistical inference would be standard. (We again absorb the intercept into x for simplicity.) The 
censoring causes problems. Using arguments similar to the Tobit model, an OLS regression 
using only the uncensored observations—that is, those with y

i
 � c

i
—produces inconsistent 

estimators of the �
j
. An OLS regression of w

i
 on x

i
,
 
using all observations, does not consistently 

estimate the �
j
, unless there is no censoring. This is similar to the Tobit case, but the problem 

is much different. In the Tobit model, we are modeling economic behavior, which often yields 
zero outcomes; the Tobit model is supposed to reflect this. With censored regression, we have 
a data collection problem because, for some reason, the data are censored.

Q u e s t i o n  1 7 . 5
Let mvpi be the marginal value product for worker i; this is the 
price of a firm’s good multiplied by the marginal product of the 
worker. Assume mvpi is a linear function of exogenous variables, 
such as education, experience, and so on, and an unobservable 
error. Under perfect competition and without institutional con-
straints, each worker is paid his or her marginal value product. 
Let minwagei denote the minimum wage for worker i, which 
varies by state. We observe wagei, which is the larger of mvpi and 
minwagei. Write the appropriate model for the observed wage.
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 Under the assumptions in (17.36) and (17.37), we can estimate � (and �2) by maxi-
mum likelihood, given a random sample on (x

i
, w

i
). For this, we need the density of w

i
, 

given (x
i
, c

i
). For uncensored observations, w

i
 � y

i
, and the density of w

i
 is the same as that 

for y
i
: Normal(x

i
�,�2). For censored observations, we need the probability that w

i
 equals 

the censoring value, c
i
, given x

i
:

P(w
i
 � c

i
�x

i
) � P(y

i 
� c

i
�x

i
) � P(u

i 
� c

i
 � x

i
 �) � 1 � �[(c

i
 � x

i
 �)/�].

We can combine these two parts to obtain the density of w
i
, given x

i
 and c

i
:

 f(w�x
i
,c

i
) � 1 � �[(c

i
 � x

i
 �)/�], w � c

i
, 17.38

 � (1/�)� [(w � x
i
 �)/�], w � c

i
. 17.39

The log-likelihood for observation i is obtained by taking the natural log of the density for 
each i. We can maximize the sum of these across i, with respect to the �

j
 and �, to obtain 

the MLEs.
 It is important to know that we can interpret the �

j
 just as in a linear regression model 

under random sampling. This is much different than Tobit applications to corner solution 
responses, where the expectations of interest are nonlinear functions of the �

j
.

 An important application of censored regression models is duration analysis. A dura-
tion is a variable that measures the time before a certain event occurs. For example, we 
might wish to explain the number of days before a felon released from prison is arrested. 
For some felons, this may never happen, or it may happen after such a long time that we 
must censor the duration in order to analyze the data.
 In duration applications of censored normal regression, as well as in top coding, we 
often use the natural log as the dependent variable, which means we also take the log of 
the censoring threshold in (17.37). As we have seen throughout this text, using the log 
transformation for the dependent variable causes the parameters to be interpreted as per-
centage changes. Further, as with many positive variables, the log of a duration typically 
has a distribution closer to (conditional) normal than the duration itself.

E x a m p l e  1 7 . 4

[Duration of Recidivism]

The file RECID.RAW contains data on the time in months until an inmate in a North Carolina 
prison is arrested after being released from prison; call this durat. Some inmates participated in a 
work program while in prison. We also control for a variety of demographic variables, as well as for 
measures of prison and criminal history.
 Of 1,445 inmates, 893 had not been arrested during the period they were followed; therefore, 
these observations are censored. The censoring times differed among inmates, ranging from 70 to 
81 months.
 Table 17.4 gives the results of censored normal regression for log(durat). Each of the coeffi-
cients, when multiplied by 100, gives the estimated percentage change in expected duration given a 
ceteris paribus increase of one unit in the corresponding explanatory variable.
 Several of the coefficients in Table 17.4 are interesting. The variables priors (number of prior 
convictions) and tserved (total months spent in prison) have negative effects on the time until the 
next arrest occurs. This suggests that these variables measure proclivity for criminal activity rather 
than representing a deterrent effect. For example, an inmate with one more prior conviction has a 
duration until next arrest that is almost 14% less. A year of time served reduces duration by about 
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TABLE  17 . 4

Censored Regression Estimation of Criminal Recidivism

Dependent Variable: log(durat)

Independent Variables
Coefficient 

(Standard Error)

workprg �.063
  (.120)

priors �.137
  (.021)

tserved �.019
  (.003)

felon .444
(.145)

alcohol �.635
  (.144)

drugs �.298
  (.133)

black �.543
  (.117)

married .341
(.140)

educ .023
(.025)

age .0039
(.0006)

constant 4.099
(.348)

Log-likelihood value
 ̂  � 

�1,597.06
1.810

100 � 12(.019) � 22.8%. A somewhat surprising finding is that a man serving time for a felony has 
an estimated expected duration that is almost 56% [exp(.444) � 1 � .56] longer than a man serving 
time for a nonfelony.
 Those with a history of drug or alcohol abuse have substantially shorter expected durations until 
the next arrest. (The variables alcohol and drugs are binary variables.) Older men, and men who 
were married at the time of incarceration, are expected to have significantly longer durations until 
their next arrest. Black men have substantially shorter durations, on the order of 42% [exp(�.543) � 
1 � �.42].
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 The key policy variable, workprg, does not have the desired effect. The point estimate is that, 
other things being equal, men who participated in the work program have estimated recidivism 
durations that are about 6.3% shorter than men who did not participate. The coefficient has a small 
t statistic, so we would probably conclude that the work program has no effect. This could be due to 
a self-selection problem, or it could be a product of the way men were assigned to the program. Of 
course, it may simply be that the program was ineffective.

 
 In this example, it is crucial to account for the censoring, especially because almost 
62% of the durations are censored. If we apply straight OLS to the entire sample and treat 
the censored durations as if they were uncensored, the coefficient estimates are markedly 
different. In fact, they are all shrunk toward zero. For example, the coefficient on priors 
becomes �.059 (se � .009), and that on alcohol becomes �.262 (se � .060). Although 
the directions of the effects are the same, the importance of these variables is greatly 
diminished. The censored regression estimates are much more reliable.
 There are other ways of measuring the effects of each of the explanatory variables in 
Table 17.4 on the duration, rather than focusing only on the expected duration. A treat-
ment of modern duration analysis is beyond the scope of this text. [For an introduction, 
see Wooldridge (2002, Chapter 20).]
 If any of the assumptions of the censored normal regression model are violated—in 
particular, if there is heteroskedasticity or nonnormality in u

i
—the MLEs are generally 

inconsistent. This shows that the censoring is potentially very costly, as OLS using an 
uncensored sample requires neither normality nor homoskedasticity for consistency. There 
are methods that do not require us to assume a distribution, but they are more advanced. 
[See Wooldridge (2002, Chapter 16).]

Truncated Regression Models

The truncated regression model differs in an important respect from the censored regres-
sion model. In the case of data censoring, we do randomly sample units from the popula-
tion. The censoring problem is that, while we always observe the explanatory variables 
for each randomly drawn unit, we observe the outcome on y only when it is not censored 
above or below a given threshold. With data truncation, we restrict attention to a subset of 
the population prior to sampling; so there is a part of the population for which we observe 
no information. In particular, we have no information on explanatory variables. The trun-
cated sampling scenario typically arises when a survey targets a particular subset of the 
population and, perhaps due to cost considerations, entirely ignores the other part of the 
population. Subsequently, researchers might want to use the truncated sample to answer 
questions about the entire population, but one must recognize that the sampling scheme 
did not generate a random sample from the whole population.
 As an example, Hausman and Wise (1977) used data from a negative income tax 
experiment to study various determinants of earnings. To be included in the study, a fam-
ily had to have income less than 1.5 times the 1967 poverty line, where the poverty line 
depended on family size. Hausman and Wise wanted to use the data to estimate an earnings 
equation for the entire population.
 The truncated normal regression model begins with an underlying population model 
that satisfies the classical linear model assumptions:

 y � �
0
 � x� � u, u�x ~ Normal(0,�2). 17.40
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Recall that this is a strong set of assumptions, because u must not only be independent of 
x, but also normally distributed. We focus on this model because relaxing the assumptions 
is difficult.
 Under (17.40) we know that, given a random sample from the population, OLS is the 
most efficient estimation procedure. The problem arises because we do not observe a ran-
dom sample from the population: Assumption MLR.2 is violated. In particular, a random 
draw (x

i
, y

i
) is observed only if y

i 

 c

i
, where c

i
 is the truncation threshold that can depend 

on exogenous variables—in particular, the x
i
. (In the Hausman and Wise example, c

i
 

depends on family size.) This means that, if {(x
i
, y

i
): i � 1, …, n} is our observed sample, 

then y
i
 is necessarily less than or equal to c

i
. This differs from the censored regression 

model: in a censored regression model, we observe x
i
 for any randomly drawn observation 

from the population; in the truncated model, we only observe x
i
 if y

i 

 c

i
.

 To estimate the �
j
 (along with �), we need the distribution of y

i
, given that y

i 

 c

i
 and 

x
i
. This is written as

 g(y�x
i
,c

i
) �   

f(y�x
i 
�,� 2)
 __________ 

F(c
i
�x

i 
�,� 2)

  , y 
 c
i
, 17.41

where f (y�x
i 
�,�2) denotes the normal density with mean �

0
 � x

i 
� and variance �2, and 

F(c
i
�x

i 
�,�2) is the normal cdf with the same mean and variance, evaluated at c

i
. This 

expression for the density, conditional on y
i 

 c

i
,
 
makes intuitive sense: it is the population 

density for y, given x, divided by the probability that y
i
 is less than or equal to c

i
 (given x

i
), 

P(y
i 

 c

i
�x

i
). In effect, we renormalize the density by dividing by the area under f (�|x

i 
�,�2) 

that is to the left of c
i
.

 If we take the log of (17.41), sum across all i, and maximize the result with respect 
to the �

j
 and �2, we obtain the maximum likelihood estimators. This leads to consistent, 

approximately normal estimators. The inference, including standard errors and log-
likelihood statistics, is standard.
 We could analyze the data from Example 17.4 as a truncated sample if we drop all 
data on an observation whenever it is censored. This would give us 552 observations from 
a truncated normal distribution, where the truncation point differs across i. However, we 
would never analyze duration data (or top-coded data) in this way, as it eliminates use-
ful information. The fact that we know a lower bound for 893 durations, along with the 
explanatory variables, is useful information; censored regression uses this information, 
while truncated regression does not.
 A better example of truncated regression is given in Hausman and Wise (1977), where 
they emphasize that OLS applied to a sample truncated from above generally produces 
estimators biased toward zero. Intuitively, this makes sense. Suppose that the relation-
ship of interest is between income and education levels. If we only observe people whose 
income is below a certain threshold, we are lopping off the upper end. This tends to flatten 
the estimated line relative to the true regression line in the whole population. Figure 17.4 
illustrates the problem when income is truncated from above at $50,000. Although we 
observe the data points represented by the open circles, we do not observe the data sets 
represented by the darkened circles. A regression analysis using the truncated sample does 
not lead to consistent estimators. Incidentally, if the sample in Figure 17.4 was censored 
rather than truncated—that is, we had top-coded data—we would observe education levels 
for all points in Figure 17.4, but for individuals with incomes above $50,000 we would not 
know the exact income amount. We would only know that income was at least $50,000. 
In effect, all observations represented by the darkened circles would be brought down to 
the horizontal line at income � 50.
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 As with censored regression, if the underlying homoskedastic normal assumption in 
(17.40) is violated, the truncated normal MLE is biased and inconsistent. Methods that 
do not require these assumptions are available; see Wooldridge (2002, Chapter 17) for 
discussion and references.

17.5 Sample Selection Corrections
Truncated regression is a special case of a general problem known as nonrandom sample 
selection. But survey design is not the only cause of nonrandom sample selection. Often, 
respondents fail to provide answers to certain questions, which leads to missing data for 
the dependent or independent variables. Because we cannot use these observations in our 
 estimation, we should wonder whether dropping them leads to bias in our estimators.
 Another general example is usually called incidental truncation. Here, we do not 
observe y because of the outcome of another variable. The leading example is estimating 
the so-called wage offer function from labor economics. Interest lies in how various fac-
tors, such as education, affect the wage an individual could earn in the labor force. For 
people who are in the workforce, we observe the wage offer as the current wage. But, for 
those currently out of the workforce, we do not observe the wage offer. Because working 
may be systematically correlated with unobservables that affect the wage offer, using only 
working people—as we have in all wage examples so far—might produce biased estima-
tors of the parameters in the wage offer equation.

F I GURE  17 . 4

A true, or population, regression line and the incorrect regression line for the 
truncated population with incomes below $50,000.
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 Nonrandom sample selection can also arise when we have panel data. In the simplest 
case, we have two years of data, but, due to attrition, some people leave the sample. This 
is particularly a problem in policy analysis, where attrition may be related to the effective-
ness of a program.

When Is OLS on the Selected Sample Consistent?

In Section 9.4, we provided a brief discussion of the kinds of sample selection that can be 
ignored. The key distinction is between exogenous and endogenous sample selection. In 
the truncated Tobit case, we clearly have endogenous sample selection, and OLS is biased 
and inconsistent. On the other hand, if our sample is determined solely by an exogenous 
explanatory variable, we have exogenous sample selection. Cases between these extremes 
are less clear, and we now provide careful definitions and assumptions for them. The 
population model is

 y � �
0
 � �

1
x

1
 � … � �

k 
x

k
 � u, E(u�x

1
, x

2
, …, x

k
) � 0. 17.42

It is useful to write the population model for a random draw as

 y
i
 � x

i 
� � u

i
, 17.43

where we use x
i 
� as shorthand for �

0
 � �

1
x

i1
 � �

2
x

i2
 � … � �

k 
x

ik
. Now, let n be the size 

of a random sample from the population. If we could observe y
i
 and each x

ij
 for all i, we 

would simply use OLS. Assume that, for some reason, either y
i
 or some of the independent 

variables are not observed for certain i. For at least some observations, we observe the full 
set of variables. Define a selection indicator s

i
 for each i by s

i
 � 1 if we observe all of (y

i
, x

i
), 

and s
i
 � 0 otherwise. Thus, s

i
 � 1 indicates that we will use the observation in our 

analysis; s
i
 � 0 means the observation will not be used. We are interested in the statistical 

properties of the OLS estimators using the selected sample, that is, using observations for 
which s

i
 � 1. Therefore, we use fewer than n observations, say, n

1
.

 It turns out to be easy to obtain conditions under which OLS is consistent (and even 
unbiased). Effectively, rather than estimating (17.43), we can only estimate the equation

 s
i
 y

i
 � s

i
x

i 
� � s

i
u

i
. 17.44

When s
i
 � 1, we simply have (17.43); when s

i
 � 0, we simply have 0 � 0 � 0, which 

clearly tells us nothing about �. Regressing s
i 
y

i
 on s

i 
x

i
 for i � 1, 2, …, n is the same as 

regressing y
i
 on x

i
 using the observations for which s

i
 � 1. Thus, we can learn about the 

consistency of the  ̂  � 
j
 by studying (17.44) on a random sample.

 From our analysis in Chapter 5, the OLS estimators from (17.44) are consistent if the 
error term has zero mean and is uncorrelated with each explanatory variable. In the popula-
tion, the zero mean assumption is E(su) � 0, and the zero correlation assumptions can be 
stated as

 E[(sx
j
)(su)] � E(sx

j
u) � 0, 17.45

where s, x
j
, and u are random variables representing the population; we have used the fact 

that s2 � s because s is a binary variable. Condition (17.45) is different from what we need 
if we observe all variables for a random sample: E(x

j
u) � 0. Therefore, in the population, 

we need u to be uncorrelated with sx
j
.
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 The key condition for unbiasedness is E(su�sx
1
, …, sx

k
) � 0. As usual, this is a stronger 

assumption than that needed for consistency.
 If s is a function only of the explanatory variables, then sx

j
 is just a function of x

1
, x

2
, …, x

k
; 

by the conditional mean assumption in (17.42), sx
j
 is also uncorrelated with u. In fact, 

E(su�sx
1
, …, sx

k
) � sE(u�sx

1
, …, sx

k
) � 0, because E(u�x

1
, …, x

k
) � 0. This is the case 

of exogenous sample selection, where s
i
 � 1 is determined entirely by x

i1
, …, x

ik
. As an 

example, if we are estimating a wage equation where the explanatory variables are edu-
cation, experience, tenure, gender, marital status, and so on—which are assumed to be 
exogenous—we can select the sample on the basis of any or all of the explanatory  variables.
 If sample selection is entirely random in the sense that s

i
 is independent of (x

i
, u

i
), then 

E(sx
j
u) � E(s)E(x

j
u) � 0, because E(x

j
u) � 0 under (17.42). Therefore, if we begin with a 

random sample and randomly drop observations, OLS is still consistent. In fact, OLS is again 
unbiased in this case, provided there is not perfect multicollinearity in the selected sample.
 If s depends on the explanatory variables and additional random terms that are inde-
pendent of x and u, OLS is also consistent and unbiased. For example, suppose that IQ 
score is an explanatory variable in a wage equation, but IQ is missing for some people. 
Suppose we think that selection can be described by s � 1 if IQ � v, and s � 0 if
IQ � v, where v is an unobserved random variable that is independent of IQ, u, and the 
other explanatory variables. This means that we are more likely to observe an IQ that is 
high, but there is always some chance of not observing any IQ. Conditional on the explan-
atory variables, s is independent of u, which means that E(u�x

1
, …, x

k
, s) � E(u�x

1
, …, x

k
), 

and the last expectation is zero by assumption on the population model. If we add the 
homoskedasticity assumption E(u2�x,s) � E(u2) � �2, then the usual OLS standard errors 
and test statistics are valid.
 So far, we have shown several situations where OLS on the selected sample is unbi-
ased, or at least consistent. When is OLS on the selected sample inconsistent? We already 
saw one example: regression using a truncated sample. When the truncation is from above, 
s

i
 � 1 if y

i 

 c

i
, where c

i
 is the truncation threshold. Equivalently, s

i
 � 1 if u

i 

 c

i
 � x

i 
�. 

Because s
i 
depends directly on u

i
, s

i
 and u

i
 will not be uncorrelated, even conditional on x

i
. 

This is why OLS on the selected sample does not consistently estimate the �
j
. There are 

less obvious ways that s and u can be correlated; we consider this in the next subsection.
 The results on consistency of OLS extend to instrumental variables estimation. If the IVs 
are denoted z

h
 in the population, the key condition for consistency of 2SLS is E(sz

h
u) � 0, 

which holds if E(u�z,s) � 0. Therefore, if selection is determined entirely by the 
exogenous variables z, or if s depends on other factors that are independent of u and z, 
then 2SLS on the selected sample is generally consistent. We do need to assume that the 
explanatory and instrumental variables are appropriately correlated in the selected part 
of the population. Wooldridge (2002, Chapter 17) contains precise statements of these 
assumptions.
 It can also be shown that, when selection is entirely a function of the exogenous vari-
ables, maximum likelihood estimation of a nonlinear model—such as a logit or probit 
model—produces consistent, asymptotically normal estimators, and the usual standard 
errors and test statistics are valid. [Again, see Wooldridge (2002, Chapter 17).]

Incidental Truncation

As we mentioned earlier, a common form of sample selection is called incidental trunca-
tion. We again start with the population model in (17.42). However, we assume that we will 
always observe the explanatory variables x

j
. The problem is, we only observe y for a subset 
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of the population. The rule determining whether we observe y does not depend directly on the 
outcome of y. A leading example is when y � log(wageo), where wageo is the wage offer, or 
the hourly wage that an individual could receive in the labor market. If the person is actually 
working at the time of the survey, then we observe the wage offer because we assume it is the 
observed wage. But for people out of the workforce, we cannot observe wageo. Therefore, the 
truncation of wage offer is incidental because it depends on another variable, namely, labor 
force participation. Importantly, we would generally observe all other information about an 
individual, such as education, prior experience, gender, marital status, and so on.
 The usual approach to incidental truncation is to add an explicit selection equation to 
the population model of interest:

 y � x� � u, E(u�x) � 0 17.46

 s � 1[z� � v � 0], 17.47

where s � 1 if we observe y, and zero otherwise. We assume that elements of x and z are always 
observed, and we write x� � �

0
 � �

1
x

1
 � … � �

k
x

k
 and z� � �

0
 � �

1
z

1
 � … � �

m
z

m
.

 The equation of primary interest is (17.46), and we could estimate � by OLS given a 
random sample. The selection equation, (17.47), depends on observed variables, z

h
, and 

an unobserved error, v. A standard assumption, which we will make, is that z is exogenous 
in (17.46):

E(u�x,z) � 0.

In fact, for the following proposed methods to work well, we will require that x be a strict 
subset of z: any x

j
 is also an element of z, and we have some elements of z that are not also 

in x. We will see later why this is crucial.
 The error term v in the sample selection equation is assumed to be independent of z 
(and therefore x). We also assume that v has a standard normal distribution. We can  easily 
see that correlation between u and v generally causes a sample selection problem. To 
see why, assume that (u, v) is independent of z. Then, taking the expectation of (17.46), 
 conditional on z and v, and using the fact that x is a subset of z gives

E(y�z,v) � x� � E(u�z,v) � x� � E(u�v),

where E(u�z,v) � E(u�v) because (u, v) is independent of z. Now, if u and v are jointly 
normal (with zero mean), then E(u�v) � �v for some parameter �. Therefore,

E(y�z,v) � x� � �v.

We do not observe v, but we can use this equation to compute E(y�z,s) and then specialize 
this to s � 1. We now have:

E(y�z,s) � x� � �E(v�z,s).

Because s and v are related by (17.47), and v has a standard normal distribution, we can 
show that E(v�z,s) is simply the inverse Mills ratio, �(z�), when s � 1. This leads to the 
important equation

 E(y�z,s � 1) � x� � ��(z�). 17.48

Equation (17.48) shows that the expected value of y, given z and observability of y, is 
equal to x�, plus an additional term that depends on the inverse Mills ratio evaluated at z�. 
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Remember, we hope to estimate �. This equation shows that we can do so using only the 
selected sample, provided we include the term �(z�) as an additional regressor.
 If � � 0, �(z�) does not appear, and OLS of y on x using the selected sample con-
sistently estimates �. Otherwise, we have effectively omitted a variable, �(z�), which 
is generally correlated with x. When does � � 0? The answer is when u and v are 
uncorrelated.
 Because � is unknown, we cannot evaluate �(z

i
�) for each i. However, from the 

assumptions we have made, s given z follows a probit model:

 P(s � 1�z) � �(z�). 17.49

Therefore, we can estimate � by probit of s
i
 on z

i
, using the entire sample. In a second 

step, we can estimate �. We summarize the procedure, which has recently been dubbed the 
Heckit method in econometrics literature after the work of Heckman (1976).

Sample Selection Correction:
 (i) Using all n observations, estimate a probit model of s

i
 on z

i
 and obtain the estimates  

ˆ � 
h
. Compute the inverse Mills ratio,  ̂  � 

i
 � �(z

i
 ̂  � ) for each i. (Actually, we need these only 

for the i with s
i
 � 1.)

 (ii) Using the selected sample, that is, the observations for which s
i
 � 1 (say, n

1
 of 

them), run the regression of

 y
i
 on x

i
,  ̂  � 

i
. 17.50

The  ̂  � 
j
 are consistent and approximately normally distributed.

 A simple test of selection bias is available from regression (17.50). Namely, we can 
use the usual t statistic on  ̂  � 

i
 as a test of H

0
: � � 0. Under H

0
, there is no sample selection 

problem.
 When � 	 0, the usual OLS standard errors reported from (17.50) are not exactly cor-
rect. This is because they do not account for estimation of �, which uses the same obser-
vations in regression (17.50), and more. Some econometrics packages compute corrected 
standard errors. [Unfortunately, it is not as simple as a heteroskedasticity adjustment. See 
Wooldridge (2002, Chapter 6) for further discussion.] In many cases, the adjustments do 
not lead to important differences, but it is hard to know that beforehand (unless  ̂  �  is small 
and insignificant).
 We recently mentioned that x should be a strict subset of z. This has two implications. 
First, any element that appears as an explanatory variable in (17.46) should also be an 
explanatory variable in the selection equation. Although in rare cases it makes sense to 
exclude elements from the selection equation, including all elements of x in z is not very 
costly; excluding them can lead to inconsistency if they are incorrectly excluded.
 A second major implication is that we have at least one element of z that is not also 
in x. This means that we need a variable that affects selection but does not have a  partial 
effect on y. This is not absolutely necessary to apply the procedure—in fact, we can 
mechanically carry out the two steps when z � x—but the results are usually less than 
convincing unless we have an exclusion restriction in (17.46). The reason for this is that 
while the inverse Mills ratio is a nonlinear function of z, it is often well  approximated by a 
linear function. If z � x,  ̂  � 

i
 can be highly correlated with the  elements of x

i
. As we know, 

such multicollinearity can lead to very high standard errors for the  ̂  � 
j
.  Intuitively, if we do 



 Chapter 17   Limited Dependent Variable Models and Sample Selection Corrections 611

not have a variable that affects selection but not y, it is extremely difficult, if not impos-
sible, to distinguish sample selection from a misspecified functional form in (17.46).

E x a m p l e  1 7 . 5

[Wage Offer Equation for Married Women]

We apply the sample selection correction to the data on married women in MROZ.RAW. Recall that 
of the 753 women in the sample, 428 worked for a wage during the year. The wage offer equation 
is standard, with log(wage) as the dependent variable and educ, exper, and exper2 as the explanatory 
variables. In order to test and correct for sample selection bias—due to unobservability of the wage 
offer for nonworking women—we need to estimate a probit model for labor force participation. In 
addition to the education and experience variables, we include the factors in Table 17.1: other income, 
age, number of young children, and number of older children. The fact that these four variables are 
excluded from the wage offer equation is an assumption: we assume that, given the productivity fac-
tors, nwifeinc, age, kidslt6, and kidsge6 have no effect on the wage offer. It is clear from the probit 
results in Table 17.1 that at least age and kidslt6 have a strong effect on labor force participation.
 Table 17.5 contains the results from OLS and Heckit. [The standard errors reported for the 
Heckit results are just the usual OLS standard errors from regression (17.50).] There is no evidence 
of a sample selection problem in estimating the wage offer equation. The coefficient on  ̂  �  has a very 
small t statistic (.239), so we fail to reject H

0
: � � 0. Just as importantly, there are no practically 

large differences in the estimated slope coefficients in Table 17.5. The estimated returns to education 
differ by only one-tenth of a percentage point.

TABLE  17 . 5

Wage Offer Equation for Married Women

Dependent Variable: log(wage)

Independent Variables OLS Heckit

educ  .108
 (.014)

 .109
 (.016)

exper  .042
 (.012)

 .044
 (.016)

exper2  �.00081
 (.00039)

 �.00086
 (.00044)

constant  �.522
 (.199)

 �.578
 (.307)

 ̂  � —  .032
 (.134)

Sample size
R-squared

428
.157

428
.157
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 An alternative to the preceding two-step estimation method is full maximum likeli-
hood estimation. This is more complicated as it requires obtaining the joint distribution 
of y and s. It often makes sense to test for sample selection using the previous procedure; 
if there is no evidence of sample selection, there is no reason to continue. If we detect 
sample selection bias, we can either use the two-step estimates or estimate the regression 
and selection equations jointly by MLE. [See Wooldridge (2002, Chapter 17).]
 In Example 17.5, we know more than just whether a woman worked during the year: 
we know how many hours each woman worked. It turns out that we can use this informa-
tion in an alternative sample selection procedure. In place of the inverse Mills ratio  ̂  � 

i
, 

we use the Tobit residuals, say,  ̂  v 
i
, which are computed as  ̂  v 

i
 � y

i
 � x

i 
 ̂  �  whenever y

i
 � 0. 

It can be shown that the regression in (17.50) with  ̂  v 
i
 in place of   ̂  � 

i
 also produces consis-

tent estimates of the �
j
, and the standard t statistic on  ̂  v 

i
 is a valid test for sample selection 

bias. This approach has the advantage of using more information, but it is less widely 
applicable. [See Wooldridge (2002, Chapter 17).]
 There are many more topics concerning sample selection. One worth mentioning is 
models with endogenous explanatory variables in addition to possible sample selection 
bias. Write a model with a single endogenous explanatory variable as

 y
1
 � �

1
y

2
 � z

1
�

1
 � u

1
, 17.51

where y
1
 is only observed when s � 1, and y

2
 may only be observed along with y

1
. An 

example is when y
1
 is the percentage of votes received by an incumbent, and y

2
 is the 

 percentage of total expenditures accounted for by the incumbent. For incumbents who 
do not run, we cannot observe y

1
 or y

2
. If we have exogenous factors that affect the 

decision to run and that are correlated with campaign expenditures, we can consistently 
estimate �

1
 and the elements of �

1
 by instrumental variables. To be convincing, we need 

two exogenous variables that do not appear in (17.51). Effectively, one should affect the 
selection decision, and one should be correlated with y

2
 [the usual requirement for estimat-

ing (17.51) by 2SLS]. Briefly, the method is to estimate the selection equation by probit, 
where all exogenous variables appear in the probit equation. Then, we add the inverse 
Mills ratio to (17.51) and estimate the equation by 2SLS. The inverse Mills ratio acts 
as its own instrument, as it depends only on exogenous variables. We use all exogenous 
variables as the other instruments. As before, we can use the t statistic on  ̂  � 

i
 as a test for 

selection bias. [See Wooldridge (2002, Chapter 17) for further information.]

S U M M A R Y

In this chapter, we have covered several advanced methods that are often used in applica-
tions, especially in microeconomics. Logit and probit models are used for binary response 
variables. These models have some advantages over the linear probability model: fitted 
probabilities are between zero and one, and the partial effects diminish. The primary cost 
to logit and probit is that they are harder to interpret.
 The Tobit model is applicable to nonnegative outcomes that pile up at zero but also 
take on a broad range of positive values. Many individual choice variables, such as labor 
supply, amount of life insurance, and amount of pension fund invested in stocks, have this 



 Chapter 17   Limited Dependent Variable Models and Sample Selection Corrections 613

feature. As with logit and probit, the expected values of y given x—either conditional on 
y � 0 or unconditionally—depend on x and � in nonlinear ways. We gave the expressions 
for these expectations as well as formulas for the partial effects of each x

j
 on the expec-

tations. These can be estimated after the Tobit model has been estimated by maximum 
likelihood.
 When the dependent variable is a count variable—that is, it takes on nonnegative, 
integer values—a Poisson regression model is appropriate. The expected value of y given 
the x

j
 has an exponential form. This gives the parameter interpretations as semi-elasticities 

or elasticities, depending on whether x
j
 is in level or logarithmic form. In short, we can 

interpret the parameters as if they are in a linear model with log(y) as the dependent vari-
able. The parameters can be estimated by MLE. However, because the Poisson distribution 
imposes equality of the variance and mean, it is often necessary to compute standard errors 
and test statistics that allow for over- or underdispersion. These are simple adjustments to 
the usual MLE standard errors and statistics.
 Censored and truncated regression models handle specific kinds of missing data 
problems. In censored regression, the dependent variable is censored above or below a 
threshold. We can use information on the censored outcomes because we always observe 
the explanatory variables, as in duration applications or top coding of observations. A 
truncated regression model arises when a part of the population is excluded entirely: we 
observe no information on units that are not covered by the sampling scheme. This is a 
special case of a sample selection problem.
 Section 17.5 gave a systematic treatment of nonrandom sample selection. We showed 
that exogenous sample selection does not affect consistency of OLS when it is applied 
to the subsample, but endogenous sample selection does. We showed how to test and 
correct for sample selection bias for the general problem of incidental truncation, where 
observations are missing on y due to the outcome of another variable (such as labor force 
participation). Heckman’s method is relatively easy to implement in these situations.

K E Y  T E R M S

Average Partial Effect 
(APE)

Binary Response Models
Censored Normal Regression 

Model
Censored Regression Model
Corner Solution Response
Count Variable
Duration Analysis
Exogenous Sample Selection
Heckit Method
Incidental Truncation
Inverse Mills Ratio
Latent Variable Model

Likelihood Ratio Statistic
Limited Dependent Variable 

(LDV)
Logit Model
Log-Likelihood Function
Maximum Likelihood 

Estimation (MLE) 
Nonrandom Sample Selection
Overdispersion
Partial Effect at the Average 

(PEA)
Percent Correctly Predicted
Poisson Distribution
Poisson Regression Model

Probit Model
Pseudo R-Squared
Quasi-Likelihood Ratio 

Statistic
Quasi-Maximum Likelihood 

Estimation (QMLE)
Response Probability
Selected Sample
Tobit Model
Top Coding
Truncated Normal Regression 

Model
Truncated Regression Model
Wald Statistic
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P R O B L E M S

17.1 (i)  For a binary response y, let  - y  be the proportion of ones in the sample (which is 
equal to the sample average of the y

i
). Let  ̂  q 

0
 be the percent correctly predicted for 

the outcome y � 0 and let  ̂  q 
1
 be the percent correctly predicted for the outcome 

y � 1. If  ̂  p  is the overall percent correctly predicted, show that  ̂  p  is a weighted 
average of  ̂  q 

0
 and  ̂  q 

1
:

 ̂  p  � (1 �  - y )  ̂  q 
0
 �  - y  ̂  q 

1
.

 (ii)  In a sample of 300, suppose that  - y  � .70, so that there are 210 outcomes with 
y

i
 � 1 and 90 with y

i
 � 0. Suppose that the percent correctly predicted when 

y � 0 is 80, and the percent correctly predicted when y � 1 is 40. Find the overall 
percent correctly predicted.

17.2  Let grad be a dummy variable for whether a student-athlete at a large university gradu-
ates in five years. Let hsGPA and SAT be high school grade point average and SAT 
score, respectively. Let study be the number of hours spent per week in an organized 
study hall. Suppose that, using data on 420 student-athletes, the following logit model 
is obtained:

 ̂  P (grad � 1�hsGPA,SAT,study) � �(�1.17 � .24 hsGPA � .00058 SAT � .073 study),

  where �(z) � exp(z)/[1 � exp(z)] is the logit function. Holding hsGPA fixed at 3.0 and 
SAT fixed at 1,200, compute the estimated difference in the graduation probability for 
someone who spent 10 hours per week in study hall and someone who spent 5 hours per 
week.

17.3 (Requires calculus)
 (i)  Suppose in the Tobit model that x

1
 � log(z

1
), and this is the only place z

1
 appears 

in x. Show that

   
∂E(y�y � 0,x)

  _____________ 
∂z

1

   � (�
1
/z

1
){1 � �(x�/�)[x�/� � �(x�/�)]}, 17.52

 where �
1
 is the coefficient on log(z

1
).

 (ii) If x
1
 � z

1
, and x

2
 � z

1
2, show that

  ∂E(y�y � 0,x)  ____________ 
∂z

1

  
  
� (�

1
 � 2�

2
z

1
){ 1 � �(x�/�)[x�/� � �(x�/�)]},

 where �
1
 is the coefficient on z

1
 and �

2
 is the coefficient on z

1
2.

17.4  Let mvp
i
 be the marginal value product for worker i, which is the price of a firm’s good 

multiplied by the marginal product of the worker. Assume that

log(mvp
i
) � �

0
 � �

1
x

i1
 � … � �

k
x

ik
 � u

i

 wage
i
 � max(mvp

i
,minwage

i
),

  where the explanatory variables include education, experience, and so on, and minwage
i
 

is the minimum wage relevant for person i. Write log(wage
i
) in terms of log(mvp

i
) and 

log(minwage
i
).
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17.5  (Requires calculus) Let patents be the number of patents applied for by a firm during a 
given year. Assume that the conditional expectation of patents given sales and RD is

E(patents�sales,RD) � exp[�
0
 � �

1
log(sales) � �

2
RD � �

3
RD2],

  where sales is annual firm sales and RD is total spending on research and development 
over the past 10 years.

 (i)  How would you estimate the �
j
? Justify your answer by discussing the nature of 

patents.
 (ii) How do you interpret �

1
?

 (iii) Find the partial effect of RD on E(patents�sales, RD).

17.6  Consider a family saving function for the population of all families in the United 
States:

sav � �
0
 � �

1
inc � �

2
hhsize � �

3
educ � �

4
age � u,

  where hhsize is household size, educ is years of education of the household head, and 
age is age of the household head. Assume that E(u�inc,hhsize,educ,age) � 0.

 (i)  Suppose that the sample includes only families whose head is over 25 years old. If 
we use OLS on such a sample, do we get unbiased estimators of the �

j
? Explain.

 (ii)  Now, suppose our sample includes only married couples without children. Can 
we estimate all of the parameters in the saving equation? Which ones can we
estimate?

 (iii)  Suppose we exclude from our sample families that save more than $25,000 per 
year. Does OLS produce consistent estimators of the �

j
?

17.7  Suppose you are hired by a university to study the factors that determine whether stu-
dents admitted to the university actually come to the university. You are given a large 
random sample of students who were admitted the previous year. You have informa-
tion on whether each student chose to attend, high school performance, family income, 
financial aid offered, race, and geographic variables. Someone says to you, “Any 
analysis of that data will lead to biased results because it is not a random sample of all 
college applicants, but only those who apply to this university.” What do you think of 
this criticism?

C O M P U T E R  E X E R C I S E S

C17.1 Use the data in PNTSPRD.RAW for this exercise.
 (i)  The variable favwin is a binary variable if the team favored by the Las Vegas 

point spread wins. A linear probability model to estimate the probability that the 
favored team wins is

P( favwin � 1�spread ) � �
0
 � �

1
spread.

  Explain why, if the spread incorporates all relevant information, we expect �
0
 � .5.

 (ii)  Estimate the model from part (i) by OLS. Test H
0
: �

0
 � .5 against a two-sided 

alternative. Use both the usual and heteroskedasticity-robust standard errors.
 (iii)  Is spread statistically significant? What is the estimated probability that the 

favored team wins when spread � 10?
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 (iv)  Now, estimate a probit model for P( favwin � 1�spread ). Interpret and test the 
null hypothesis that the intercept is zero. [Hint: Remember that �(0) � .5.]

 (v)  Use the probit model to estimate the probability that the favored team wins when 
spread � 10. Compare this with the LPM estimate from part (iii).

 (vi)  Add the variables favhome, fav25, and und25 to the probit model and test joint 
significance of these variables using the likelihood ratio test. (How many df are 
in the chi-square distribution?) Interpret this result, focusing on the question of 
whether the spread incorporates all observable information prior to a game.

C17.2 Use the data in LOANAPP.RAW for this exercise; see also Computer Exercise C7.8.
 (i)  Estimate a probit model of approve on white. Find the estimated probability of 

loan approval for both whites and nonwhites. How do these compare with the 
linear probability estimates?

 (ii)  Now, add the variables hrat, obrat, loanprc, unem, male, married, dep, sch, 
cosign, chist, pubrec, mortlat1, mortlat2, and vr to the probit model. Is there 
statistically significant evidence of discrimination against nonwhites?

 (iii)  Estimate the model from part (ii) by logit. Compare the coefficient on white to 
the probit estimate.

 (iv)  Use equation (17.17) to estimate the sizes of the discrimination effects for probit 
and logit.

C17.3 Use the data in FRINGE.RAW for this exercise.
 (i)  For what percentage of the workers in the sample is pension equal to zero? What 

is the range of pension for workers with nonzero pension benefits? Why is a 
Tobit model appropriate for modeling pension?

 (ii)  Estimate a Tobit model explaining pension in terms of exper, age, tenure, educ, 
depends, married, white, and male. Do whites and males have statistically sig-
nificant higher expected pension benefits?

 (iii)  Use the results from part (ii) to estimate the difference in expected pension ben-
efits for a white male and a nonwhite female, both of whom are 35 years old, 
are single with no dependents, have 16 years of education, and have 10 years of 
experience.

 (iv) Add union to the Tobit model and comment on its significance.
 (v)  Apply the Tobit model from part (iv) but with peratio, the pension- earnings ratio,

as the dependent variable. (Notice that this is a fraction between zero and one, 
but, though it often takes on the value zero, it never gets close to being unity. 
Thus, a Tobit model is fine as an approximation.) Does gender or race have an 
effect on the pension-earnings ratio?

C17.4  In Example 9.1, we added the quadratic terms pcnv2, ptime862, and inc862 to a linear 
model for narr86.

 (i)  Use the data in CRIME1.RAW to add these same terms to the Poisson regression 
in Example 17.3.

 (ii)  Compute the estimate of �2 given by  ̂  � 2 � (n � k � 1)�1 �n

i�1
  ̂  u  2   i  / ̂  y 

i
. Is there 

evidence of overdispersion? How should the Poisson MLE standard errors be 
adjusted?

 (iii)  Use the results from parts (i) and (ii) and Table 17.3 to compute the quasi-
likelihood ratio statistic for joint significance of the three quadratic terms. What 
do you conclude?



 Chapter 17   Limited Dependent Variable Models and Sample Selection Corrections 617

C17.5  Refer to Table 13.1 in Chapter 13. There, we used the data in FERTIL1.RAW to esti-
mate a linear model for kids, the number of children ever born to a woman.

 (i)  Estimate a Poisson regression model for kids, using the same variables in 
Table 13.1. Interpret the coefficient on y82.

 (ii)  What is the estimated percentage difference in fertility between a black woman 
and a nonblack woman, holding other factors fixed?

 (iii) Obtain  ̂  � . Is there evidence of over- or underdispersion?
 (iv)  Compute the fitted values from the Poisson regression and obtain the R-squared 

as the squared correlation between kids
i
 and 1kids

i
. Compare this with the

R-squared for the linear regression model.

C17.6  Use the data in RECID.RAW to estimate the model from Example 17.4 by OLS, using 
only the 552 uncensored durations. Comment generally on how these estimates com-
pare with those in Table 17.4.

C17.7 Use the MROZ.RAW data for this exercise.
 (i)  Using the 428 women who were in the workforce, estimate the return to edu-

cation by OLS including exper, exper2, nwifeinc, age, kidslt6, and kidsge6 as 
explanatory variables. Report your estimate on educ and its standard error.

 (ii)  Now, estimate the return to education by Heckit, where all exogenous vari-
ables show up in the second-stage regression. In other words, the regression is 
log(wage) on educ, exper, exper2, nwifeinc, age, kidslt6, kidsge6, and  ̂  � . Compare 
the estimated return to education and its standard error to that from part (i).

 (iii)  Using only the 428 observations for working women, regress   ̂  �  on educ, exper, 
exper2, nwifeinc, age, kidslt6, and kidsge6. How big is the R-squared? How does 
this help explain your findings from part (ii)? (Hint: Think multicollinearity.)

C17.8  The file JTRAIN2.RAW contains data on a job training experiment for a group of 
men. Men could enter the program starting in January 1976 through about mid-1977. 
The  program ended in December 1977. The idea is to test whether participation in the
job training program had an effect on unemployment probabilities and earnings in 
1978.

 (i)   The variable train is the job training indicator. How many men in the sample par-
ticipated in the job training program? What was the highest number of months a 
man actually participated in the program?

 (ii)  Run a linear regression of train on several demographic and pretraining vari-
ables: unem74, unem75, age, educ, black, hisp, and married. Are these variables 
jointly significant at the 5% level?

 (iii)  Estimate a probit version of the linear model in part (ii). Compute the likelihood 
ratio test for joint significance of all variables. What do you conclude?

 (iv)  Based on your answers to parts (ii) and (iii), does it appear that participation 
in job training can be treated as exogenous for explaining 1978 unemployment 
status? Explain.

 (v)  Run a simple regression of unem78 on train and report the results in equation 
form. What is the estimated effect of participating in the job training program on 
the probability of being unemployed in 1978? Is it statistically significant?

 (vi)  Run a probit of unem78 on train. Does it make sense to compare the probit 
 coefficient on train with the coefficient obtained from the linear model in 
part (v)?
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 (vii)  Find the fitted probabilities from parts (v) and (vi). Explain why they are identi-
cal. Which approach would you use to measure the effect and statistical signifi-
cance of the job training program?

 (viii)  Add all of the variables from part (ii) as additional controls to the models from 
parts (v) and (vi). Are the fitted probabilities now identical? What is the correla-
tion between them?

 (ix)  Using the model from part (viii), estimate the average partial effect of train on 
the 1978 unemployment probability. Use (17.17) with c

k
 � 0. How does the 

estimate compare with the OLS estimate from part (viii)?

C17.9  Use the data in APPLE.RAW for this exercise. These are telephone survey data attempt-
ing to elicit the demand for a (fictional) “ecologically friendly” apple. Each family was 
(randomly) presented with a set of prices for regular apples and the eco-labeled apples. 
They were asked how many pounds of each kind of apple they would buy.

 (i)  Of the 660 families in the sample, how many report wanting none of the eco-
labeled apples at the set price?

 (ii)  Does the variable ecolbs seem to have a continuous distribution over strictly 
positive values? What implications does your answer have for the suitability of 
a Tobit model for ecolbs?

 (iii)  Estimate a Tobit model for ecolbs with ecoprc, regprc, faminc, and hhsize as 
explanatory variables. Which variables are significant at the 1% level?

 (iv) Are faminc and hhsize jointly significant?
 (v)  Are the signs of the coefficients on the price variables from part (iii) what you 

expect? Explain.
 (vi)  Let �

1
 be the coefficient on ecoprc and let �

2
 be the coefficient on regprc. Test 

the hypothesis H
0
: � �

1
 � �

2
 against the two-sided alternative. Report the 

p-value of the test. (You might want to refer to Section 4.4 if your regression 
package does not easily compute such tests.)

 (vii)  Obtain the estimates of E(ecolbs�x) for all observations in the sample. [See 
equation (17.25).] Call these 2ecolbs

i
. What are the smallest and largest fitted 

values?
 (viii)  Compute the squared correlation between ecolbs

i
 and 2ecolbs

i
.

 (ix)  Now, estimate a linear model for ecolbs using the same explanatory variables 
from part (iii). Why are the OLS estimates so much smaller than the Tobit 
estimates? In terms of goodness-of-fit, is the Tobit model better than the linear 
model?

 (x)  Evaluate the following statement: “Because the R-squared from the Tobit model 
is so small, the estimated price effects are probably inconsistent.”

C17.10 Use the data in SMOKE.RAW for this exercise.
 (i)  The variable cigs is the number of cigarettes smoked per day. How many

 people in the sample do not smoke at all? What fraction of people claim to 
smoke 20 cigarettes a day? Why do you think there is a pileup of people at 
20 cigarettes?

 (ii)  Given your answers to part (i), does cigs seem a good candidate for having a 
conditional Poisson distribution?

 (iii)  Estimate a Poisson regression model for cigs, including log(cigpric), log(income), 
white, educ, age, and age2 as explanatory variables. What are the estimated price 
and income elasticities?
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 (iv)  Using the maximum likelihood standard errors, are the price and income vari-
ables statistically significant at the 5% level?

 (v)  Obtain the estimate of �2 described after equation (17.35). What is  ̂  � ? How 
should you adjust the standard errors from part (iv)?

 (vi)  Using the adjusted standard errors from part (v), are the price and income elas-
ticities now statistically different from zero? Explain.

 (vii)  Are the education and age variables significant using the more robust standard 
errors? How do you interpret the coefficient on educ?

 (viii)  Obtain the fitted values,  ̂  y 
i
, from the Poisson regression model. Find the mini-

mum and maximum values and discuss how well the exponential model predicts 
heavy cigarette smoking.

 (ix)  Using the fitted values from part (viii), obtain the squared correlation coefficient 
between  ̂  y 

i
 and y

i
.

 (x)  Estimate a linear model for cigs by OLS, using the explanatory variables (and 
same functional forms) as in part (iii). Does the linear model or exponential 
model provide a better fit? Is either R-squared very large?

C17.11  Use the data in CPS91.RAW for this exercise. These data are for married women, 
where we also have information on each husband’s income and demographics.

 (i) What fraction of the women report being in the labor force?
 (ii)  Using only the data for working women—you have no choice—estimate the 

wage equation

log(wage) � �
0
 � �

1
educ � �

2
exper � �

3
exper2 � �

4
black � �

5
hispanic � u 

   by ordinary least squares. Report the results in the usual form. Do there appear 
to be significant wage differences by race and ethnicity?

 (iii)  Estimate a probit model for inlf that includes the explanatory variables in the 
wage equation from part (ii) as well as nwifeinc and kidlt6. Do these last two vari-
ables have coefficients of the expected sign? Are they statistically significant?

 (iv)  Explain why, for the purposes of testing and, possibly, correcting the wage equa-
tion for selection into the workforce, it is important for nwifeinc and kidlt6 to 
help explain inlf. What must you assume about nwifeinc and kidlt6 in the wage 
equation?

 (v)  Compute the inverse Mills ratio (for each observation) and add it as an additional 
regressor to the wage equation from part (ii). What is its two-sided p-value? Do 
you think this is particularly small with 3,286 observations?

 (vi)  Does adding the inverse Mills ratio change the coefficients in the wage regres-
sion in important ways? Explain.

C17.12 Use the data in CHARITY.RAW to answer these questions.
 (i)  The variable respond is a binary variable equal to one if an individual responded 

with a donation to the most recent request. The database consists only of people 
who have responded at least once in the past. What fraction of people responded 
most recently?

 (ii)  Estimate a probit model for respond, using resplast, weekslast, propresp, 
mailsyear, and avggift as explanatory variables. Which of the explanatory vari-
ables is statistically significant?

 (iii)  Find the average partial effect for mailsyear and compare it with the coefficient 
from a linear probability model.
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 (iv)  Using the same explanatory variables, estimate a Tobit model for gift, the 
amount of the most recent gift (in Dutch guilders). Now which explanatory
variable is statistically significant?

 (v)  Compare the Tobit APE for mailsyear with that from a linear regression. Are 
they similar?

 (vi)  Are the estimates from parts (ii) and (iv) entirely compatible with at Tobit 
model? Explain.

C17.13 Use the data in HTV.RAW to answer this question.
 (i)  Using OLS on the full sample, estimate a model for log(wage) using explana-

tory variables educ, abil, exper, nc, west, south, and urban. Report the estimated 
return to education and its standard error.

 (ii)  Now estimate the equation from part (i) using only people with educ � 16. What 
percentage of the sample is lost? Now what is the estimated return to a year of 
schooling? How does it compare with part (i)?

 (iii)  Now drop all observations with wage � 20, so that everyone remaining in the sam-
ple earns less than $20 an hour. Run the regression from part (i) and comment on 
the coefficient on educ. (Because the normal truncated regression model assumes 
that y is continuous, it does not matter in theory whether we drop observations with 
wage � 20 or wage � 20. In practice, including in this application, it can matter 
slightly because there are some people who earn exactly $20 per hour.)

 (iv)  Using the sample in part (iii), apply truncated regression [with the upper trunca-
tion point being log(20)]. Does truncated regression appear to recover the return 
to education in the full population, assuming the estimate from (i) is consistent? 
Explain.

Appendix 17A

Maximum Likelihood Estimation with Explanatory Variables

Appendix C provides a review of maximum likelihood estimation (MLE) in the simplest 
case of estimating the parameters in an unconditional distribution. But most models in 
econometrics have explanatory variables, whether we estimate those models by OLS or 
MLE. The latter is indispensable for nonlinear models, and here we provide a very brief 
description of the general approach.

All of the models covered in this chapter can be put in the following form. Let 
f (y|x,�) denote the density function for a random draw y

i
 from the population, conditional 

on x
i
 � x. The maximum likelihood estimator (MLE) of � maximizes the log-likelihood 

function,

 max
b
    ∑ 

i�1

   
n

    log f (y
i 
|x

i
, b), 17.53

where the vector b is the dummy argument in the maximization problem. In most cases, 
the MLE, which we write as  ̂  � , is consistent and has an approximate normal distribution 
in large samples. This is true even though we cannot write down a formula for  ̂  �  except 
in very special circumstances. 
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For the binary response case (logit and probit), the conditional density is determined 
by two values, f  (1|x,�) � P(y

i
 � 1|x

i
) � G(x

i 
�) and f (0|x,�) � P( y

i
 � 0|x

i
) � 1 � G(x

i 
�).

In fact, a succinct way to write the density is f (y|x,�) � [1 � G(x �)](1�y)[G(x�)]y for 
y � 0, 1. Thus, we can write (17.53) as

 max
b
    ∑ 

i�1

   
n

    {(1 � y
i
) log[1 � G(x

i
b)] � y

i
 log[G(x

i
b)]}. 17.54

Generally, the solutions to (17.54) are quickly found by modern computers using itera-
tive methods to maximize a function. The total computation time even for fairly large 
data sets is typically quite rapid.

The log-likelihood function for the Tobit model and for censored and truncated 
regression are only slightly more complicated, depending on an additional variance 
parameter in addition to �. They are easily derived from the densities obtained in the text. 
See Wooldridge (2002) for details.

Appendix 17B

Asymptotic Standard Errors in Limited Dependent Variable Models

Derivations of the asymptotic standard errors for the models and methods introduced in 
this chapter are well beyond the scope of this text. Not only do the derivations require 
matrix algebra, but they also require advanced asymptotic theory of nonlinear estimation. 
The background needed for a careful analysis of these methods and several derivations 
are given in Wooldridge (2002).

It is instructive to see the formulas for obtaining the asymptotic standard errors for at 
least some of the methods. Given the binary response model P(y � 1�x) � G(x�), where 
G(�) is the logit or probit function, and � is the k � 1 vector of parameters, the asymptotic 
variance matrix of  ̂  �  is estimated as

 1Avar( ̂  � ) � � ∑ 
i�1

   
n

      
[g(x

i  
 ̂  � )]2x

i
�x

i   ________________  
G(x

i  
 ̂  � )[1 � G(x

i  
 ̂  � )]

  �
�1

, 17.55

which is a k � k matrix. (See Appendix D for a summary of matrix algebra.) Without 
the terms involving g(�) and G(�), this formula looks a lot like the estimated variance 
matrix for the OLS estimator, minus the term  ̂  �  2. The expression in (17.55) accounts 
for the nonlinear nature of the response probability—that is, the nonlinear nature of 
G(�)—as well as the particular form of heteroskedasticity in a binary response model: 
Var(y�x) � G(x�)[1 � G(x�)].

The square roots of the diagonal elements of (17.55) are the asymptotic standard 
errors of the  ̂  � 

j
, and they are routinely reported by econometrics software that supports 

logit and probit analysis. Once we have these, (asymptotic) t statistics and confidence 
intervals are obtained in the usual ways.

The matrix in (17.55) is also the basis for Wald tests of multiple restrictions on � [see 
Wooldridge (2002, Chapter 15)].
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The asymptotic variance matrix for Tobit is more complicated but has a similar struc-
ture. Note that we can obtain a standard error for  ̂  �  as well. The asymptotic variance for 
Poisson regression, allowing for �2 	 1 in (17.35), has a form much like (17.55):

 1Avar( ̂  � ) �  ̂  �  2  �  ∑ 
i�1

   
n

    exp(x
i   
 ̂  � )x

i
�x

i
 � 
�1

. 17.56

The square roots of the diagonal elements of this matrix are the asymptotic standard errors. 
If the Poisson assumption holds, we can drop  ̂  � 2 from the formula (because �2 � 1).

Asymptotic standard errors for censored regression, truncated regression, and the 
Heckit sample selection correction are more complicated, although they share features 
with the previous formulas. [See Wooldridge (2002) for details.]
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In this chapter, we cover some more advanced topics in time series econometrics. In 
Chapters 10, 11, and 12, we emphasized in several places that using time series data in 
regression analysis requires some care due to the trending, persistent nature of many 

economic time series. In addition to studying topics such as infinite distributed lag models 
and forecasting, we also discuss some recent advances in analyzing time series processes 
with unit roots.

In Section 18.1, we describe infinite distributed lag models, which allow a change in an 
explanatory variable to affect all future values of the dependent variable. Conceptually, these 
models are straightforward extensions of the finite distributed lag models in Chapter 10, but 
estimating these models poses some interesting challenges.

In Section 18.2, we show how to formally test for unit roots in a time series pro-
cess. Recall from Chapter 11 that we excluded unit root processes to apply the usual 
asymptotic theory. Because the presence of a unit root implies that a shock today has 
a long-lasting impact, determining whether a process has a unit root is of interest in its 
own right.

We cover the notion of spurious regression between two time series processes, each 
of which has a unit root, in Section 18.3. The main result is that even if two unit root 
series are independent, it is quite likely that the regression of one on the other will yield 
a statistically significant t statistic. This emphasizes the potentially serious consequences 
of using standard inference when the dependent and independent variables are integrated 
processes.

The notion of cointegration applies when two series are I(1), but a linear combination 
of them is I(0); in this case, the regression of one on the other is not spurious, but instead 
tells us something about the long-run relationship between them. Co integration between 
two series also implies a particular kind of model, called an error correction model, for the 
short-term dynamics. We cover these models in Section 18.4.

In Section 18.5, we provide an overview of forecasting and bring together all of the 
tools in this and previous chapters to show how regression methods can be used to forecast 
future outcomes of a time series. The forecasting literature is vast, so we focus only on the 
most common regression-based methods. We also touch on the related topic of Granger 
causality.
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18.1 Infi nite Distributed Lag Models
Let {(y

t
, z

t
): t � …, �2, �1, 0, 1, 2, …} be a bivariate time series process (which is only 

partially observed). An infinite distributed lag (IDL) model relating y
t
 to current and all 

past values of z is

 y
t
 � � � �

0
z

t
 � �

1
z

t�1
 � �

2
z

t�2
 � … � u

t
,  18.1

where the sum on lagged z extends back to the indefinite past. This model is only an 
approximation to reality, as no economic process started infinitely far into the past. 
Compared with a finite distributed lag model, an IDL model does not require that we 
truncate the lag at a particular value.

In order for model (18.1) to make sense, the lag coefficients, �
j
, must tend to zero as 

j → . This is not to say that �
2
 is smaller in magnitude than �

1
; it only means that the 

impact of z
t�j

 on y
t
 must eventually become small as j gets large. In most applications, this 

makes economic sense as well: the distant past of z should be less important for explaining 
y than the recent past of z.

Even if we decide that (18.1) is a useful model, we clearly cannot estimate it without 
some restrictions. For one, we only observe a finite history of data. Equation (18.1) involves 
an infinite number of parameters, �

0
, �

1
, �

2
, …, which cannot be estimated without restric-

tions. Later, we place restrictions on the �
j
 that allow us to estimate (18.1).

As with finite distributed lag (FDL) models, the impact propensity in (18.1) is simply 
�

0
 (see Chapter 10). Generally, the �

h
 have the same interpretation as in an FDL. Suppose 

that z
s
 � 0 for all s � 0 and that z

0
 � 1 and z

s
 � 0 for all s � 1; in other words, at time 

t � 0, z increases temporarily by one unit and then reverts to its initial level of zero. For 
any h � 0, we have y

h
 � � � �

h
 � u

h
 for all h � 0, and so

 E(y
h
) � � � �

h
,  18.2

where we use the standard assumption that u
h
 has zero mean. It follows that �

h
 is the change 

in E(y
h
), given a one-unit, temporary change in z at time zero. We just said that �

h
 must 

be tending to zero as h gets large for the IDL to make sense. This means that a temporary 
change in z has no long-run effect on expected y: E(y

h
) � � � �

h 
→ � as h → .

We assumed that the process z starts at z
s
 � 0 and that the one-unit increase occurred 

at t � 0. These were only for the purpose of illustration. More generally, if z temporar-
ily increases by one unit (from any initial level) at time t, then �

h
 measures the change 

in the expected value of y after h periods. The lag distribution, which is �
h
 plotted as a 

function of h, shows the expected path that future y follow given the one-unit, temporary 
increase in z.

The long-run propensity in model (18.1) is the sum of all of the lag coefficients:

 LRP � �
0
 � �

1
 � �

2
 � �

3
 � …,  18.3

where we assume that the infinite sum is well defined. Because the �
j
 must converge to 

zero, the LRP can often be well approximated by a finite sum of the form �
0
 � �

1
 � … �

�
p
 for sufficiently large p. To interpret the LRP, suppose that the process z

t
 is steady at z

s
 

� 0 for s � 0. At t � 0, the process permanently increases by one unit. For example, if 
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z
t
 is the percentage change in the money supply and y

t
 is the inflation rate, then we are 

interested in the effects of a permanent increase of one percentage point in money supply 
growth. Then, by substituting z

s
 � 0 for s � 0 and z

t
 � 1 for t � 0, we have

 y
h
 � � � �

0
 � �

1
 � … � �

h
 � u

h
, 

where h � 0 is any horizon. Because u
t
 has a zero mean for all t, we have

 E(y
h
) � � � �

0
 � �

1
 � … � �

h
. 18.4

[It is useful to compare (18.4) and (18.2).] As the horizon increases, that is, as h → , the 
right-hand side of (18.4) is, by definition, the long-run propensity, plus �. Thus, the LRP 
measures the long-run change in the 
 ex pected value of y given a one-unit, 
permanent increase in z.

The previous derivation of the LRP 
and the interpretation of �

j
 used the fact 

that the errors have a zero mean; as 
usual, this is not much of an assumption, 
provided an intercept is included in the model. A closer examination of our reasoning shows 
that we assumed that the change in z during any time period had no effect on the expected 
value of u

t
. This is the infinite distributed lag version of the strict exogeneity assumption 

that we introduced in Chapter 10 (in particular, Assumption TS.3). Formally, 

 E(u
t
�…, z

t�2
, z

t�1
, z

t
, z

t�1
, …) � 0,  18.5

so that the expected value of u
t
 does not depend on the z in any time period. Although 

(18.5) is natural for some applications, it rules out other important possibilities. In 
effect, (18.5) does not allow feedback from y

t
 to future z because z

t�h
 must be uncor-

related with u
t
 for h � 0. In the inflation/money supply growth example, where y

t
 is 

inflation and z
t
 is money supply growth, (18.5) rules out future changes in money sup-

ply growth that are tied to changes in today’s inflation rate. Given that money supply 
policy often attempts to keep interest rates and inflation at certain levels, this might be 
unrealistic.

One approach to estimating the �
j
, which we cover in the next subsection, requires a 

strict exogeneity assumption in order to produce consistent estimators of the �
j
. A weaker 

assumption is

 E(u
t
�z

t
, z

t�1
, …) � 0. 18.6

Under (18.6), the error is uncorrelated with current and past z, but it may be correlated 
with future z; this allows z

t
 to be a variable that follows policy rules that depend on 

past y. Sometimes, (18.6) is sufficient to estimate the �
j
; we explain this in the next 

subsection.
One thing to remember is that neither (18.5) nor (18.6) says anything about the serial 

correlation properties of {u
t
}. (This is just as in finite distributed lag models.) If any-

thing, we might expect the {u
t
} to be serially correlated because (18.1) is not generally 

Q u e s t i o n  1 8 . 1
Suppose that zs � 0 for s � 0 and that z0 � 1, z1 � 1, and zs � 0 for 
s � 1. Find E(y

�1), E(y0), and E(yh) for h � 1. What happens as 
h → ?
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 dynamically complete in the sense discussed in Section 11.4. We will study the serial 
correlation problem later.

How do we interpret the lag coefficients and the LRP if (18.6) holds but (18.5) does 
not? The answer is: the same way as before. We can still do the previous thought (or 
counterfactual) experiment, even though the data we observe are generated by some feed-
back between y

t
 and future z. For example, we can certainly ask about the long-run effect 

of a permanent increase in money supply growth on inflation, even though the data on 
money supply growth cannot be characterized as strictly exogenous.

The Geometric (or Koyck) Distributed Lag

Because there are generally an infinite number of �
j
, we cannot consistently estimate them 

without some restrictions. The simplest version of (18.1), which still makes the model 
depend on an infinite number of lags, is the geometric (or Koyck) distributed lag. In this 
model, the �

j
 depend on only two parameters:

 �
j
 � �� j, ��� � 1, j � 0, 1, 2, …. 18.7

The parameters � and � may be positive or negative, but � must be less than one in absolute 
value. This ensures that �

j 
→ 0 as j → . In fact, this convergence happens at a very fast 

rate. (For example, with � � .5 and j � 10, � j � 1/1024 � .001.)
The impact propensity (IP) in the GDL is simply �

0
 � �, so the sign of the IP is 

 determined by the sign of �. If � � 0, say, and � � 0, then all lag coefficients are posi-
tive. If � � 0, the lag coefficients alternate in sign (� j is negative for odd j ). The long-run 
propensity is more difficult to obtain, but we can use a standard result on the sum of a 
geometric series: for ��� � 1, 1 � � � �2 � … � � j � … � 1/(1 � �), and so

 LRP � � /(1 � �).

The LRP has the same sign as �.
If we plug (18.7) into (18.1), we still have a model that depends on the z back to the 

indefinite past. Nevertheless, a simple subtraction yields an estimable model. Write the 
IDL at times t and t � 1 as:

 y
t
 � � � �z

t
 � ��z

t�1
 � ��2z

t�2
 � … � u

t
 18.8

and

 y
t�1

 � � � �z
t�1

 � ��z
t�2

 � ��2z
t�3

 � … � u
t�1

. 18.9

If we multiply the second equation by � and subtract it from the first, all but a few of the 
terms cancel:

 y
t
 � �y

t�1
 � (1 � �)� � �z

t
 � u

t
 � �u

t�1
, 

which we can write as

 y
t
 � �

0
 � �z

t
 � �y

t�1
 � u

t
 � �u

t�1
,  18.10
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where �
0
 � (1 � �)�. This equation looks like a standard model with a lagged dependent 

variable, where z
t
 appears contemporaneously. Because � is the coefficient on z

t
 and � is the 

coefficient on y
t�1

, it appears that we can estimate these parameters. [If, for some reason, we 
are interested in �, we can always obtain  ̂  �  �  ̂  � 

0
/ (1 �  ̂  � ) after estimating � and �

0
.]

The simplicity of (18.10) is somewhat misleading. The error term in this equation, 
u

t
 � �u

t�1
, is generally correlated with y

t�1
. From (18.9), it is pretty clear that u

t�1
 and 

y
t�1

 are correlated. Therefore, if we write (18.10) as

 y
t
 � �

0
 � �z

t
 � �y

t�1
 � v

t
,  18.11

where v
t 
� u

t
 � �u

t�1
, then we generally have correlation between v

t
 and y

t�1
. Without 

further assumptions, OLS estimation of (18.11) produces inconsistent estimates of 
� and �.

One case where v
t
 must be correlated with y

t�1
 occurs when u

t
 is independent of z

t
 

and all past values of z and y. Then, (18.8) is dynamically complete, so u
t
 is uncorrelated 

with y
t�1

. From (18.9), the covariance between v
t
 and y

t�1
 is ��Var(u

t�1
) � ���

u
2, which 

is zero only if � � 0. We can easily see that v
t
 is serially correlated: because {u

t
} is seri-

ally uncorrelated, E(v
t
v

t�1
) � E(u

t
u

t�1
) � �E(u

t
2
�1

) � �E(u
t
u

t�2
) � �2E(u

t�1
u

t�2
) � ���

u
2. 

For j � 1, E(v
t
v

t�j
) � 0. Thus, {v

t
} is a moving average process of order one (see Sec-

tion 11.1). This, and equation (18.11), gives an example of a model—which is derived 
from the original model of interest—that has a lagged dependent variable and a particular 
kind of serial correlation.

If we make the strict exogeneity assumption (18.5), then z
t
 is uncorrelated with u

t
 and 

u
t�1

, and therefore with v
t
. Thus, if we can find a suitable instrumental variable for y

t�1
, 

then we can estimate (18.11) by IV. What is a good IV candidate for y
t�1

? By assumption, 
u

t
 and u

t�1
 are both uncorrelated with z

t�1
, so v

t
 is uncorrelated with z

t�1
. If � 	 0, z

t�1 
and 

y
t�1

 are correlated, even after partialling out z
t
. Therefore, we can use instruments (z

t
, z

t�1
) 

to estimate (18.11). Generally, the standard errors need to be adjusted for serial correlation 
in the {v

t
}, as we discussed in Section 15.7.

An alternative to IV estimation exploits the fact that {u
t
} may contain a specific kind 

of serial correlation. In particular, in addition to (18.6), suppose that {u
t
} follows the 

AR(1) model

 u
t
 � �u

t�1
 � e

t
 18.12

 E(e
t
�z

t
, y

t�1
, z

t�1
, …) � 0. 18.13

It is important to notice that the � appearing in (18.12) is the same parameter multiplying 
y

t�1
 in (18.11). If (18.12) and (18.13) hold, we can write equation (18.10) as

 y
t
 � �

0
 � �z

t
 � �y

t�1
 � e

t
,  18.14

which is a dynamically complete model under (18.13). From Chapter 11, we can obtain 
consistent, asymptotically normal estimators of the parameters by OLS. This is very con-
venient, as there is no need to deal with serial correlation in the errors. If e

t
 satisfies the 

homoskedasticity assumption Var(e
t
�z

t
, y

t�1
) � �  2   e  , the usual inference applies. Once we 

have estimated � and �, we can easily estimate the LRP: 1LRP �  ̂  � /(1 �  ̂  � ).
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The simplicity of this procedure relies on the potentially strong assumption that {u
t
} 

follows an AR(1) process with the same � appearing in (18.7). This is usually no worse 
than assuming the {u

t
} are serially uncorrelated. Nevertheless, because consistency of the 

estimators relies heavily on this assumption, it is a good idea to test it. A simple test begins 
by specifying {u

t
} as an AR(1) process with a different parameter, say, u

t
 � �u

t�1
 � e

t
. 

McClain and Wooldridge (1995) devised a simple Lagrange multiplier test of H
0
: � � � 

that can be computed after OLS estimation of (18.14).
The geometric distributed lag model extends to multiple explanatory variables—so that 

we have an infinite DL in each explanatory variable—but then we must be able to write 
the coefficient on z

t�j,h
 as �

h
� j. In other words, though �

h
 is different for each explanatory 

variable, � is the same. Thus, we can write

 y
t
 � �

0
 � �

1
z

t1
 � … � �

k
z

tk
 � �y

t�1
 � v

t
. 18.15

The same issues that arose in the case with one z arise in the case with many z. Under the 
natural extension of (18.12) and (18.13)—just replace z

t 
with z

t
 � (z

t1
, …, z

tk
)—OLS is 

consistent and asymptotically normal. Or, an IV method can be used.

Rational Distributed Lag Models

The geometric DL implies a fairly restrictive lag distribution. When � � 0 and � � 0, the 
�

j
 are positive and monotonically declining to zero. It is possible to have more general 

infinite distributed lag models. The GDL is a special case of what is generally called a 
rational distributed lag (RDL) model. A general treatment is beyond our scope—Harvey 
(1990) is a good reference—but we can cover one simple, useful  extension.

Such an RDL model is most easily described by adding a lag of z to equation (18.11):

 y
t
 � �

0
 � �

0
z

t
 � �y

t�1
 � �

1
z

t�1
 � v

t
,  18.16

where v
t
 � u

t
 � �u

t�1
, as before. By repeated substitution, it can be shown that (18.16) is 

equivalent to the infinite distributed lag model

 y
t
 � � � �

0
(z

t
 � �z

t�1
 � �2z

t�2
 � …)

 � �
1
(z

t�1
 � �z

t�2
 � �2z

t�3
 � …) � u

t

 � � � �
0
z

t
 � (��

0
 � �

1
)z

t�1
 � �(��

0
 � �

1
)z

t�2

 � �2(��
0
 � �

1
)z

t�3
 � … � u

t
, 

where we again need the assumption ��� � 1. From this last equation, we can read off the 
lag distribution. In particular, the impact propensity is �

0
, while the coefficient on z

t�h
 is 

�h�1(��
0
 � �

1
) for h � 1. Therefore, this model allows the impact propensity to differ in 

sign from the other lag coefficients, even if � � 0. However, if � � 0, the �
h
 have the same 

sign as (��
0
 � �

1
) for all h � 1. The lag distribution is plotted in Figure 18.1 for � � .5, 

�
0
 � �1, and �

1
 � 1.

The easiest way to compute the long-run propensity is to set y and z at their long-run 
values for all t, say, y* and z*, and then find the change in y* with respect to z* (see also 
Problem 10.3). We have y* � �

0
 � �

0
z* � �y* � �

1
z*, and solving gives y* � �

0
/(1 � �) � 

(�
0
 � �

1
)/(1 � �)z*. Now, we use the fact that LRP � �y*/�z*:

 LRP � (�
0
 � �

1
)/(1 � �).
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Because ��� � 1, the LRP has the same sign as �
0
 � �

1
, and the LRP is zero if, and only 

if, �
0
 � �

1
 � 0, as in Figure 18.1.

E x a m p l e  1 8 . 1

[Housing Investment and Residential Price Inflation]

We estimate both the basic geometric and the rational distributed lag models by applying OLS to 
(18.14) and (18.16), respectively. The dependent variable is log(invpc) after a linear time trend has 
been removed [that is, we linearly detrend log(invpc)]. For z

t
, we use the growth in the price index. 

This allows us to estimate how residential price inflation affects movements in housing invest-
ment around its trend. The results of the estimation, using the data in HSEINV.RAW, are given in 
Table 18.1.
 The geometric distributed lag model is clearly rejected by the data, as gprice

�1
 is very signifi-

cant. The adjusted R-squareds also show that the RDL model fits much better.
 The two models give very different estimates of the long-run propensity. If we incorrectly 
use the GDL, the estimated LRP is almost five: a permanent one percentage point increase in 
residential price inflation increases long-term housing investment by 4.7% (above its trend value). 
Economically, this seems implausible. The LRP estimated from the rational distributed lag model is 
below one. In fact, we cannot reject the null hypothesis H

0
: �

0
 � �

1
 � 0 at any reasonable signifi-

cance level (p-value � .83), so there is no evidence that the LRP is different from zero. This is a 
good example of how misspecifying the dynamics of a model by omitting relevant lags can lead to 
erroneous conclusions.

F I GURE  18 . 1

Lag distribution for the rational distributed lag (18.16) with � � .5, �
0
 � �1, 

and �
1
 � 1.

coefficient .5

5 10
lag

�1

0
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18.2 Testing for Unit Roots
We now turn to the important problem of testing whether a time series follows a unit root 
process. In Chapter 11, we gave some vague, necessarily informal guidelines to decide 
whether a series is I(1) or not. In many cases, it is useful to have a formal test for a unit 
root. As we will see, such tests must be applied with caution.

The simplest approach to testing for a unit root begins with an AR(1) model:

 y
t
 � � � �y

t�1
 � e

t
, t � 1, 2, …,  18.17

where y
0
 is the observed initial value. Throughout this section, we let {e

t
} denote a process 

that has zero mean, given past observed y:

 E(e
t
�y

t�1
, y

t�2
, …, y

0
) � 0. 18.18

[Under (18.18), {e
t
} is said to be a martingale difference sequence with respect to {y

t�1
, 

y
t�2

, …}. If {e
t
} is assumed to be i.i.d. with zero mean and is independent of y

0
, then it 

also satisfies (18.18).]

TABLE  18 . 1

Distributed Lag Models for Housing Investment

Dependent Variable: log(invpc), detrended

Independent 
Variables

Geometric
DL

Rational
DL

gprice  3.095
 (.933)

 3.256
 (.970)

y
�1

 .340
 (.132)

 .547
 (.152)

gprice
�1

—  �2.936
 (.973)

constant  �.010
 (.018)

 .006
 (.017)

Long-run propensity  4.689  .706

Sample size
Adjusted R-squared

 41
 .375

 40
 .504
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If {y
t
} follows (18.17), it has a unit root if, and only if, � � 1. If � � 0 and � � 1, 

{y
t
} follows a random walk without drift [with the innovations e

t
 satisfying (18.18)]. If 

� 	 0 and � � 1, {y
t
} is a random walk with drift, which means that E(y

t
) is a linear func-

tion of t. A unit root process with drift behaves very differently from one without drift. 
Nevertheless, it is common to leave � unspecified under the null hypothesis, and this is the 
approach we take. Therefore, the null hypothesis is that {y

t
} has a unit root:

 H
0
: � � 1. 18.19

In almost all cases, we are interested in the one-sided alternative

 H
1
: � � 1. 18.20

(In practice, this means 0 � � � 1, as � � 0 for a series that we suspect has a unit root 
would be very rare.) The alternative H

1
: � � 1 is not usually considered, since it implies 

that y
t
 is explosive. In fact, if � � 0, y

t
 has an exponential trend in its mean when � � 1.

When ��� � 1, {y
t
} is a stable AR(1) process, which means it is weakly dependent or 

asymptotically uncorrelated. Recall from Chapter 11 that Corr(y
t
,y

t�h
) � �h → 0 when 

��� � 1. Therefore, testing (18.19) in model (18.17), with the alternative given by (18.20), 
is really a test of whether {y

t
} is I(1) against the alternative that {y

t
} is I(0). [We do not 

take the null to be I(0) in this setup because {y
t
} is I(0) for any value of � strictly between 

�1 and 1, something that classical hypothesis testing does not handle easily. There are 
tests where the null hypothesis is I(0) against the alternative of I(1), but these take a dif-
ferent approach. See, for example, Kwiatkowski, Phillips, Schmidt, and Shin (1992).]

A convenient equation for carrying out the unit root test is to subtract y
t�1

 from both 
sides of (18.17) and to define � � � � 1:

 �y
t
 � � � �y

t�1
 � e

t
. 18.21

Under (18.18), this is a dynamically complete model, and so it seems straightforward to test 
H

0
: � � 0 against H

1
: � � 0. The problem is that, under H

0
, y

t�1
 is I(1), and so the usual cen-

tral limit theorem that underlies the asymptotic standard normal distribution for the t statis-
tic does not apply: the t statistic does not have an approximate standard normal  distribution 
even in large sample sizes. The asymptotic distribution of the t statistic under H

0
 has come 

to be known as the Dickey-Fuller distribution after Dickey and Fuller (1979).
Although we cannot use the usual critical values, we can use the usual t statistic for  ̂  �  

in (18.21), at least once the appropriate critical values have been tabulated. The resulting 
test is known as the Dickey-Fuller (DF) test for a unit root. The theory used to obtain the 
asymptotic critical values is rather complicated and is covered in advanced texts on time 
series econometrics. [See, for example, Banerjee, Dolado, Galbraith, and Hendry (1993), 
or BDGH for short.] By contrast, using these results is very easy. The critical values for 
the t statistic have been tabulated by several authors, beginning with the original work by 
Dickey and Fuller (1979). Table 18.2 contains the large sample critical values for vari-
ous significance levels, taken from BDGH (1993, Table 4.2). (Critical values adjusted for 
small sample sizes are available in BDGH.)
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We reject the null hypothesis H
0
: � � 0 against H

1
: � � 0 if t

 ̂  �  
� c, where c is one of 

the negative values in Table 18.2. For example, to carry out the test at the 5% sig-
nificance level, we reject if t

 ̂  � 
 � �2.86. This requires a t statistic with a much larger 

magnitude than if we used the standard normal critical value, which would be �1.65. If 
we use the standard normal critical value to test for a unit root, we would reject H

0
 much 

more often than 5% of the time when H
0
 is true.

E x a m p l e  1 8 . 2

[Unit Root Test for Three-Month T-Bill Rates]

We use the quarterly data in INTQRT.RAW to test for a unit root in three-month T-bill rates. When 
we estimate (18.20), we obtain

 �1r3
t
 � .625 � .091 r3

t�1

 (.261) (.037)  18.22

 n � 123, R2 � .048, 

where we keep with our convention of reporting standard errors in parentheses below the estimates. 
We must remember that these standard errors cannot be used to construct usual confidence intervals 
or to carry out traditional t tests because these do not behave in the usual ways when there is a unit 
root. The coefficient on r3

t�1
 shows that the estimate of � is  ̂  �  � 1 �  ̂  �  � .909. While this is less than 

unity, we do not know whether it is statistically less than one. The t statistic on r3
t�1

 is �.091/.037 � 
�2.46. From Table 18.2, the 10% critical value is �2.57; therefore, we fail to reject H

0
: � � 1 

against H
1
: � � 1 at the 10% significance level.

 

As with other hypothesis tests, when we fail to reject H
0
, we do not say that we accept 

H
0
. Why? Suppose we test H

0
: � � .9 in the previous example using a standard t test—

which is asymptotically valid, because y
t
 is I(0) under H

0
. Then, we obtain t � .001/.037, 

which is very small and provides no evidence against � � .9. Yet, it makes no sense to 
accept � � 1 and � � .9.

When we fail to reject a unit root, as in the previous example, we should only conclude 
that the data do not provide strong evidence against H

0
. In this example, the test does 

provide some evidence against H
0
 because the t statistic is close to the 10% critical value. 

(Ideally, we would compute a p-value, but this requires special software because of the 
nonnormal distribution.) In addition, though  ̂  �  � .91 implies a fair amount of persis tence 

TABLE  18 . 2

Asymptotic Critical Values for Unit Root t Test: No Time Trend

Significance level 1% 2.5% 5% 10%

Critical value �3.43 �3.12 �2.86 �2.57
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in {r3
t
}, the correlation between observations that are 10 periods apart for an AR(1) model 

with � � .9 is about .35, rather than almost one if � � 1.
What happens if we now want to use r3

t
 as an explanatory variable in a regression 

analysis? The outcome of the unit root test implies that we should be extremely cautious: 
if r3

t
 does have a unit root, the usual asymptotic approximations need not hold (as we 

discussed in Chapter 11). One solution is to use the first difference of r3
t
 in any analysis. 

As we will see in Section 18.4, that is not the only possibility.
We also need to test for unit roots in models with more complicated dynamics. If {y

t
} 

follows (18.17) with � � 1, then �y
t
 is serially uncorrelated. We can easily allow {�y

t
} to 

follow an AR model by augmenting equation (18.21) with additional lags. For example, 

 �y
t
 � � � �y

t�1
 � �

1
�y

t�1
 � e

t
,  18.23

where ��
1
� � 1. This ensures that, under H

0
: � � 0, {�y

t
} follows a stable AR(1) model. 

Under the alternative H
1
: � � 0, it can be shown that {y

t
} follows a stable AR(2) model.

More generally, we can add p lags of �y
t
 to the equation to account for the dynamics 

in the process. The way we test the null hypothesis of a unit root is very similar: we run 
the regression of

 �y
t
 on y

t�1
, �y

t�1
, …, �y

t�p
 18.24

and carry out the t test on  ̂  � , the coefficient on y
t�1

, just as before. This extended version 
of the Dickey-Fuller test is usually called the augmented Dickey-Fuller test because the 
regression has been augmented with the lagged changes, �y

t�h
. The critical values and rejec-

tion rule are the same as before. The inclusion of the lagged changes in (18.24) is intended 
to clean up any serial correlation in �y

t
. The more lags we include in (18.24), the more 

initial observations we lose. If we include too many lags, the small sample power of the test 
generally suffers. But if we include too few lags, the size of the test will be incorrect, even 
asymptotically, because the validity of the critical values in Table 18.2 relies on the dynam-
ics being completely modeled. Often, the lag length is dictated by the frequency of the data 
(as well as the sample size). For annual data, one or two lags usually suffice. For monthly 
data, we might include 12 lags. But there are no hard rules to follow in any case.

Interestingly, the t statistics on the lagged changes have approximate t distributions. The 
F statistics for joint significance of any group of terms �y

t�h
 are also asymptotically valid. 

(These maintain the homoskedasticity assumption discussed in Section 11.5.) Therefore, we 
can use standard tests to determine whether we have enough lagged changes in (18.24).

E x a m p l e  1 8 . 3

[Unit Root Test for Annual U.S. Inflation]

We use annual data on U.S. inflation, based on the CPI, to test for a unit root in inflation (see 
PHILLIPS.RAW), restricting ourselves to the years from 1948 through 1996. Allowing for one lag 
of �inf

t
 in the augmented Dickey-Fuller regression gives

 �1inf
t
 �(1.36 � .310)inf

t�1
 � .138 �inf

t�1

 �in̂f
t
 �0(.517) (.103) (.126)

 n � 47, R2 � .172.
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The t statistic for the unit root test is �.310/.103 � �3.01. Because the 5% critical value is �2.86, 
we reject the unit root hypothesis at the 5% level. The estimate of � is about .690. Together, this is 
reasonably strong evidence against a unit root in inflation. The lag �inf

t�1
 has a t statistic of about 

1.10, so we do not need to include it, but we could not know this ahead of time. If we drop �inf
t�1

, 
the evidence against a unit root is slightly stronger:  ̂  �  � �.335 ( ̂  �  � .665), and t

 ̂  �  
� �3.13.

 

For series that have clear time trends, we need to modify the test for unit roots. A trend-
stationary process—which has a linear trend in its mean but is I(0) about its trend—can be 
mistaken for a unit root process if we do not control for a time trend in the Dickey-Fuller 
regression. In other words, if we carry out the usual DF or augmented DF test on a trending 
but I(0) series, we will probably have little power for rejecting a unit root.

To allow for series with time trends, we change the basic equation to

 �y
t
 � � � �t � �y

t�1
 � e

t
,  18.25

where again the null hypothesis is H
0
: � � 0, and the alternative is H

1
: � � 0. Under the 

alternative, {y
t
} is a trend-stationary process. If y

t
 has a unit root, then �y

t
 � � � �t � 

e
t
, and so the change in y

t
 has a mean linear in t unless � � 0. [It can be shown that E(y

t
) 

is actually a quadratic in t.] It is unusual for the first difference of an economic series to 
have a linear trend, so a more appropriate null hypothesis is probably H

0
: � � 0, � � 0. 

Although it is possible to test this joint hypothesis using an F test—but with modified 
critical values—it is common to only test H

0
: � � 0 using a t test. We follow that approach 

here. [See BDGH (1993, Section 4.4) for more details on the joint test.]
When we include a time trend in the regression, the critical values of the test change. 

Intuitively, this occurs because detrending a unit root process tends to make it look more 
like an I(0) process. Therefore, we require a larger magnitude for the t statistic in order 
to reject H

0
. The Dickey-Fuller critical values for the t test that includes a time trend are 

given in Table 18.3; they are taken from BDGH (1993, Table 4.2).

TABLE  18 . 3

Asymptotic Critical Values for Unit Root t Test: Linear Time Trend

Significance level 1% 2.5% 5% 10%

Critical value �3.96 �3.66 �3.41 �3.12

For example, to reject a unit root at the 5% level, we need the t statistic on  ̂  �  to be less than 
�3.41, as compared with �2.86 without a time trend.

We can augment equation (18.25) with lags of �y
t
 to account for serial correlation, just 

as in the case without a trend.
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E x a m p l e  1 8 . 4

[Unit Root in the Log of U.S. Real Gross Domestic Product]

We can apply the unit root test with a time trend to the U.S. GDP data in INVEN.RAW. These 
annual data cover the years from 1959 through 1995. We test whether log(GDP

t
) has a unit 

root. This series has a pronounced trend that looks roughly linear. We include a single lag of 
�log(GDP

t
), which is simply the growth in GDP (in decimal form), to account for dynamics:

 2gGDP
t
 � 1.65 � .0059 t � .210 log(GDP

t�1
) � .264 gGDP

t�1

 (.67) (.0027) (.087) (.165) 18.26  

 n � 35, R2 � .268.

From this equation, we get  ̂  �  � 1 � .21 � .79, which is clearly less than one. But we cannot reject a 
unit root in the log of GDP: the t statistic on log(GDP

t�1
) is �.210/.087 � �2.41, which is well 

above the 10% critical value of �3.12. The t statistic on gGDP
t�1

 is 1.60, which is almost significant 
at the 10% level against a two-sided alternative.
 What should we conclude about a unit root? Again, we cannot reject a unit root, but the point 
estimate of � is not especially close to one. When we have a small sample size—and n � 35 is 
considered to be pretty small—it is very difficult to reject the null hypothesis of a unit root if 
the process has something close to a unit root. Using more data over longer time periods, many 
researchers have concluded that there is little evidence against the unit root hypothesis for log(GDP). 
This has led most of them to assume that the growth in GDP is I(0), which means that log(GDP) 
is I(1). Unfortunately, given currently available sample sizes, we cannot have much  confidence in 
this conclusion.
 If we omit the time trend, there is much less evidence against H

0
, as  ̂  �  � �.023 and t

 ̂  �  
� �1.92. 

Here, the estimate of � is much closer to one, but this is misleading due to the omitted time trend.

 

It is tempting to compare the t statistic on the time trend in (18.26), with the critical 
value from a standard normal or t distribution, to see whether the time trend is significant. 
Unfortunately, the t statistic on the trend does not have an asymptotic standard normal 
distribution (unless ��� � 1). The asymptotic distribution of this t statistic is known, but it 
is rarely used. Typically, we rely on intuition (or plots of the time series) to decide whether 
to include a trend in the DF test.

There are many other variants on unit root tests. In one version that is applicable only 
to series that are clearly not trending, the intercept is omitted from the regression; that is, 
� is set to zero in (18.21). This variant of the Dickey-Fuller test is rarely used because of 
biases induced if � 	 0. Also, we can allow for more complicated time trends, such as 
quadratic. Again, this is seldom used.

Another class of tests attempts to account for serial correlation in �y
t
 in a different 

manner than by including lags in (18.21) or (18.25). The approach is related to the serial 
correlation-robust standard errors for the OLS estimators that we discussed in Section 12.5. 
The idea is to be as agnostic as possible about serial correlation in �y

t
. In practice, the 

(augmented) Dickey-Fuller test has held up pretty well. [See BDGH (1993, Section 4.3) 
for a discussion on other tests.]
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18.3 Spurious Regression
In a cross-sectional environment, we use the phrase “spurious correlation” to describe a 
situation where two variables are related through their correlation with a third variable. In 
particular, if we regress y on x, we find a significant relationship. But when we control for 
another variable, say, z, the partial effect of x on y becomes zero. Naturally, this can also 
happen in time series contexts with I(0) variables.

As we discussed in Section 10.5, it is possible to find a spurious relationship between 
time series that have increasing or decreasing trends. Provided the series are weakly 
dependent about their time trends, the problem is effectively solved by including a time 
trend in the regression model.

When we are dealing with processes that are integrated of order one, there is an additional 
complication. Even if the two series have means that are not trending, a simple regression 
involving two independent I(1) series will often result in a significant t statistic.

To be more precise, let {x
t
} and {y

t
} be random walks generated by

 x
t
 � x

t�1
 � a

t
, t � 1, 2, …,  18.27

and

 y
t
 � y

t�1
 � e

t
, t � 1, 2, …,  18.28

where {a
t
} and {e

t
} are independent, identically distributed innovations, with mean 

zero and variances � 
a
2 and � 

e
2, respectively. For concreteness, take the initial values to be 

x
0
 � y

0
 � 0. Assume further that {a

t
} and {e

t
} are independent processes. This implies that 

{x
t
} and {y

t
} are also independent. But what if we run the simple regression

  ̂  y 
t
 �  ̂  � 

0
 �  ̂  � 

1
x

t
 18.29

and obtain the usual t statistic for  ̂  � 
1
 and the usual R-squared? Because y

t 
and x

t
 are 

independent, we would hope that plim  ̂  � 
1
 � 0. Even more importantly, if we test H

0
: 

�
1
 � 0 against H

1
: �

1 
	 0 at the 5% level, we hope that the t statistic for  ̂  � 

1
 is insignificant 

95% of the time. Through a simulation, Granger and Newbold (1974) showed that this is 
not the case: even though y

t
 and x

t
 are independent, the regression of y

t
 on x

t
 yields a sta-

tistically significant t statistic a large percentage of the time, much larger than the nominal 
significance level. Granger and Newbold called this the spurious regression problem: 
there is no sense in which y and x are related, but an OLS regression using the usual t 
statistics will often indicate a relationship.

Recent simulation results are given by Davidson and MacKinnon (1993, Table 19.1), 
where a

t
 and e

t
 are generated as independent, identically distributed normal random vari-

ables, and 10,000 different samples are generated. For a sample size of n � 50 at the 
5% significance level, the standard t 
statistic for H

0
: �

1
 � 0 against the two-

sided alternative rejects H
0
 about 66.2% 

of the time under H
0
, rather than 5% of 

the time. As the sample size increases, 
things get worse: with n � 250, the null 
is rejected 84.7% of the time!

Q u e s t i o n  1 8 . 2
Under the preceding setup, where {xt} and {yt} are generated by 
(18.27) and (18.28) and {et} and {at} are i.i.d. sequences, what is 
the plim of the slope coefficient, say,  ̂  � 1, from the regression of �yt 
on �xt? Describe the behavior of the t statistic of  ̂  � 1.
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Here is one way to see what is happening when we regress the level of y on the level 
of x. Write the model underlying (18.29) as

 y
t
 � �

0
 � �

1
x

t
 � u

t
. 18.30

For the t statistic of  ̂  � 
1
 to have an approximate standard normal distribution in large sam-

ples, at a minimum, {u
t
} should be a mean zero, serially uncorrelated process. But under 

H
0
: �

1
 � 0, y

t
 � �

0
 � u

t
, and, because {y

t
} is a random walk starting at y

0
 � 0, equation

(18.30) holds under H
0
 only if �

0
 � 0 and, more importantly, if u

t
 � y

t
 �

 
 ∑ 

j�1
  

t
    e

j
. In 

other words, {u
t
} is a random walk under H

0
. This clearly violates even the asymp-

totic version of the Gauss-Markov assumptions from Chapter 11.
Including a time trend does not really change the conclusion. If y

t
 or x

t
 is a random 

walk with drift and a time trend is not included, the spurious regression problem is even 
worse. The same qualitative conclusions hold if {a

t
} and {e

t
} are general I(0) processes, 

rather than i.i.d. sequences.
In addition to the usual t statistic not having a limiting standard normal distribution—in 

fact, it increases to infinity as n → —the behavior of R-squared is nonstandard. In cross-
sectional contexts or in regressions with I(0) time series variables, the R-squared converges 
in probability to the population R-squared: 1 � �

u
2 /�

y
2. This is not the case in spurious 

regressions with I(1) processes. Rather than the R-squared having a well-defined plim, it 
actually converges to a random variable. Formalizing this notion is well beyond the scope 
of this text. [A discussion of the asymptotic properties of the t statistic and the R-squared 
can be found in BDGH (Section 3.1).] The implication is that the R-squared is large with 
high probability, even though {y

t
} and {x

t
} are independent time series processes.

The same considerations arise with multiple independent variables, each of which may 
be I(1) or some of which may be I(0). If {y

t
} is I(1) and at least some of the explanatory 

variables are I(1), the regression results may be spurious.
The possibility of spurious regression with I(1) variables is quite important and has led 

economists to reexamine many aggregate time series regressions whose t statistics were 
very significant and whose R-squareds were extremely high. In the next section, we show 
that regressing an I(1) dependent variable on an I(1) independent variable can be informa-
tive, but only if these variables are related in a precise sense.

18.4 Cointegration and Error 
Correction Models
The discussion of spurious regression in the previous section certainly makes one wary of 
using the levels of I(1) variables in regression analysis. In earlier chapters, we suggested 
that I(1) variables should be differenced before they are used in linear regression models, 
whether they are estimated by OLS or instrumental variables. This is certainly a safe 
course to follow, and it is the approach used in many time series regressions after Granger 
and Newbold’s original paper on the spurious regression problem. Unfortunately, always 
differencing I(1) variables limits the scope of the questions that we can answer.

Cointegration

The notion of cointegration, which was given a formal treatment in Engle and Granger 
(1987), makes regressions involving I(1) variables potentially meaningful. A full  treatment 
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of cointegration is mathematically involved, but we can describe the basic issues and 
methods that are used in many applications.

If {y
t
: t � 0, 1, …} and {x

t
: t � 0, 1, …} are two I(1) processes, then, in general, 

y
t
 � �x

t
 is an I(1) process for any number �. Nevertheless, it is possible that for some 

� 	 0, y
t
 � �x

t
 is an I(0) process, which means it has constant mean, constant variance, 

and autocorrelations that depend only on the time distance between any two variables in 
the series, and it is asymptotically uncorrelated. If such a � exists, we say that y and x are 
cointegrated, and we call � the cointegration parameter. [Alternatively, we could look at 

x
t
 � � y

t
 for � 	 0: if y

t
 � �x

t
 is I(0), 

then x
t
 � (1/�)y

t
 is I(0). Therefore, the 

linear combination of y
t
 and x

t
 is not 

unique, but if we fix the coefficient 
on y

t
 at unity, then � is unique. See 

Problem 18.3. For  con crete ness, we 
consider linear combinations of the 
form y

t
 � �x

t
.]

For the sake of illustration, take � � 1, suppose that y
0
 � x

0
 � 0, and write 

y
t
 � y

t�1
 � r

t
, x

t
 � x

t�1
 � v

t
, where {r

t
} and {v

t
} are two I(0) processes with zero means. 

Then, y
t
 and x

t
 have a tendency to wander around and not return to the initial value of zero 

with any regularity. By contrast, if y
t
 � x

t
 is I(0), it has zero mean and does return to zero 

with some regularity.
As a specific example, let r6

t
 be the annualized interest rate for six-month T-bills (at 

the end of quarter t) and let r3
t
 be the annualized interest rate for three-month T-bills. 

(These are typically called bond equivalent yields, and they are reported in the financial 
pages.) In Example 18.2, using the data in INTQRT.RAW, we found little evidence 
against the hypothesis that r3

t
 has a unit root; the same is true of r6

t
. Define the spread 

between six- and three-month T-bill rates as spr
t
 � r6

t
 � r3

t
. Then, using equation (18.21), 

the Dickey-Fuller t statistic for spr
t
 is �7.71 (with  ̂  �  � �.67 or  ̂  �  � .33). Therefore, we 

strongly reject a unit root for spr
t
 in favor of I(0). The upshot of this is that though r6

t
 and 

r3
t
 each appear to be unit root processes, the difference between them is an I(0) process. 

In other words, r6 and r3 are cointegrated.
Cointegration in this example, as in many examples, has an economic interpretation. 

If r6 and r3 were not cointegrated, the difference between interest rates could become 
very large, with no tendency for them to come back together. Based on a simple arbi-
trage argument, this seems unlikely. Suppose that the spread spr

t
 continues to grow for 

several time periods, making six-month T-bills a much more desirable investment. Then, 
investors would shift away from three-month and toward six-month T-bills, driving up 
the price of six-month T-bills, while lowering the price of three-month T-bills. Because 
interest rates are inversely related to price, this would lower r6 and increase r3, until 
the spread is reduced. Therefore, large deviations between r6 and r3 are not expected 
to continue: the spread has a tendency to return to its mean value. (The spread actually 
has a slightly positive mean because long-term investors are more rewarded relative to 
short-term investors.)

There is another way to characterize the fact that spr
t
 will not deviate for long periods 

from its average value: r6 and r3 have a long-run relationship. To describe what we mean 
by this, let 
 � E(spr

t
) denote the expected value of the spread. Then, we can write

r6
t
 � r3

t
 � 
 � e

t
, 

Q u e s t i o n  1 8 . 3
Let {(yt, xt): t � 1, 2, …} be a bivariate time series where each series 
is I(1) without drift. Explain why, if yt and xt are cointegrated, yt 
and xt�1 are also cointegrated.
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where {e
t
} is a zero mean, I(0) process. The equilibrium or long-run relationship occurs 

when e
t
 � 0, or r6* � r3* � 
.  At any time period, there can be deviations from equi-

librium, but they will be temporary: there are economic forces that drive r6 and r3 back 
toward the equilibrium relationship.

In the interest rate example, we used economic reasoning to tell us the value of � if 
y

t
 and x

t
 are cointegrated. If we have a hypothesized value of �, then testing whether two 

series are cointegrated is easy: we simply define a new variable, s
t
 � y

t
 � �x

t
, and apply 

either the usual DF or augmented DF test to {s
t
}. If we reject a unit root in {s

t
} in favor 

of the I(0) alternative, then we find that y
t
 and x

t
 are cointegrated. In other words, the null 

hypothesis is that y
t
 and x

t
 are not cointegrated.

Testing for cointegration is more difficult when the (potential) cointegration param eter 
� is unknown. Rather than test for a unit root in {s

t
}, we must first estimate �. If y

t
 and x

t
 

are cointegrated, it turns out that the OLS estimator  ̂  �  from the regression

 y
t
 �  ̂  �  �  ̂  � x

t
 18.31

is consistent for �. The problem is that the null hypothesis states that the two series 
are not cointegrated, which means that, under H

0
, we are running a spurious regres-

sion. Fortunately, it is possible to tabulate critical values even when � is estimated, 
where we apply the Dickey-Fuller or augmented Dickey-Fuller test to the residuals, say, 
 ̂  u 

t
 � y

t
 �  ̂  �  �  ̂  � x

t
, from (18.31). The only difference is that the critical values account for 

estimation of �. The resulting test is called the Engle-Granger test, and the asymptotic 
critical values are given in Table 18.4. These are taken from Davidson and MacKinnon 
(1993, Table 20.2).

TABLE  18 . 4

Asymptotic Critical Values for Cointegration Test: No Time Trend

Significance level 1% 2.5% 5% 10%

Critical value �3.90 �3.59 �3.34 �3.04

In the basic test, we run the regression of � ̂  u 
t
 on  ̂  u 

t�1
 and compare the t statistic on  ̂  u 

t�1
 

to the desired critical value in Table 18.4. If the t statistic is below the critical value, 
we have evidence that y

t
 � �x

t
 is I(0) for some �; that is, y

t
 and x

t
 are cointegrated. We 

can add lags of � ̂  u 
t
 to account for serial correlation. If we compare the critical values in 

Table 18.4 with those in Table 18.2, we must get a t statistic much larger in magnitude to 
find cointegration than if we used the usual DF critical values. This happens because OLS, 
which minimizes the sum of squared residuals, tends to produce residuals that look like an 
I(0) sequence even if y

t
 and x

t
 are not cointegrated.

 As with the usual Dickey-Fuller test, we can augment the Engle-Granger test by 
including lags of � ̂  u 

t
 
 
as additional regressors.
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If y
t
 and x

t
 are not cointegrated, a regression of y

t
 on x

t
 is spurious and tells us nothing 

meaningful: there is no long-run relationship between y and x. We can still run a regression 
involving the first differences, �y

t 
and �x

t
, including lags. But we should interpret these 

regressions for what they are: they explain the difference in y in terms of the  difference in 
x and have nothing necessarily to do with a relationship in levels.

If y
t
 and x

t 
are cointegrated, we can use this to specify more general dynamic models, 

as we will see in the next subsection.
The previous discussion assumes that neither y

t
 nor x

t
 has a drift. This is reasonable 

for interest rates but not for other time series. If y
t 
and x

t
 contain drift terms, E(y

t
) and 

E(x
t
) are linear (usually increasing) functions of time. The strict definition of cointe gration 

requires y
t
 � �x

t 
to be I(0) without a trend. To see what this entails, write y

t
 � �t � g

t
 and 

x
t
 � �t � h

t
, where {g

t
} and {h

t
} are I(1) processes, � is the drift in y

t 
[� � E(�y

t
)], and 

� is the drift in x
t
 [� � E(�x

t
)]. Now, if y

t
 and x

t
 are cointegrated, there must exist � such 

that g
t
 � �h

t
 is I(0). But then

y
t
 � �x

t
 � (� � ��)t � (g

t
 � �h

t
), 

which is generally a trend-stationary process. The strict form of cointegration requires 
that there not be a trend, which means � � ��. For I(1) processes with drift, it is possible 
that the stochastic parts—that is, g

t
 and h

t
—are cointegrated, but that the parameter � that 

causes g
t
 � �h

t
 to be I(0) does not eliminate the linear time trend.

We can test for cointegration between g
t
 and h

t
, without taking a stand on the trend 

part, by running the regression

  ̂  y 
t
 �  ̂  � �  ̂  � t �  ̂  � x

t
 18.32

and applying the usual DF or augmented DF test to the residuals  ̂  u 
t
. The asymptotic 

critical values are given in Table 18.5 [from Davidson and MacKinnon (1993, 
Table 20.2)].

TABLE  18 . 5

Asymptotic Critical Values for Cointegration Test: Linear Time Trend

Significance level 1% 2.5% 5% 10%

Critical value �4.32 �4.03 �3.78 �3.50

A finding of cointegration in this case leaves open the possibility that y
t
 � �x

t
 has a  linear 

trend. But at least it is not I(1).
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E x a m p l e  1 8 . 5

[Cointegration between Fertility and Personal Exemption]

In Chapters 10 and 11, we studied various models to estimate the relationship between the general 
fertility rate (gfr) and the real value of the personal tax exemption (pe) in the United States. The static 
regression results in levels and first differences are notably different. The regression in levels, with a 
time trend included, gives an OLS coefficient on pe equal to .187 (se � .035) and R2 � .500. In first 
differences (without a trend), the coefficient on �pe is �.043 (se � .028), and R2 � .032. Although 
there are other reasons for these differences—such as misspecified distributed lag dynamics—the 
discrepancy between the levels and changes regressions suggests that we should test for cointegration. 
Of course, this presumes that gfr and pe are I(1) processes. This appears to be the case: the augmented 
DF tests, with a single lagged change and a linear time trend, each yield t statistics of about �1.47, 
and the estimated AR(1) coefficients are close to one.
 When we obtain the residuals from the regression of gfr on t and pe and apply the  aug mented DF 
test with one lag, we obtain a t statistic on  ̂  u 

t�1
 of �2.43, which is nowhere near the 10% critical value, 

�3.50. Therefore, we must conclude that there is little evidence of cointegration between gfr and pe, 
even allowing for separate trends. It is very likely that the earlier regression results we obtained in 
levels suffer from the spurious regression problem.
 The good news is that, when we used first differences and allowed for two lags—see equa-
tion (11.27)—we found an overall positive and significant long-run effect of �pe on �gfr.

 

If we think two series are cointegrated, we often want to test hypotheses about the 
cointegrating parameter. For example, a theory may state that the cointegrating parameter 
is one. Ideally, we could use a t statistic to test this hypothesis.

We explicitly cover the case without time trends, although the extension to the linear 
trend case is immediate. When y

t
 and x

t
 are I(1) and cointegrated, we can write

 y
t
 � � � �x

t
 � u

t
,  18.33

where u
t
 is a zero mean, I(0) process. Generally, {u

t
} contains serial correlation, but 

we know from Chapter 11 that this does not affect consistency of OLS. As mentioned 
earlier, OLS applied to (18.33) consistently estimates � (and �). Unfortunately, because 
x

t
 is I(1), the usual inference procedures do not necessarily apply: OLS is not asymptoti-

cally  normally distributed, and the t statistic for  ̂  �  does not necessarily have an approxi-
mate t distribution. We do know from Chapter 10 that, if {x

t
} is strictly exogenous—see 

Assumption TS.3—and the errors are homoskedastic, serially uncorrelated, and normally 
dis tributed, the OLS estimator is also normally distributed (conditional on the explanatory 
variables) and the t statistic has an exact t distribution. Unfortunately, these assumptions 
are too strong to apply to most situations. The notion of cointegration implies nothing 
about the relationship between {x

t
} and {u

t
}—indeed, they can be  arbitrarily correlated. 

Further, except for requiring that {u
t
} is I(0), cointegration between y

t
 and x

t
 does not 

restrict the serial dependence in {u
t
}.

Fortunately, the feature of (18.33) that makes inference the most difficult—the lack 
of strict exogeneity of {x

t
}—can be fixed. Because x

t
 is I(1), the proper notion of strict 

exogeneity is that u
t
 is uncorrelated with �x

s
, for all t and s. We can always arrange this 
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for a new set of errors, at least approximately, by writing u
t
 as a function of the �x

s
 for all 

s close to t. For example, 

 u
t
 � � � �

0
�x

t
 � �

1
�x

t�1
 � �

2
�x

t�2

 � �
1
�x

t�1
 � �

2
�x

t�2
 � e

t
, 

 18.34

where, by construction, e
t
 is uncorrelated with each �x

s
 appearing in the equation. The 

hope is that e
t
 is uncorrelated with further lags and leads of �x

s
. We know that, as �s � t�

gets large, the correlation between e
t
 and �x

s 
approaches zero, because these are I(0) pro-

cesses. Now, if we plug (18.34) into (18.33), we obtain

 y
t
 � �

0
 � �x

t
 � �

0
�x

t
 � �

1
�x

t�1
 � �

2
�x

t�2

 � �
1
�x

t�1
 � �

2
�x

t�2
 � e

t
.
 18.35

This equation looks a bit strange because future �x
s
 appear with both current and lagged 

�x
t
. The key is that the coefficient on x

t
 is still �, and, by construction, x

t
 is now strictly 

exogenous in this equation. The strict exogeneity assumption is the important condition 
needed to obtain an approximately normal t statistic for  ̂  � . If u

t
 is uncorrelated with all 

�x
s
, s 	 t, then we can drop the leads and lags of the changes and simply include the con-

temporaneous change, �x
t
. Then, the equation we estimate looks more standard but still 

includes the first difference of x
t
 along with its level: y

t
 � �

0
 � �x

t
 � �

0
�x

t
 � e

t
. In effect, 

adding �x
t 
solves any contemporaneous endogeneity between x

t
 and u

t
. (Remember, any 

endogeneity does not cause inconsistency. But we are trying to obtain an asymptotically 
normal t statistic.) Whether we need to include leads and lags of the changes, and how 
many, is really an empirical issue. Each time we add an additional lead or lag, we lose one 
observation, and this can be costly unless we have a large data set.

The OLS estimator of � from (18.35) is called the leads and lags estimator of � 
because of the way it employs �x. [See, for example, Stock and Watson (1993).] The only 
issue we must worry about in (18.35) is the possibility of serial correlation in {e

t
}. This can 

be dealt with by computing a serial correlation-robust standard error for  ̂  �  (as described in 
Section 12.5) or by using a standard AR(1) correction (such as Cochrane-Orcutt).

E x a m p l e  1 8 . 6

[Cointegrating Parameter for Interest Rates]

Earlier, we tested for cointegration between r6 and r3—six- and three-month T-bill rates—by assum-
ing that the cointegrating parameter was equal to one. This led us to find cointegration and, naturally, 
to conclude that the cointegrating parameter is equal to unity. Nevertheless, let us estimate the cointe-
grating parameter directly and test H

0
: � � 1. We apply the leads and lags estimator with two leads 

and two lags of �r3, as well as the contemporaneous change. The estimate of � is  ̂  �  � 1.038, and the 
usual OLS standard error is .0081. Therefore, the t statistic for H

0
: � � 1 is (1.038 � 1)/.0081 � 4.69, 

which is a strong statistical rejection of H
0
. (Of course, whether 1.038 is economically different from 1 

is a relevant consideration.) There is little evidence of serial correlation in the residuals, so we can use 
this t statistic as having an approx imate normal distribution. [For comparison, the OLS estimate of � 
without the leads, lags, or contemporaneous �r3 terms—and using five more observations—is 1.026 
(se � .0077). But the t statistic from (18.33) is not necessarily valid.]
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There are many other estimators of cointegrating parameters, and this continues to be 
a very active area of research. The notion of cointegration applies to more than two pro-
cesses, but the interpretation, testing, and estimation are much more complicated. One issue 
is that, even after we normalize a coefficient to be one, there can be many cointegrating 
relationships. BDGH provide some discussion and several references.

Error Correction Models

In addition to learning about a potential long-run relationship between two series, the 
concept of cointegration enriches the kinds of dynamic models at our disposal. If y

t
 and 

x
t
 are I(1) processes and are not cointegrated, we might estimate a dynamic model in first 

differences. As an example, consider the equation

 �y
t
 � �

0
 � �

1
�y

t�1
 � �

0
�x

t
 � �

1
�x

t�1
 � u

t
,  18.36

where u
t
 has zero mean given �x

t
, �y

t�1
, �x

t�1
, and further lags. This is essentially equa-

tion (18.16), but in first differences rather than in levels. If we view this as a rational 
 distributed lag model, we can find the impact propensity, long-run propensity, and lag 
 distribution for �y as a distributed lag in �x.

If y
t
 and x

t
 are cointegrated with parameter �, then we have additional I(0) variables 

that we can include in (18.36). Let s
t
 � y

t
 � �x

t
, so that s

t
 is I(0), and assume for the sake 

of simplicity that s
t
 has zero mean. Now, we can include lags of s

t
 in the equation. In the 

simplest case, we include one lag of s
t
:

 �y
t
 � �

0
 � �

1
�y

t�1
 � �

0
�x

t
 � �

1
�x

t�1
 � �s

t�1
 � u

t

  � �
0
 � �

1
�y

t�1
 � �

0
�x

t
 � �

1
�x

t�1
 � �(y

t�1
 � �x

t�1
) � u

t
, 

 18.37

where E(u
t
�I

t�1
) � 0, and I

t�1
 contains information on �x

t
 and all past values of x and y. The 

term �(y
t�1

 � �x
t�1

) is called the error correction term, and (18.37) is an example of an 
error correction model. (In some error correction models, the contemporaneous change in 
x, �x

t
, is omitted. Whether it is included or not depends partly on the purpose of the equa-

tion. In forecasting, �x
t
 is rarely included, for reasons we will see in Section 18.5.)

An error correction model allows us to study the short-run dynamics in the relationship 
between y and x. For simplicity, consider the model without lags of �y

t
 and �x

t
:

 �y
t
 � �

0
 � �

0
�x

t
 � � (y

t�1
 � �x

t�1
) � u

t
,  18.38

where � � 0. If y
t�1

 � �x
t�1

, then y in the previous period has overshot the equilibrium; 
because � � 0, the error correction term works to push y back toward the equilibrium. 
Similarly, if y

t�1
 � �x

t�1
, the error correction term induces a positive change in y back 

toward the equilibrium.
How do we estimate the parameters of an error correction model? If we know �, this 

is easy. For example, in (18.38), we simply regress �y
t
 on �x

t
 and s

t�1
, where s

t�1
 � 

(y
t�1

 � �x
t�1

).
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E x a m p l e  1 8 . 7

[Error Correction Model for Holding Yields]

In Problem 11.6, we regressed hy6
t
, the three-month holding yield (in percent) from buying a 

six-month T-bill at time t � 1 and selling it at time t as a three-month T-bill, on hy3
t�1

, the three-
month holding yield from buying a three-month T-bill at time t � 1. The expectations hypothesis 

implies that the slope coefficient should not 
be statistically different from one. It turns 
out that there is evidence of a unit root in 
{hy3

t
}, which calls into question the stan-

dard regression analysis. We will assume that 
both holding yields are I(1) processes. The 

expectations hypothesis implies, at a  minimum, that hy6
t
 and hy3

t�1
 are cointegrated with � equal to 

one, which appears to be the case (see Computer Exercise C18.5). Under this assumption, an error 
correction model is

�hy6
t
 � �

0
 � �

0
�hy3

t�1
 � �(hy6

t�1
 � hy3

t�2
) � u

t
, 

where u
t
 has zero mean, given all hy3 and hy6 dated at time t � 1 and earlier. The lags on the vari-

ables in the error correction model are dictated by the expectations hypothesis.
 Using the data in INTQRT.RAW gives

 �1hy6
t
 � .090 � 1.218 �hy3

t�1
 � .840 (hy6

t�1
 � hy3

t�2
)

 (.043) (.264) (.244) 18.39

 n � 122, R2 � .790.

The error correction coefficient is negative and very significant. For example, if the holding yield 
on six-month T-bills is above that for three-month T-bills by one point, hy6 falls by .84 points on 
average in the next quarter. Interestingly,   ̂  �  � �.84 is not statistically different from �1, as is easily 
seen by computing the 95% confidence interval.

 

In many other examples, the cointegrating parameter must be estimated. Then, we 
replace s

t�1
 with  ̂  s 

t�1
 � y

t�1
 �  ̂  � x

t�1
, where  ̂  �  can be various estimators of �. We have 

covered the standard OLS estimator as well as the leads and lags estimator. This raises 
the issue about how sampling variation in  ̂  �  affects inference on the other parameters in 
the error correction model. Fortunately, as shown by Engle and Granger (1987), we can 
ignore the preliminary estimation of � (asymptotically). This property is very convenient 
and implies that the asymptotic efficiency of the estimators of the parameters in the error 
correction model is unaffected by whether we use the OLS estimator or the leads and lags 
estimator for  ̂  � . Of course, the choice of  ̂  �  will generally have an effect on the estimated 
error correction parameters in any particular sample, but we have no systematic way of 
deciding which preliminary estimator of � to use. The procedure of replacing � with  ̂  �  is 
called the Engle-Granger two-step procedure.

Q u e s t i o n  1 8 . 4
How would you test H0: �0 � 1, � � �1 in the holding yield error 
correction model?
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18.5 Forecasting
Forecasting economic time series is very important in some branches of economics, and 
it is an area that continues to be actively studied. In this section, we focus on regression-
based forecasting methods. Diebold (2001) provides a comprehensive introduction to 
forecasting, including recent developments.

We assume in this section that the primary focus is on forecasting future values of a time 
series process and not necessarily on estimating causal or structural economic models.

It is useful to first cover some fundamentals of forecasting that do not depend on a 
specific model. Suppose that at time t we want to forecast the outcome of y at time t � 1, 
or y

t�1
. The time period could correspond to a year, a quarter, a month, a week, or even a 

day. Let I
t
 denote information that we can observe at time t. This information set includes 

y
t
, earlier values of y, and often other variables dated at time t or earlier. We can combine 

this information in innumerable ways to forecast y
t�1

. Is there one best way?
The answer is yes, provided we specify the loss associated with forecast error. Let f

t
 de-

note the forecast of y
t�1

 made at time t. We call f
t
 a one-step-ahead forecast. The forecast 

error is e
t�1

 � y
t�1

 � f
t
, which we observe once the outcome on y

t�1
 is observed. The most 

common measure of loss is the same one that leads to ordinary least squares estimation of 
a multiple linear regression model: the squared error, e

t
2
�1

. The squared forecast error treats 
positive and negative prediction errors symmetrically, and larger forecast errors receive 
relatively more weight. For example, errors of �2 and �2 yield the same loss, and the loss 
is four times as great as forecast errors of �1 or �1. The squared forecast error is an exam-
ple of a loss function. Another popular loss function is the absolute value of the prediction 
error, �e

t�1
�. For reasons to be seen shortly, we focus now on squared error loss.

Given the squared error loss function, we can determine how to best use the informa-
tion at time t to forecast y

t�1
. But we must recognize that at time t, we do not know e

t�1
: it 

is a random variable, because y
t�1

 is a random variable. Therefore, any useful criterion for 
choosing f

t
 must be based on what we know at time t. It is natural to choose the forecast 

to minimize the expected squared forecast error, given I
t
:

 E(e
t
2
�1

�I
t
) � E[(y

t�1
 � f

t
)2�I

t
]. 18.40

A basic fact from probability (see Property CE.6 in Appendix B) is that the condi-
tional expectation, E(y

t�1
�I

t
), minimizes (18.40). In other words, if we wish to minimize 

the expected squared forecast error given information at time t, our forecast should be the 
expected value of y

t�1
 given variables we know at time t.

For many popular time series processes, the conditional expectation is easy to obtain. 
Suppose that {y

t
: t � 0, 1, …} is a martingale difference sequence (MDS) and take I

t
 to 

be {y
t
, y

t�1
, …, y

0
}, the observed past of y. By definition, E(y

t�1
�I

t
) � 0 for all t; the best 

prediction of y
t�1

 at time t is always zero! Recall from Section 18.2 that an i.i.d. sequence 
with zero mean is a martingale difference sequence.

A martingale difference sequence is one in which the past is not useful for predicting the 
future. Stock returns are widely thought to be well approximated as an MDS or, perhaps, 
with a positive mean. The key is that E(y

t�1
�y

t
, y

t�1
, …) � E(y

t�1
): the conditional mean is 

equal to the unconditional mean, in which case past y do not help to predict future y.
A process {y

t
} is a martingale if E(y

t�1
�y

t
, y

t�1
, …, y

0
) � y

t
 for all t � 0. [If {y

t
} is a 

martingale, then {�y
t
} is a martingale difference sequence, which is where the latter name 
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comes from.] The predicted value of y for the next period is always the value of y for this 
period.

A more complicated example is

 E(y
t�1

�I
t
) � �y

t
 � �(1 � �)y

t�1
 � … � �(1 � �)ty

0
, 18.41

where 0 � � � 1 is a parameter that we must choose. This method of forecasting 
is called exponential smoothing because the weights on the lagged y decline to zero 
exponentially.

The reason for writing the expectation as in (18.41) is that it leads to a very simple 
recurrence relation. Set f

0
 � y

0
. Then, for t � 1, the forecasts can be obtained as

f
t
 � �y

t
 � (1 � �)f

t�1
.

In other words, the forecast of y
t�1

 is a weighted average of y
t
 and the forecast of y

t
 

made at time t � 1. Exponential smoothing is suitable only for very specific time 
series and requires choosing �. Regression methods, which we turn to next, are more 
flexible.

The previous discussion has focused on forecasting y only one period ahead. The 
 general issues that arise in forecasting y

t�h
 at time t, where h is any positive integer, 

are similar. In particular, if we use expected squared forecast error as our measure of loss, 
the best predictor is E(y

t�h
�I

t
). When dealing with a multiple-step-ahead forecast, we use 

the notation f
t,h

 to indicate the forecast of y
t�h

 made at time t.

Types of Regression Models Used for Forecasting

There are many different regression models that we can use to forecast future values of 
a time series. The first regression model for time series data from Chapter 10 was the 
static model. To see how we can forecast with this model, assume that we have a single 
explanatory variable:

 y
t
 � �

0
 � �

1
z

t
 � u

t
. 18.42

Suppose, for the moment, that the parameters �
0
 and �

1
 are known. Write this equation 

at time t � 1 as y
t�1

 � �
0
 � �

1
z

t�1
 � u

t�1
. Now, if z

t�1
 is known at time t, so that it is an 

element of I
t
 and E(u

t�1
�I

t
) � 0, then

E(y
t�1

�I
t
) � �

0
 � �

1
z

t�1
, 

where I
t
 contains z

t�1
, y

t
, z

t
, …, y

1
, z

1
. The right-hand side of this equation is the forecast 

of y
t�1

 at time t. This kind of forecast is usually called a conditional forecast because it 
is conditional on knowing the value of z at time t � 1.

Unfortunately, at any time, we rarely know the value of the explanatory variables in 
future time periods. Exceptions include time trends and seasonal dummy variables, which 
we cover explicitly below, but otherwise knowledge of z

t�1
 at time t is rare. Sometimes, 

we wish to generate conditional forecasts for several values of z
t�1

.
Another problem with (18.42) as a model for forecasting is that E(u

t�1
�I

t
) � 0 means 

that {u
t
} cannot contain serial correlation, something we have seen to be false in most 
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static regression models. [Problem 18.8 asks you to derive the forecast in a simple 
 distributed lag model with AR(1) errors.]

If z
t�1

 is not known at time t, we cannot include it in I
t
. Then, we have

E(y
t�1

�I
t
) � �

0
 � �

1
E(z

t�1
�I

t
).

This means that in order to forecast y
t�1

, we must first forecast z
t�1

, based on the same 
information set. This is usually called an unconditional forecast because we do not 
assume knowledge of z

t�1
 at time t. Unfortunately, this is somewhat of a misnomer, as 

our forecast is still conditional on the information in I
t
. But the name is entrenched in the 

 forecasting literature.
For forecasting, unless we are wedded to the static model in (18.42) for other reasons, 

it makes more sense to specify a model that depends only on lagged values of y and z. This 
saves us the extra step of having to forecast a right-hand side variable before forecasting 
y. The kind of model we have in mind is

 y
t
 � �

0
 � �

1
y

t�1
 � �

1
z

t�1
 � u

t

 E(u
t
�I

t�1
) � 0, 

 18.43

where I
t�1

 contains y and z dated at time t � 1 and earlier. Now, the forecast of y
t�1

 at 
time t is �

0
 � �

1
y

t
 � �

1
z

t
; if we know the parameters, we can just plug in the values of y

t
 

and z
t
.

If we only want to use past y to predict future y, then we can drop z
t�1 

from (18.43). 
Naturally, we can add more lags of y or z and lags of other variables. Especially for fore-
casting one step ahead, such models can be very useful.

One-Step-Ahead Forecasting

Obtaining a forecast one period after the sample ends is relatively straightforward using 
models such as (18.43). As usual, let n be the sample size. The forecast of y

n�1
 is

  ̂  f
n
  �  ̂  � 

0
 �  ̂  � 

1
y

n
 �  ̂  � 

1
z

n
,  18.44

where we assume that the parameters have been estimated by OLS. We use a hat on f
n
 to 

emphasize that we have estimated the parameters in the regression model. (If we knew the 
parameters, there would be no estimation error in the forecast.) The forecast error—which 
we will not know until time n � 1—is

  ̂  e 
n�1

 � y
n�1

 �  ̂  f
n
 . 18.45

If we add more lags of y or z to the forecasting equation, we simply lose more observations 
at the beginning of the sample.

The forecast   ̂  f
n
  of y

n�1
 is usually called a point forecast. We can also obtain a forecast 

interval. A forecast interval is essentially the same as a prediction interval, which we 
studied in Section 6.4. There we showed how, under the classical linear model assump-
tions, to obtain an exact 95% prediction interval. A forecast interval is obtained in exactly 
the same way. If the model does not satisfy the classical linear model assumptions—for 
example, if it contains lagged dependent variables, as in (18.44)—the forecast interval is 
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still approximately valid, provided u
t
 given I

t�1
 is normally distributed with zero mean and 

constant variance. (This ensures that the OLS estimators are approximately normally dis-
tributed with the usual OLS variances and that u

n�1
 is independent of the OLS estimators 

with mean zero and variance � 2.) Let se(  ̂  f
n
 ) be the standard error of the forecast and let  ̂  �  

be the standard error of the regression. [From Section 6.4, we can obtain  ̂  f
n
  and se(  ̂  f

n
 ) as 

the intercept and its standard error from the regression of y
t
 on (y

t�1
 � y

n
) and (z

t�1
 � z

n
), 

t � 1, 2, …, n; that is, we subtract the time n value of y from each lagged y, and similarly 
for z, before doing the regression.] Then, 

 se( ̂  e 
n�1

) � {[se(       ̂  f
n
 )]2 �  ̂  �  2}1/ 2,  18.46

and the (approximate) 95% forecast interval is

  ̂  f
n
  � 1.96�se( ̂  e 

n�1
). 18.47

Because se(   ̂  f
n
 ) is roughly proportional to 1/ �

__
 n  , se(        ̂  f

n
 ) is usually small relative to the uncer-

tainty in the error u
n�1

, as measured by  ̂  �  . [Some econometrics packages compute forecast 
intervals routinely, but others require some simple manipulations to obtain (18.47).]

E x a m p l e  1 8 . 8

[Forecasting the U.S. Unemployment Rate]

We use the data in PHILLIPS.RAW, but only for the years 1948 through 1996, to forecast the U.S. 
civilian unemployment rate for 1997. We use two models. The first is a simple AR(1) model for 
unem:

 2unem
t
 � 1.572 � .732 unem

t�1

 (.577) (.097)  18.48

 n � 48,  
-

 R 2 � .544,  ̂  �  � 1.049.

In a second model, we add inflation with a lag of one year:

 2unem
t
 � 1.304 � .647 unem

t�1
 � .184 inf

t�1

 (.490) (.084) (.041) 18.49

 n � 48,  
-

 R 2 � .677,  ̂  �  � .883.

The lagged inflation rate is very significant in (18.49) (t � 4.5), and the adjusted R-squared from the 
second equation is much higher than that from the first. Nevertheless, this does not necessarily mean 
that the second equation will produce a better forecast for 1997. All we can say so far is that, using 
the data up through 1996, a lag of inflation helps to explain variation in the unemployment rate.
 To obtain the forecasts for 1997, we need to know unem and inf in 1996. These are 5.4 and 3.0, 
respectively. Therefore, the forecast of unem

1997
 from equation (18.48) is 1.572 � .732(5.4), or about 

5.52. The forecast from equation (18.49) is 1.304 � .647(5.4) � .184(3.0), or about 5.35. The actual 
civilian unemployment rate for 1997 was 4.9, so both equations overpredict the actual rate. The sec-
ond equation does provide a somewhat better forecast.
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 We can easily obtain a 95% forecast interval. When we regress unem
t
 on (unem

t�1
 � 5.4) 

and (inf
t�1

 � 3.0), we obtain 5.35 as the intercept—which we already computed as the  forecast—
and se(        ̂  f

n
 ) � .137. Therefore, because  ̂  �  � .883, we have se( ̂  e 

n�1
) � [(.137)2 � (.883)2]1/2 � .894. The 

95% forecast interval from (18.47) is 5.35 � 1.96(.894), or about [3.6, 7.1]. This is a wide interval, 
and the realized 1997 value, 4.9, is well within the interval. As expected, the standard error of u

n�1
, 

which is .883, is a very large fraction of se( ̂  e 
n�1

).

 
A professional forecaster must usually produce a forecast for every time period. For 

example, at time n, she or he produces a forecast of y
n�1

. Then, when y
n�1

 and z
n�1

 become 
available, he or she must forecast y

n�2
. Even if the forecaster has settled on model (18.43), 

there are two choices for forecasting y
n�2

. The first is to use  ̂  � 
0
 �  ̂  � 

1
y

n�1
 �  ̂  � 

1
z

n�1
, where the 

parameters are estimated using the first n observations. The second possibility is to  reestimate 
the parameters using all n � 1 observations and then to use the same formula to forecast 
y

n�2
. To forecast in subsequent time periods, we can generally use the parameter estimates 

obtained from the initial n observations, or we can update the regression parameters each 
time we obtain a new data point. Although the latter approach requires more computation, 
the extra burden is relatively minor, and it can (although it need not) work better because the 
regression coefficients adjust at least somewhat to the new data points.

As a specific example, suppose we wish to forecast the unemployment rate for 1998, 
using the model with a single lag of unem and inf. The first possibility is to just plug 
the 1997 values of unemployment and inflation into the right-hand side of (18.49). With 
unem � 4.9 and inf � 2.3 in 1997, we have a forecast for unem

1998
 of about 4.9. (It is just 

a coincidence that this is the same as the 1997 unemployment rate.) The second possibil-
ity is to reestimate the equation by adding the 1997 observation and then using this new 
equation (see Computer Exercise C18.6).

The model in equation (18.43) is one equation in what is known as a vector autoregres-
sive (VAR) model. We know what an autoregressive model is from Chapter 11: we model 
a single series, {y

t
}, in terms of its own past. In vector autoregressive models, we model 

several series—which, if you are familiar with linear algebra, is where the word “vector” 
comes from—in terms of their own past. If we have two series, y

t
 and z

t
, a vector autoregres-

sion consists of equations that look like

 y
t
 � �

0
 � �

1
y

t�1
 � �

1
z

t�1
 � �

2
y

t�2
 � �

2
z

t�2
 � … 18.50

and

 z
t
 � �

0
 � �

1
y

t�1
 � �

1
z

t�1
 � �

2
y

t�2
 � �

2
z

t�2
 � …, 

where each equation contains an error that has zero expected value given past information 
on y and z. In equation (18.43)—and in the example estimated in (18.49)—we assumed 
that one lag of each variable captured all of the dynamics. (An F test for joint significance 
of unem

t�2
 and inf

t�2
 confirms that only one lag of each is needed.)

As Example 18.8 illustrates, VAR models can be useful for forecasting. In many cases, 
we are interested in forecasting only one variable, y, in which case we only need to estimate 
and analyze the equation for y. Nothing prevents us from adding other lagged variables, 
say, w

t�1
, w

t�2
, …, to equation (18.50). Such equations are efficiently estimated by OLS, 
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provided we have included enough lags of all variables and the equation satisfies the homo-
skedasticity assumption for time series regressions.

Equations such as (18.50) allow us to test whether, after controlling for past y, past z 
help to forecast y

t
. Generally, we say that z Granger causes y if

 E(y
t
�I

t�1
) 	 E(y

t
�J

t�1
),  18.51

where I
t�1

 contains past information on y and z, and J
t�1

 contains only information on past 
y. When (18.51) holds, past z is useful, in addition to past y, for predicting y

t
. The term 

“causes” in “Granger causes” should be interpreted with caution. The only sense in which 
z “causes” y is given in (18.51). In particular, it has nothing to say about contemporaneous 
causality between y and z, so it does not allow us to determine whether z

t
 is an exogenous 

or endogenous variable in an equation relating y
t
 to z

t
. (This is also why the notion of 

Granger causality does not apply in pure cross- sectional contexts.)
Once we assume a linear model and decide how many lags of y should be included in 

E(y
t
�y

t�1
, y

t�2
, …), we can easily test the null hypothesis that z does not Granger cause y. 

To be more specific, suppose that E(y
t
�y

t�1
, y

t�2
, …) depends on only three lags:

y
t
 � �

0
 � �

1
y

t�1
 � �

2
y

t�2
 � �

3
y

t�3
 � u

t

E(u
t
�y

t�1
, y

t�2
, …) � 0.

Now, under the null hypothesis that z does not Granger cause y, any lags of z that we add to 
the equation should have zero population coefficients. If we add z

t�1
, then we can simply 

do a t test on z
t�1

. If we add two lags of z, then we can do an F test for joint significance 
of z

t�1
 and z

t�2
 in the equation

y
t
 � �

0
 � �

1
y

t�1
 � �

2
y

t�2
 � �

3
y

t�3
 � �

1
z

t�1
 � �

2
z

t�2
 � u

t
.

(If there is heteroskedasticity, we can use a robust form of the test. There cannot be serial 
correlation under H

0
 because the model is dynamically complete.)

As a practical matter, how do we decide on which lags of y and z to include? First, 
we start by estimating an autoregressive model for y and performing t and F tests to 
determine how many lags of y should appear. With annual data, the number of lags is 
typically small, say, one or two. With quarterly or monthly data, there are usually many 
more lags. Once an autoregressive model for y has been chosen, we can test for lags of z. 
The choice of lags of z is less important because, when z does not Granger cause y, no set 
of lagged z’s should be significant. With annual data, 1 or 2 lags are typically used; with 
quarterly data, usually 4 or 8; and with monthly data, perhaps 6, 12, or maybe even 24, 
given enough data.

We have already done one example of testing for Granger causality in equation (18.49). 
The autoregressive model that best fits unemployment is an AR(1). In equation (18.49), 
we added a single lag of inflation, and it was very significant. Therefore, inflation Granger 
causes unemployment.

There is an extended definition of Granger causality that is often useful. Let {w
t
} be a 

third series (or, it could represent several additional series). Then, z Granger causes y con-
ditional on w if (18.51) holds, but now I

t�1
 contains past information on y, z, and w, while 

J
t�1 

contains past information on y and w. It is certainly possible that z Granger causes y, 
but z does not Granger cause y conditional on w. A test of the null that z does not Granger 
cause y conditional on w is obtained by testing for significance of lagged z in a model for 
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y that also depends on lagged y and lagged w. For example, to test whether growth in the 
money supply Granger causes growth in real GDP,  conditional on the change in interest 
rates, we would regress gGDP

t
 on lags of gGDP, � int, and gM and do significance tests 

on the lags of gM. [See, for example, Stock and Watson (1989).]

Comparing One-Step-Ahead Forecasts

In almost any forecasting problem, there are several competing methods for forecasting. 
Even when we restrict attention to regression models, there are many possibilities. Which 
variables should be included, and with how many lags? Should we use logs, levels of vari-
ables, or first differences?

In order to decide on a forecasting method, we need a way to choose which one is 
most suitable. Broadly, we can distinguish between in-sample criteria and out-of- sample 
 criteria. In a regression context, in-sample criteria include R-squared and especially 
 adjusted R-squared. There are many other model selection statistics, but we will not cover 
those here [see, for example, Ramanathan (1995, Chapter 4)].

For forecasting, it is better to use out-of-sample criteria, as forecasting is essentially 
an out-of-sample problem. A model might provide a good fit to y in the sample used to 
estimate the parameters. But this need not translate to good forecasting performance. 
An out-of-sample comparison involves using the first part of a sample to estimate the 
parameters of the model and saving the latter part of the sample to gauge its forecasting 
capabilities. This mimics what we would have to do in practice if we did not yet know the 
future values of the variables.

Suppose that we have n � m observations, where we use the first n observations to 
estimate the parameters in our model and save the last m observations for forecasting. Let  
ˆ f
n
 
�h

 be the one-step-ahead forecast of y
n�h�1

 for h � 0, 1, …, m � 1. The m forecast errors 
are  ̂  e 

n�h�1
 � y

n�h�1
 �  ̂  f

n
 
�h

. How should we measure how well our model forecasts y when 
it is out of sample? Two measures are most common. The first is the root mean squared 
error (RMSE):

 RMSE �  � m�1 ∑ 
h�0

   
m�1

     ̂  e 
n
2
�h�1

 �  
1/2

. 18.52

This is essentially the sample standard deviation of the forecast errors (without any degrees 
of freedom adjustment). If we compute RMSE for two or more forecasting methods, then 
we prefer the method with the smallest out-of-sample RMSE.

A second common measure is the mean absolute error (MAE), which is the average 
of the absolute forecast errors:

  MAE � m�1 ∑ 
h�0

   
m�1

    � ̂  e 
n�h�1

�. 18.53

Again, we prefer a smaller MAE. Other possible criteria include minimizing the largest of 
the absolute values of the forecast errors.

E x a m p l e  1 8 . 9

[Out-of-Sample Comparisons of Unemployment Forecasts]

In Example 18.8, we found that equation (18.49) fit notably better over the years 1948 through 
1996 than did equation (18.48), and, at least for forecasting unemployment in 1997, the model that 
included lagged inflation worked better. Now, we use the two models, still estimated using the data 
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only through 1996, to compare one-step-ahead forecasts for 1997 through 2003. This leaves seven 
out-of-sample observations (n � 48 and m � 7) to use in equations (18.52) and (18.53). For the AR(1) 
model, RMSE � .962 and MAE � .778. For the model that adds lagged inflation (a VAR model of 
order one), RMSE � .673 and MAE � .628. Thus, by either measure, the model that includes inf

t�1
 

produces better out-of-sample forecasts for 1997 through 2003. In this case, the in-sample and out-
of-sample criteria choose the same model.

 
Rather than using only the first n observations to estimate the parameters of the model, 

we can reestimate the models each time we add a new observation and use the new model 
to forecast the next time period.

Multiple-Step-Ahead Forecasts

Forecasting more than one period ahead is generally more difficult than forecasting one 
period ahead. We can formalize this as follows. Suppose we consider forecasting y

t�1
 at time 

t and at an earlier time period s (so that s � t). Then Var[y
t�1

 � E(y
t�1

�I
t
)] 
 Var[y

t�1
 � 

E(y
t�1

�I
s
)], where the inequality is usually strict. We will not prove this result generally, 

but, intuitively, it makes sense: the forecast error variance in predicting y
t�1 

is larger when 
we make that forecast based on less information.

If {y
t
} follows an AR(1) model (which includes a random walk, possibly with drift), we 

can easily show that the error variance increases with the forecast horizon. The model is

 y
t
 � � � �y

t�1
 � u

t

 E(u
t
�I

t�1
) � 0, I

t�1
 � {y

t�1
, y

t�2
, …}, 

and {u
t
} has constant variance �2 conditional on I

t�1
. At time t � h � 1, our forecast of 

y
t�h

 is � � �y
t�h�1

, and the forecast error is simply u
t�h

. Therefore, the one- step-ahead 
forecast variance is simply �2. To find multiple-step-ahead forecasts, we have, by repeated 
substitution, 

 y
t�h

 � (1 � � � … � �h�1)� � �hy
t

 � �h�1u
t�1

 � �h�2u
t�2

 � … � u
t�h

.

At time t, the expected value of u
t�j

, for all j � 1, is zero. So

 E(y
t�h

�I
t
) � (1 � � � … � �h�1)� � �hy

t
,  18.54

and the forecast error is e
t,h

 � �h�1u
t�1

 � �h�2u
t�2

 � … � u
t�h

. This is a sum of uncorrelated 
random variables, and so the variance of the sum is the sum of the variances: Var(e

t,h
) � 

�2[�2(h�1) � �2(h�2) � … � �2 � 1]. Because �2 � 0, each term multiplying �2 is positive, 
so the forecast error variance increases with h. When �2 � 1, as h gets large the forecast 
variance converges to �2/(1 � �2), which is just the unconditional variance of y

t
. In the case 

of a random walk (� � 1), f
t,h

 � �h � y
t
, and Var(e

t,h
) � �2h: the forecast variance grows 

without bound as the horizon h increases. This demonstrates that it is very difficult to fore-
cast a random walk, with or without drift, far out into the future. For example, forecasts of 
interest rates farther into the future become dramatically less precise.
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Equation (18.54) shows that using the AR(1) model for multistep forecasting is easy, 
once we have estimated � by OLS. The forecast of y

n�h
 at time n is

  ̂  f
n
 
,h
 � (1 �  ̂  �  � … �  ̂  �  h�1)  ̂  �  �  ̂  �  hy

n
. 18.55

Obtaining forecast intervals is harder, unless h � 1, because obtaining the standard error 
of    ̂  f

n
 
,h
 is difficult. Nevertheless, the standard error of   ̂  f

n
 
,h
 is usually small compared with the 

standard deviation of the error term, and the latter can be estimated as  ̂  �  [ ̂  � 2(h�1) �  ̂  � 2(h�2) 
� … �  ̂  � 2 � 1]1/2, where   ̂  �  is the standard error of the regression from the AR(1) estima-
tion. We can use this to obtain an approximate confidence interval. For example, when h � 2, 
an approximate 95% confidence interval (for large n) is

  ̂  f
n
 
,2 

� 1.96  ̂  � (1 �  ̂  � 2)1/2. 18.56

Because we are underestimating the standard deviation of y
n�h

, this interval is too narrow, 
but perhaps not by much, especially if n is large.

A less traditional, but useful, approach is to estimate a different model for each forecast 
horizon. For example, suppose we wish to forecast y two periods ahead. If I

t
 depends only 

on y through time t, we might assume that E(y
t�2

�I
t
) � �

0
 � �

1
y

t
 [which, as we saw earlier, 

holds if {y
t
} follows an AR(1) model]. We can estimate �

0
 and �

1
 by regressing y

t
 on an 

intercept and on y
t�2

. Even though the errors in this equation contain serial correlation—
errors in adjacent periods are correlated—we can obtain consistent and approximately 
normal estimators of �

0
 and �

1
. The forecast of y

n�2
 at time n is simply  ̂  f

n
 
,2
 �  ̂  � 

0
 �  ̂  � 

1
y

n
. 

Further, and very importantly, the standard error of the regression is just what we need for 
computing a confidence interval for the forecast. Unfortunately, to get the  standard error of  
ˆ f
n
 
,2
, using the trick for a one-step-ahead forecast requires us to obtain a serial correlation-robust 

standard error of the kind described in Section 12.5. This standard error goes to zero as n 
gets large while the variance of the error is constant. Therefore, we can get an approximate 
interval by using (18.56) and by putting the SER from the regression of y

t
 on y

t�2
 in place of  

ˆ � (1 �  ̂  � 2)1/2. But we should remember that this ignores the estimation error in  ̂  � 
0
 and  ̂  � 

1
.

We can also compute multiple-step-ahead forecasts with more complicated autoregres-
sive models. For example, suppose {y

t
} follows an AR(2) model and that at time n, we 

wish to forecast y
n�2

. Now, y
n�2

 � � � �
1
y

n�1
 � �

2
y

n
 � u

n�2
, so

E(y
n�2

�I
n
) � � � �

1
E(y

n�1
�I

n
) � �

2
y

n
.

We can write this as

f
n,2

 � � � �
1
f
n,1

 � �
2
y

n
, 

so that the two-step-ahead forecast at time n can be obtained once we get the one-step-
ahead forecast. If the parameters of the AR(2) model have been estimated by OLS, then 
we operationalize this as

  ̂  f
n
 
,2
 �  ̂  �  �  ̂  � 

1 
 ̂  f
n
 
,1
 �  ̂  � 

2
y

n
. 18.57

Now,  ̂  f
n
 
,1
 �  ̂  �  �  ̂  � 

1
y

n
 �  ̂  � 

2
y

n�1
, which we can compute at time n. Then, we plug this into 

(18.57), along with y
n
, to obtain  ̂  f

n
 
,2
. For any h � 2, obtaining any h-step-ahead forecast for 

an AR(2) model is easy to find in a recursive manner:  ̂  f
n
 
,h
 �  ̂  �  �  ̂  � 

1 
 ̂  f
n
 
,h�1

 �  ̂  � 
2    

 ̂  f
n
 
,h�2

.
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Similar reasoning can be used to obtain multiple-step-ahead forecasts for VAR models. 
To illustrate, suppose we have

 y
t
 � �

0
 � �

1
y

t�1
 � �

1
z

t�1
 � u

t
 18.58

and

 z
t
 � �

0
 � �

1
y

t�1
 � �

1
z

t�1
 � v

t
.

Now, if we wish to forecast y
n�1

 at time n, we simply use  ̂  f
n
 
,1
 �  ̂  � 

0
 �  ̂  � 

1
y

n
 �  ̂  � 

1
z

n
. Likewise, 

the forecast of z
n�1

 at time n is (say)  ̂  g 
n,1

 �  ̂  � 
0
 �  ̂  � 

1
y

n
 �  ̂  � 

1
z

n
. Now, suppose we wish to 

obtain a two-step-ahead forecast of y at time n. From (18.58), we have

 E(y
n�2

�I
n
) � �

0
 � �

1
E(y

n�1
�I

n
) � �

1
E(z

n�1
�I

n
)

[because E(u
n�2

�I
n
) � 0], so we can write the forecast as

  ̂  f
n
 
,2
 �  ̂  � 

0
 �  ̂  � 

1 
 ̂  f
n
 
,1
 �  ̂  � 

1
 ̂  g 

n,1
. 18.59

This equation shows that the two-step-ahead forecast for y depends on the one-step-ahead 
forecasts for y and z. Generally, we can build up multiple-step-ahead forecasts of y by 
using the recursive formula

  ̂  f
n
 
,h
 �  ̂  � 

0
 �  ̂  � 

1  
 ̂  f
n
 
,h�1

 �  ̂  � 
1
 ̂  g 

n,h�1
, h � 2.

E x a m p l e  1 8 . 1 0

[Two-Year-Ahead Forecast for the Unemployment Rate]

To use equation (18.49) to forecast unemployment two years out—say, the 1998 rate using the data 
through 1996—we need a model for inflation. The best model for inf in terms of lagged unem and 
inf appears to be a simple AR(1) model (unem

�1
 is not significant when added to the regression):

 1inf
t
 �(1.277)�(.665)inf

t�1

 in̂f
t
 �0(.558)�(.107)inf

t�1

 n � 48, R2 � .457,  
-

 R 2 � .445.

If we plug the 1996 value of inf into this equation, we get the forecast of inf for 1997: 1inf
1997

 � 
3.27. Now, we can plug this, along with 1unem

1997
 � 5.35 (which we obtained earlier), into (18.59) 

to forecast unem
1998

:

 2unem
1998

 � 1.304 � .647(5.35) � .184(3.27) � 5.37.

Remember, this forecast uses information only through 1996. The one-step-ahead forecast of 
unem

1998
, obtained by plugging the 1997 values of unem and inf into (18.48), was about 4.90. The 

actual unemployment rate in 1998 was 4.5%, which means that, in this case, the one-step-ahead 
forecast does quite a bit better than the two-step-ahead forecast.
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Just as with one-step-ahead forecasting, an out-of-sample root mean squared error 
or a mean absolute error can be used to choose among multiple-step-ahead forecasting 
methods.

Forecasting Trending, Seasonal, 

and Integrated Processes

We now turn to forecasting series that either exhibit trends, have seasonality, or have unit 
roots. Recall from Chapters 10 and 11 that one approach to handling trending dependent 
or independent variables in regression models is to include time trends, the most popular 
being a linear trend. Trends can be included in forecasting equations as well, although they 
must be used with caution.

In the simplest case, suppose that {y
t
} has a linear trend but is unpredictable around 

that trend. Then, we can write

 y
t
 � � � �t � u

t
, E(u

t
�I

t�1
) � 0, t � 1, 2, …,  18.60

where, as usual, I
t�1

 contains information observed through time t � 1 (which includes 
at least past y). How do we forecast y

n�h
 at time n for any h � 1? This is simple because 

E( y
n�h

�I
n
) � � � �(n � h). The forecast error variance is simply �2 � Var(u

t
) (assuming 

a constant variance over time). If we estimate � and � by OLS using the first n observa-
tions, then our forecast for y

n�h
 at time n is  ̂  f

n
 
,h
 �  ̂  �  �  ̂  � (n � h). In other words, we simply 

plug the time period corresponding to y into the estimated trend function. For example, if 
we use the n � 131 observations in BARIUM.RAW to forecast monthly  Chinese imports 
of barium chloride to the United States, we obtain  ̂  �  � 249.56 and  ̂  �  � 5.15. The sample 
period ends in December 1988, so the forecast of Chinese imports six months later is 
249.56 � 5.15(137) � 955.11, measured as short tons. For comparison, the December 
1988 value is 1,087.81, so it is greater than the forecasted value six months later. The 
series and its estimated trend line are shown in Figure 18.2.

As we discussed in Chapter 10, most economic time series are better characterized as 
having, at least approximately, a constant growth rate, which suggests that log(y

t
) follows 

a linear time trend. Suppose we use n observations to obtain the equation

 2log(y
t
) �  ̂  �  �  ̂  � t, t � 1, 2, …, n. 18.61

Then, to forecast log(y) at any future time period n � h, we just plug n � h into the trend 
equation, as before. But this does not 
allow us to forecast y, which is usually 
what we want. It is tempting to simply 
exponentiate  ̂  �  �  ̂  � (n � h) to obtain the 
forecast for y

n�h
, but this is not quite 

right, for the same reasons we gave in 
Section 6.4. We must properly account 
for the error implicit in (18.61). The 
simplest way to do this is to use the n 

Q u e s t i o n  1 8 . 5
Suppose you model { yt: t � 1, 2, …, 46} as a linear time trend, 
where data are annual starting in 1950 and ending in 1995. 
Define the variable yeart as ranging from 50 when t � 1 to 95 
when t � 46. If you estimate the equation  ̂  y t �  ̂  �  �  ̂  � yeart, how do  
ˆ �  and  ̂  �  compare with  ̂  �  and  ̂  �  in  ̂  y t �  ̂  �  �  ̂  � t? How will forecasts 
from the two equations compare?
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observations to regress y
t
 on exp(1logy

t
) without an intercept. Let  ̂  �  be the slope coefficient 

on exp(1logy
t
). Then, the forecast of y in period n � h is simply

  ̂  f
n
 
,h
 �  ̂  � exp[ ̂  �  �  ̂  � (n � h)]. 18.62

 As an example, if we use the first 687 weeks of data on the New York Stock Exchange 
index in NYSE.RAW, we obtain  ̂  �  � 3.782 and  ̂  �  � .0019 [by regressing log( price

t
) on 

a linear time trend]; this shows that the index grows about .2% per week, on average. 
When we regress price on the exponentiated fitted values, we obtain  ̂  �  � 1.018. Now, 
we forecast price four weeks out, which is the last week in the sample, using (18.62): 
1.018�exp[3.782 � .0019(691)] � 166.12. The actual value turned out to be 164.25, so we 
have somewhat overpredicted. But this result is much better than if we estimate a linear 
time trend for the first 687 weeks: the forecasted value for week 691 is 152.23, which is a 
substantial underprediction.

Although trend models can be useful for prediction, they must be used with cau-
tion, especially for forecasting far into the future integrated series that have drift. The 
potential problem can be seen by considering a random walk with drift. At time t � h, 
we can write y

t�h
 as

 y
t�h

 � �h � y
t
 � u

t�1
 � … � u

t�h
,

F I GURE  18 . 2

Chinese barium chloride imports into the United States (in short tons) and its
estimated linear trend line, 249.56 � 5.15t.
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where � is the drift term (usually � � 0), and each u
t�j

 has zero mean given I
t
 and constant 

variance �2. As we saw earlier, the forecast of y
t�h

 at time t is E(y
t�h

�I
t
) � �h � y

t
, and 

the forecast error variance is �2h. What happens if we use a linear trend model? Let y
0
 be 

the initial value of the process at time zero, which we take as nonrandom. Then, we can 
also write

 y
t�h

 � y
0
 � �(t � h) � u

1
 � u

2
 � … � u

t�h

 � y
0
 � �(t � h) � v

t�h
.

This looks like a linear trend model with the intercept � � y
0
. But the error, v

t�h
, 

while having mean zero, has variance �2(t � h). Therefore, if we use the linear trend 
y

0 
� �(t � h) to forecast y

t�h
 at time t, the forecast error variance is �2(t � h), compared 

with �2h when we use �h � y
t
. The ratio of the forecast variances is (t � h)/h, which can 

be big for large t. The bottom line is that we should not use a linear trend to forecast a 
random walk with drift. (Computer Exercise C18.8 asks you to compare forecasts from 
a cubic trend line and those from the simple random walk model for the general fertility 
rate in the United States.)

Deterministic trends can also produce poor forecasts if the trend parameters are esti-
mated using old data and the process has a subsequent shift in the trend line. Sometimes, 
exogenous shocks—such as the oil crises of the 1970s—can change the trajectory of trend-
ing variables. If an old trend line is used to forecast far into the future, the forecasts can be 
way off. This problem can be mitigated by using the most recent data available to obtain 
the trend line parameters.

Nothing prevents us from combining trends with other models for forecasting. For 
example, we can add a linear trend to an AR(1) model, which can work well for forecasting 
series with linear trends but which are also stable AR processes around the trend.

It is also straightforward to forecast processes with deterministic seasonality (monthly 
or quarterly series). For example, the file BARIUM.RAW contains the monthly produc-
tion of gasoline in the United States from 1978 through 1988. This series has no obvious 
trend, but it does have a strong seasonal pattern. (Gasoline production is higher in the sum-
mer months and in December.) In the simplest model, we would regress gas (measured in 
gallons) on 11 month dummies, say, for February through December. Then, the forecast 
for any future month is simply the intercept plus the coefficient on the appropriate month 
dummy. (For January, the forecast is just the intercept in the regression.) We can also add 
lags of variables and time trends to allow for general series with seasonality.

Forecasting processes with unit roots also deserves special attention. Earlier, we 
obtained the expected value of a random walk conditional on information through time n. 
To forecast a random walk, with possible drift �, h periods into the future at time n, we 
use  ̂  f

n
 
,h
 �  ̂  � h � y

n
, where  ̂  �  is the sample average of the �y

t
 up through t � n. (If there is 

no drift, we set  ̂  �  � 0.) This approach imposes the unit root. An alternative would be to 
estimate an AR(1) model for {y

t
} and to use the forecast formula (18.55). This approach 

does not impose a unit root, but if one is present,  ̂  �  converges in probability to one as n gets 
large. Nevertheless,  ̂  �  can be substantially different than one, especially if the sample size 
is not very large. The matter of which approach produces better out-of-sample forecasts 
is an empirical issue. If in the AR(1) model, � is less than one, even slightly, the AR(1) 
model will tend to produce better long-run forecasts.
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Generally, there are two approaches to producing forecasts for I(1) processes. The 
first is to impose a unit root. For a one-step-ahead forecast, we obtain a model to forecast 
the change in y, �y

t�1
, given information through time t. Then, because y

t�1
 � �y

t�1
 � y

t
, 

E(y
t�1

�I
t
) � E(�y

t�1
�I

t
) � y

t
. Therefore, our forecast of y

n�1
 at time n is just

   ̂  f
n
  �  ̂  g 

n
 � y

n
,

where  ̂  g 
n
 is the forecast of �y

n�1
 at time n. Typically, an AR model (which is necessarily 

stable) is used for �y
t
, or a vector autoregression.

This can be extended to multiple-step-ahead forecasts by writing y
n�h

 as

 y
n�h

 � (y
n�h

 � y
n�h�1

) � (y
n�h�1 

� y
n�h�2

) � … � (y
n�1

 � y
n
) � y

n
, 

or

 y
n�h

 � �y
n�h

 � �y
n�h�1

 � … � �y
n�1

 � y
n
.

Therefore, the forecast of y
n�h

 at time n is

  ̂  f
n
 
,h
 �  ̂  g 

n,h
 �  ̂  g 

n,h�1
 � … �  ̂  g 

n,1
 � y

n
,  18.63

where  ̂  g 
n,j

 is the forecast of �y
n�j

 at time n. For example, we might model �y
t
 as a stable 

AR(1), obtain the multiple-step-ahead forecasts from (18.55) (but with  ̂  �  and  ̂  �  obtained 
from �y

t
 on �y

t�1
, and y

n
 replaced with �y

n
), and then plug these into (18.63).

The second approach to forecasting I(1) variables is to use a general AR or VAR model 
for {y

t
}. This does not impose the unit root. For example, if we use an AR(2) model, 

 y
t
 � � � �

1
y

t�1
 � �

2
y

t�2
 � u

t
,  18.64

then �
1
 � �

2
 � 1. If we plug in �

1
 � 1 � �

2
 and rearrange, we obtain �y

t
 � � � �

2
�y

t�1
 

� u
t
, which is a stable AR(1) model in the difference that takes us back to the first approach 

described earlier. Nothing prevents us from estimating (18.64) directly by OLS. One nice 
thing about this regression is that we can use the usual t statistic on  ̂  � 

2
 to determine if y

t�2
 is 

significant. (This assumes that the homoskedasticity assumption holds; if not, we can use 
the heteroskedasticity-robust form.) We will not show this formally, but, intuitively, it fol-
lows by rewriting the equation as y

t
 � � � �y

t�1
 � �

2
�y

t�1
 � u

t
, where � � �

1
 � �

2
. Even 

if � � 1, �
2
 is minus the coefficient on a stationary, weakly dependent process {�y

t�1
}. 

Because the regression results will be identical to (18.64), we can use (18.64) directly.
As an example, let us estimate an AR(2) model for the general fertility rate in 

 FERTIL3.RAW, using the observations through 1979. (In Computer Exercise C18.8, you 
are asked to use this model for forecasting, which is why we save some observations at 
the end of the sample.)

 1g fr
t
 � 3.22 � 1.272 g fr

t�1
 � .311 g fr

t�2

 (2.92) (.120) (.121) 18.65
 n � 65, R2 � .949,  

-
 R 2 � .947.
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The t statistic on the second lag is about �2.57, which is statistically different from zero 
at about the 1% level. (The first lag also has a very significant t statistic, which has an 
approximate t distribution by the same reasoning used for  ̂  � 

2
.) The R-squared, adjusted 

or not, is not especially informative as a goodness-of-fit measure because gfr apparently 
contains a unit root, and it makes little sense to ask how much of the variance in gfr we 
are explaining.

The coefficients on the two lags in (18.65) add up to .961, which is close to and not 
statistically different from one (as can be verified by applying the augmented Dickey-
Fuller test to the equation �gfr

t
 � � � �gfr

t�1 
� �

1
�gfr

t�1
 � u

t
). Even though we have not 

imposed the unit root restriction, we can still use (18.65) for forecasting, as we  discussed 
earlier.

Before ending this section, we point out one potential improvement in forecasting in 
the context of vector autoregressive models with I(1) variables. Suppose {y

t
} and {z

t
} are 

each I(1) processes. One approach for obtaining forecasts of y is to  estimate a bivariate 
autoregression in the variables �y

t
 and �z

t
 and then to use (18.63) to generate one- or 

multiple-step-ahead forecasts; this is essentially the first approach we described earlier. 
However, if y

t
 and z

t
 are cointegrated, we have more stationary, stable variables in the 

information set that can be used in forecasting �y: namely, lags of y
t
 � �z

t
, where � is the 

cointegrating parameter. A simple error  correction model is

 �y
t
 � �

0
 � �

1
�y

t�1
 � �

1
�z

t�1
 � �

1
(y

t�1
 � �z

t�1
) � e

t
, 

 E(e
t
�I

t�1
) � 0. 18.66

To forecast y
n�1

, we use observations up through n to estimate the cointegrating parameter, 
�, and then estimate the parameters of the error correction model by OLS, as described 
in Section 18.4. Forecasting �y

n�1
 is easy: we just plug �y

n
, �z

n
, and y

n
 �  ̂  � z

n
 into the 

estimated equation. Having obtained the forecast of �y
n�1

, we add it to y
n
.

By rearranging the error correction model, we can write

  y
t
 � �

0
 � �

1
y

t�1
 � �

2
y

t�2
 � �

1
z

t�1
 � �

2
z

t�2
 � u

t
,  18.67

where �
1
 � 1 � �

1
 � �, �

2
 � ��

1
, and so on, which is the first equation in a VAR model 

for y
t
 and z

t
. Notice that this depends on five parameters, just as many as in the error 

correction model. The point is that, for the purposes of forecasting, the VAR model in 
the levels and the error correction model are essentially the same. This is not the case in 
more general error correction models. For example, suppose that �

1
 � �

1
 � 0 in (18.66), 

but we have a second error correction term, �
2
(y

t�2
 � �z

t�2
). Then, the error correction 

model involves only four parameters, whereas (18.67)—which has the same order of lags 
for y and z—contains five parameters. Thus, error correction models can economize on 
parameters; that is, they are generally more parsimonious than VARs in levels.

If y
t
 and z

t
 are I(1) but not cointegrated, the appropriate model is (18.66) without the 

error correction term. This can be used to forecast �y
n�1

, and we can add this to y
n
 to 

forecast y
n�1

.
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S U M M A R Y

The time series topics covered in this chapter are used routinely in empirical macroeconomics, 
empirical finance, and a variety of other applied fields. We began by showing how infinite 
distributed lag models can be interpreted and estimated. These can provide flexible lag dis-
tributions with fewer parameters than a similar finite distributed lag model. The geometric 
distributed lag and, more generally, rational distributed lag models are the most popular. They 
can be estimated using standard econometric procedures on simple dynamic equations.
 Testing for a unit root has become very common in time series econometrics. If a series 
has a unit root, then, in many cases, the usual large sample normal approximations are no 
longer valid. In addition, a unit root process has the property that an innovation has a long-
lasting effect, which is of interest in its own right. While there are many tests for unit roots, 
the Dickey-Fuller t test—and its extension, the augmented Dickey-Fuller test—is probably the 
most popular and easiest to implement. We can allow for a linear trend when testing for unit 
roots by adding a trend to the Dickey-Fuller regression.
 When an I(1) series, y

t
, is regressed on another I(1) series, x

t
, there is serious concern about 

spurious regression, even if the series do not contain obvious trends. This has been studied 
thoroughly in the case of a random walk: even if the two random walks are independent, 
the usual t test for significance of the slope coefficient, based on the usual critical values, 
will reject much more than the nominal size of the test. In addition, the R2 tends to a random 
 variable, rather than to zero (as would be the case if we regress the difference in y

t
 on the dif-

ference in x
t
).

 In one important case, a regression involving I(1) variables is not spurious, and that is when 
the series are cointegrated. This means that a linear function of the two I(1) variables is I(0). If 
y

t
 and x

t
 are I(1) but y

t
 � x

t
 is I(0), y

t
 and x

t
 cannot drift arbitrarily far apart. There are simple 

tests of the null of no cointegration against the alternative of cointegration, one of which is 
based on applying a Dickey-Fuller unit root test to the residuals from a static regression. There 
are also simple estimators of the cointegrating parameter that yield t statistics with approximate 
standard normal distributions (and asymptotically valid confidence intervals). We covered the 
leads and lags estimator in Section 18.4.
 Cointegration between y

t
 and x

t
 implies that error correction terms may appear in a model 

relating �y
t
 to �x

t
; the error correction terms are lags in y

t
 � �x

t
, where � is the cointegrating 

parameter. A simple two-step estimation procedure is available for estimating error correction 
models. First, � is estimated using a static regression (or the leads and lags regression). Then, 
OLS is used to estimate a simple dynamic model in first differences that includes the error cor-
rection terms.
 Section 18.5 contained an introduction to forecasting, with emphasis on regression-based 
forecasting methods. Static models or, more generally, models that contain explanatory 
variables dated contemporaneously with the dependent variable, are limited because then the 
explanatory variables need to be forecasted. If we plug in hypothesized values of unknown 
future explanatory variables, we obtain a conditional forecast. Unconditional forecasts are 
similar to simply modeling y

t
 as a function of past information we have observed at the time the 

forecast is needed. Dynamic regression models, including autoregressions and vector autore-
gressions, are used routinely. In addition to obtaining one-step-ahead point forecasts, we also 
discussed the construction of forecast intervals, which are very similar to prediction intervals.
 Various criteria are used for choosing among forecasting methods. The most common per-
formance measures are the root mean squared error and the mean absolute error. Both estimate 
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the size of the average forecast error. It is most informative to compute these measures using 
out-of-sample forecasts.
 Multiple-step-ahead forecasts present new challenges and are subject to large forecast error 
variances. Nevertheless, for models such as autoregressions and vector autoregressions, multi-
step-ahead forecasts can be computed, and approximate forecast intervals can be obtained.
 Forecasting trending and I(1) series requires special care. Processes with deterministic 
trends can be forecasted by including time trends in regression models, possibly with lags 
of variables. A potential drawback is that deterministic trends can provide poor forecasts for 
long-horizon forecasts: once it is estimated, a linear trend continues to increase or decrease. The 
typical approach to forecasting an I(1) process is to forecast the difference in the process and to 
add the level of the variable to that forecasted difference. Alternatively, vector autoregressive 
models can be used in the levels of the series. If the series are cointegrated, error correction 
models can be used instead.

K E Y  T E R M S

Augmented Dickey-Fuller 
Test

Cointegration
Conditional Forecast
Dickey-Fuller Distribution
Dickey-Fuller (DF) Test
Engle-Granger Test
Engle-Granger Two-Step 

Procedure
Error Correction Model
Exponential Smoothing
Forecast Error
Forecast Interval

Geometric (or Koyck) 
Distributed Lag

Granger Causality
Infinite Distributed Lag 

(IDL) Model
Information Set
In-Sample Criteria
Leads and Lags Estimator
Loss Function
Martingale
Martingale Difference 

Sequence
Mean Absolute Error (MAE)

Multiple-Step-Ahead Forecast
One-Step-Ahead Forecast
Out-of-Sample Criteria
Point Forecast
Rational Distributed Lag 

(RDL) Model
Root Mean Squared Error 

(RMSE)
Spurious Regression Problem
Unconditional Forecast
Unit Roots
Vector Autoregressive 

(VAR) Model

P R O B L E M S

18.1  Consider equation (18.15) with k � 2. Using the IV approach to estimating the �
h
 

and �, what would you use as instruments for y
t�1

?

18.2  An interesting economic model that leads to an econometric model with a lagged 
dependent variable relates y

t
 to the expected value of x

t
, say, x

t
*, where the expectation 

is based on all observed information at time t � 1:

 y
t
 � �

0
 � �

1
x  *   t   � u

t
. 18.68

  A natural assumption on {u
t
} is that E(u

t
�I

t�1
) � 0, where I

t�1
 denotes all information on 

y and x observed at time t � 1; this means that E(y
t
�I

t�1
) � �

0 
� �

1
x

t
*. To complete this 

model, we need an assumption about how the expectation x
t
* is formed. We saw a simple 
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example of adaptive expectations in Section 11.2, where x
t
* � x

t�1
. A more complicated 

adaptive expectations scheme is

 x
t
* � x

t
*

�1
 � �(x

t�1
 � x

t
*

�1
),  18.69

  where 0 � � � 1. This equation implies that the change in expectations reacts to whether 
last period’s realized value was above or below its expectation. The assumption 0 � � � 1 
implies that the change in expectations is a fraction of last period’s error.

 (i) Show that the two equations imply that

y
t
 � ��

0
 � (1 � �)y

t�1
 � ��

1
x

t�1
 � u

t
 � (1 � �)u

t�1
.

   [Hint: Lag equation (18.68) one period, multiply it by (1 � �), and subtract this 
from (18.68). Then, use (18.69).]

 (ii)  Under E(u
t
�I

t�1
) � 0, {u

t
} is serially uncorrelated. What does this imply about the 

new errors, v
t
 � u

t
 � (1 � �)u

t�1
?

 (iii) If we write the equation from part (i) as

y
t
 � �

0
 � �

1
y

t�1
 � �

2
x

t�1
 � v

t
, 

  how would you consistently estimate the �
j
?

 (iv)  Given consistent estimators of the �
j
, how would you consistently estimate � 

and �
1
?

18.3  Suppose that {y
t
} and {z

t
} are I(1) series, but y

t
 � �z

t
 is I(0) for some � 	 0. Show that 

for any � 	 �, y
t
 � �z

t
 must be I(1).

18.4  Consider the error correction model in equation (18.37). Show that if you add another lag 
of the error correction term, y

t�2
 � �x

t�2
, the equation suffers from perfect collinearity. 

(Hint: Show that y
t�2

 � �x
t�2

 is a perfect linear function of y
t�1

 � �x
t�1

, �x
t�1

, and 
� y

t�1
.)

18.5 Suppose the process {(x
t
, y

t
): t � 0, 1, 2, …} satisfies the equations

y
t
 � �x

t
 � u

t

 and

�x
t
 � ��x

t�1
 � v

t
, 

  where E(u
t
�I

t�1
) � E(v

t
�I

t�1
) � 0, I

t�1
 contains information on x and y dated at time 

t � 1 and earlier, � 	 0, and �� � � 1 [so that x
t
, and therefore y

t
, is I(1)]. Show that these 

two equations imply an error correction model of the form

�y
t
 � �

1
�x

t�1
 � �(y

t�1
 � �x

t�1
) � e

t
, 

  where �
1
 � ��, � � �1, and e

t
 � u

t
 � �v

t
. (Hint: First subtract y

t�1
 from both sides of 

the first equation. Then, add and subtract �x
t�1

 from the right-hand side and rearrange. 
Finally, use the second equation to get the error correction model that contains �x

t�1
.)

18.6 Using the monthly data in VOLAT.RAW, the following model was estimated:

1pcip �(1.54)�(.344)pcip
�1

 �(.074)pcip
�2

 �(.073)pcip
�3

 �(.031)pcsp
�1

pciˆp  �0(.56) �(.042) (.045) (.042) (.013)

 n � 554, R2 � .174,  
-

 R 2 � .168, 
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  where pcip is the percentage change in monthly industrial production, at an annualized 
rate, and pcsp is the percentage change in the Standard & Poor’s 500 Index, also at an 
annualized rate.

 (i)  If the past three months of pcip are zero and pcsp
�1

 � 0, what is the predicted 
growth in industrial production for this month? Is it statistically different from 
zero?

 (ii)  If the past three months of pcip are zero but pcsp
�1

 � 10, what is the predicted 
growth in industrial production?

 (iii)  What do you conclude about the effects of the stock market on real economic 
activity?

18.7  Let gM
t
 be the annual growth in the money supply and let unem

t
 be the unemployment 

rate. Assuming that unem
t
 follows a stable AR(1) process, explain in detail how you 

would test whether gM Granger causes unem.

18.8 Suppose that y
t
 follows the model

y
t
 � � � �

1
z

t�1
 � u

t

u
t
 � �u

t�1
 � e

t

E(e
t
�I

t�1
) � 0, 

 where I
t�1

 contains y and z dated at t � 1 and earlier.
 (i)  Show that E(y

t�1
�I

t
) � (1 � �)� � �y

t
 � �

1
z

t
 � ��

1
z

t�1
. (Hint: Write u

t�1
 � 

y
t�1

 � � � �
1
z

t�2
 and plug this into the second equation; then, plug the result into 

the first equation and take the conditional expectation.)
 (ii)  Suppose that you use n observations to estimate �, �

1
, and �. Write the equation 

for forecasting y
n�1

.
 (iii)  Explain why the model with one lag of z and AR(1) serial correlation is a special 

case of the model

y
t
 � �

0
 � �y

t�1
 � �

1
z

t�1
 � �

2
z

t�2
 � e

t
.

 (iv)  What does part (iii) suggest about using models with AR(1) serial correlation for 
forecasting?

18.9  Let {y
t
} be an I(1) sequence. Suppose that  ̂  g 

n
 is the one-step-ahead forecast of �y

n�1
 and 

let  ̂  f
n
  �  ̂  g 

n
 � y

n
 be the one-step-ahead forecast of y

n�1
. Explain why the forecast errors 

for forecasting �y
n�1

 and y
n�1

 are identical.

C O M P U T E R  E X E R C I S E S

C18.1  Use the data in WAGEPRC.RAW for this exercise. Problem 11.5 gave estimates of a 
finite distributed lag model of gprice on gwage, where 12 lags of gwage are used.

 (i)  Estimate a simple geometric DL model of gprice on gwage. In particular, esti-
mate equation (18.11) by OLS. What are the estimated impact propensity and 
LRP? Sketch the estimated lag distribution.

 (ii)  Compare the estimated IP and LRP to those obtained in Problem 11.5. How do 
the estimated lag distributions compare?
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 (iii)  Now, estimate the rational distributed lag model from (18.16). Sketch the lag dis-
tribution and compare the estimated IP and LRP to those obtained in part (ii).

C18.2 Use the data in HSEINV.RAW for this exercise.
 (i)  Test for a unit root in log(invpc), including a linear time trend and two lags of 

�log(invpc
t
). Use a 5% significance level.

 (ii) Use the approach from part (i) to test for a unit root in log(price).
 (iii)  Given the outcomes in parts (i) and (ii), does it make sense to test for cointegra-

tion between log(invpc) and log(price)?

C18.3 Use the data in VOLAT.RAW for this exercise.
 (i)  Estimate an AR(3) model for pcip. Now, add a fourth lag and verify that it is 

very insignificant.
 (ii)  To the AR(3) model from part (i), add three lags of pcsp to test whether pcsp 

Granger causes pcip. Carefully, state your conclusion.
 (iii)  To the model in part (ii), add three lags of the change in i3, the three-month 

T-bill rate. Does pcsp Granger cause pcip conditional on past �i3?

C18.4  In testing for cointegration between gfr and pe in Example 18.5, add t2 to equa-
tion (18.32) to obtain the OLS residuals. Include one lag in the augmented DF test. 
The 5% critical value for the test is �4.15.

C18.5  Use INTQRT.RAW for this exercise.
 (i)  In Example 18.7, we estimated an error correction model for the holding yield 

on six-month T-bills, where one lag of the holding yield on three-month T-bills 
is the explanatory variable. We assumed that the cointegration parameter was 
one in the equation hy6

t
 � � � �hy3

t�1
 � u

t
. Now, add the lead change, �hy3

t
, 

the contemporaneous change, �hy3
t�1

, and the lagged change, �hy3
t�2

, of 
hy3

t�1
. That is, estimate the equation

hy6
t
 � � � �hy3

t�1
 � �

0
�hy3

t
 � �

1
�hy3

t�1
 � �

1
�hy3

t�2
 � e

t

   and report the results in equation form. Test H
0
: � � 1 against a two-sided 

alternative. Assume that the lead and lag are sufficient so that {hy3
t�1

} is strictly 
exogenous in this equation and do not worry about serial correlation.

 (ii)  To the error correction model in (18.39), add �hy3
t�2

 and (hy6
t�2

 � hy3
t�3

). Are 
these terms jointly significant? What do you conclude about the appropriate 
error correction model?

C18.6 Use the data in PHILLIPS.RAW to answer these questions.
 (i)  Estimate the models in (18.48) and (18.49) using the data through 1997. Do the 

parameter estimates change much compared with (18.48) and (18.49)?
 (ii)  Use the new equations to forecast unem

1998
; round to two places after the deci-

mal. Which equation produces a better forecast?
 (iii)  As we discussed in the text, the forecast for unem

1998
 using (18.49) is 4.90. 

Compare this with the forecast obtained using the data through 1997. Does 
using the extra year of data to obtain the parameter estimates produce a better 
 forecast?

 (iv)  Use the model estimated in (18.48) to obtain a two-step-ahead forecast of unem. 
That is, forecast unem

1998
 using equation (18.55) with  ̂  �  � 1.572,  ̂  �  � .732, and 
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h � 2. Is this better or worse than the one-step-ahead forecast obtained by plug-
ging unem

1997
 � 4.9 into (18.48)?

C18.7 Use the data in BARIUM.RAW for this exercise.
 (i)  Estimate the linear trend model chnimp

t
 � � � �t � u

t
, using the first 119 obser-

vations (this excludes the last 12 months of observations for 1988). What is the 
standard error of the regression?

 (ii)  Now, estimate an AR(1) model for chnimp, again using all data but the last 
12 months. Compare the standard error of the regression with that from part (i). 
Which model provides a better in-sample fit?

 (iii)  Use the models from parts (i) and (ii) to compute the one-step-ahead forecast 
errors for the 12 months in 1988. (You should obtain 12 forecast errors for each 
method.) Compute and compare the RMSEs and the MAEs for the two meth-
ods. Which forecasting method works  better out-of-sample for one-step-ahead 
 forecasts?

 (iv)  Add monthly dummy variables to the regression from part (i). Are these jointly 
significant? (Do not worry about the slight serial correlation in the errors from 
this regression when doing the joint test.)

C18.8 Use the data in FERTIL3.RAW for this exercise.
 (i)  Graph gfr against time. Does it contain a clear upward or downward trend over 

the entire sample period?
 (ii)  Using the data through 1979, estimate a cubic time trend model for gfr (that is, 

regress gfr on t, t2, and t3, along with an intercept).  Comment on the R-squared 
of the regression.

 (iii)  Using the model in part (ii), compute the mean absolute error of the one-step-
ahead forecast errors for the years 1980 through 1984.

 (iv)  Using the data through 1979, regress �gfr
t
 on a constant only. Is the constant 

statistically different from zero? Does it make sense to assume that any drift term 
is zero, if we assume that gfr

t
 follows a random walk?

 (v)  Now, forecast gfr for 1980 through 1984, using a random walk model: the forecast 
of gfr

n�1
 is simply gfr

n
. Find the MAE. How does it compare with the MAE from 

part (iii)? Which method of forecasting do you prefer?
 (vi)  Now, estimate an AR(2) model for gfr, again using the data only through 1979. 

Is the second lag significant?
 (vii)  Obtain the MAE for 1980 through 1984, using the AR(2) model. Does this more 

general model work better out-of-sample than the random walk model?

C18.9 Use CONSUMP.RAW for this exercise.
 (i)  Let y

t
 be real per capita disposable income. Use the data through 1989 to estimate 

the model

y
t
 � � � �t � �y

t�1
 � u

t

  and report the results in the usual form.
 (ii)  Use the estimated equation from part (i) to forecast y in 1990. What is the fore-

cast error?
 (iii)  Compute the mean absolute error of the one-step-ahead forecasts for the 1990s, 

using the parameters estimated in part (i).
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 (iv)  Now, compute the MAE over the same period, but drop y
t�1

 from the equation. 
Is it better to include y

t�1
 in the model or not?

C18.10 Use the data in INTQRT.RAW for this exercise.
 (i)  Using the data from all but the last four years (16 quarters), estimate an AR(1) 

model for �r6
t
. (We use the difference because it appears that r6

t
 has a unit 

root.) Find the RMSE of the one-step-ahead forecasts for �r6, using the last 
16 quarters.

 (ii)  Now, add the error correction term spr
t�1

 � r6
t�1

 � r3
t�1

 to the equation from 
part (i). (This assumes that the cointegrating parameter is one.) Compute the 
RMSE for the last 16 quarters. Does the error correction term help with out-of-
sample forecasting in this case?

 (iii)  Now, estimate the cointegrating parameter, rather than setting it to one. Use 
the last 16 quarters again to produce the out-of-sample RMSE. How does this 
compare with the forecasts from parts (i) and (ii)?

 (iv)  Would your conclusions change if you wanted to predict r6 rather than �r6? 
Explain.

C18.11 Use the data in VOLAT.RAW for this exercise.
 (i)  Confirm that lsp500 � log(sp500) and lip � log(ip) appear to contain unit roots. 

Use Dickey-Fuller tests with four lagged changes and do the tests with and 
without a linear time trend.

 (ii)  Run a simple regression of lsp500 on lip. Comment on the sizes of the t statistic 
and R-squared.

 (iii)  Use the residuals from part (ii) to test whether lsp500 and lip are cointegrated. 
Use the standard Dickey-Fuller test and the ADF test with two lags. What do 
you conclude?

 (iv)  Add a linear time trend to the regression from part (ii) and now test for cointe-
gration using the same tests from part (iii).

 (v)  Does it appear that stock prices and real economic activity have a long-run 
equilibrium relationship?

C18.12  This exercise also uses the data from VOLAT.RAW. Computer Exercise 18.11 stud-
ies the long-run relationship between stock prices and industrial production. Here, 
you will study the question of Granger causality using the percentage changes.

 (i)  Estimate an AR(3) model for pcip
t
, the percentage change in industrial produc-

tion (reported at an annualized rate). Show that the second and third lags are 
jointly significant at the 2.5% level.

 (ii)  Add one lag of pcsp
t
 to the equation estimated in part (i). Is the lag statistically 

significant? What does this tell you about Granger causality between the growth 
in industrial production and the growth in stock prices?

 (iii)  Redo part (ii) but obtain a heteroskedasticity-robust t statistic. Does the robust 
test change your conclusions from part (ii)?

C18.13  Use the data in TRAFFIC2.RAW for this exercise. These monthly data, on 
 traffic accidents in California over the years 1981 to 1989, were used in Computer 
 Exercise C10.11.

 (i)  Using the standard Dickey-Fuller regression, test whether ltotacc
t
 has a unit 

root. Can you reject a unit root at the 2.5% level?
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 (ii)  Now, add two lagged changes to the test from part (i) and compute the aug-
mented Dickey-Fuller test. What do you conclude?

 (iii)  Add a linear time trend to the ADF regression from part (ii). Now what 
 happens?

 (iv)  Given the findings from parts (i) through (iii), what would you say is the best 
characterization of ltotacc

t
: an I(1) process or an I(0) process about a linear time 

trend?
 (v)  Test the percentage of fatalities, prcfat

t
, for a unit root, using two lags in an ADF 

regression. In this case, does it matter whether you include a linear time trend?

C18.14  Use the data in MINWAGE.DTA for sector 232 to answer the following questions.
 (i)  Confirm that lwage232

t
 and lemp232

t
 are best characterized as I(1) proc-

esses. Use the augmented DF test with one lag of gwage232 and gemp232, 
 respectively, and a linear time trend. Is there any doubt that these series should 
be assumed to have unit roots?

 (ii)  Regress lemp232
t
 on lwage232

t
 and test for cointegration, both with and without 

a time trend, allowing for two lags in the augmented Engle-Granger test. What 
do you conclude?

 (iii)  Now regress lemp232
t
 on log of the real wage rate, lrwage232

t
 � lwage232

t
 − 

lcpi
t
, and a time trend. Do you find cointegration? Are they “closer” to being 

cointegrated when you use real wages than nominal wages?
 (iv)  What are some factors that might be missing from the cointegrating regression 

in part (iii)?
  



668

Carrying Out an Empirical Project

C H A P T E R 19

In this chapter, we discuss the ingredients of a successful empirical analysis, with empha-
sis on completing a term project. In addition to reminding you of the important issues 
that have arisen throughout the text, we emphasize recurring themes that are important 

for applied research. We also provide suggestions for topics as a way of stimulating your 
imagination. Several sources of economic research and data are given as references.

19.1 Posing a Question
The importance of posing a very specific question cannot be overstated. Without being 
explicit about the goal of your analysis, you cannot know where to begin. The widespread 
availability of rich data sets makes it tempting to launch into data collection based on half-
baked ideas, but this is often counterproductive. It is likely that, without carefully formu-
lating your hypotheses and the kind of model you will need to estimate, you will forget to 
collect information on important variables, obtain a sample from the wrong population, or 
collect data for the wrong time period.
 This does not mean that you should pose your question in a vacuum. Especially for 
a one-term project, you cannot be too ambitious. Therefore, when choosing a topic, you 
should be reasonably sure that data sources exist that will allow you to answer your ques-
tion in the allotted time.
 You need to decide what areas of economics or other social sciences interest you 
when selecting a topic. For example, if you have taken a course in labor economics, 
you have probably seen theories that can be tested empirically or relationships that have 
some policy relevance. Labor economists are constantly coming up with new variables 
that can explain wage differentials. Examples include quality of high school [Card and 
Krueger (1992) and Betts (1995)], amount of math and science taken in high school 
[Levine and Zimmerman (1995)], and physical appearance [Hamermesh and Biddle 
(1994), Averett and Korenman (1996), and Biddle and Hamermesh (1998)]. Researchers 
in state and local public finance study how local economic activity depends on economic 
policy variables, such as property taxes, sales taxes, level and quality of services (such 
as schools, fire, and police), and so on. [See, for example, White (1986), Papke (1987), 
Bartik (1991), and Netzer (1992).]
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 Economists that study education issues are interested in determining how spend-
ing affects performance [Hanushek (1986)], whether attending certain kinds of schools 
improves performance [for example, Evans and Schwab (1995)], and what factors affect 
where private schools choose to locate [Downes and Greenstein (1996)].
 Macroeconomists are interested in relationships between various aggregate time series, 
such as the link between growth in gross domestic product and growth in fixed investment 
or machinery [see De Long and Summers (1991)] or the effect of taxes on interest rates 
[for example, Peek (1982)].
 There are certainly reasons for estimating models that are mostly descriptive. For 
example, property tax assessors use models (called hedonic price models) to estimate hous-
ing values for homes that have not been sold recently. This involves a regression model 
relating the price of a house to its characteristics (size, number of bedrooms, number of 
bathrooms, and so on). As a topic for a term paper, this is not very exciting: we are unlikely 
to learn much that is surprising, and such an analysis has no obvious policy implications. 
Adding the crime rate in the neighborhood as an explanatory variable would allow us to 
determine how important a factor crime is on housing prices, something that would be 
useful in estimating the costs of crime.
 Several relationships have been estimated using macroeconomic data that are mostly 
descriptive. For example, an aggregate saving function can be used to estimate the aggre-
gate marginal propensity to save, as well as the response of saving to asset returns (such 
as interest rates). Such an analysis could be made more interesting by using time series 
data on a country that has a history of political upheavals and determining whether savings 
rates decline during times of political uncertainty.
 Once you decide on an area of research, there are a variety of ways to locate specific 
papers on the topic. The Journal of Economic Literature (JEL) has a detailed classifica-
tion system in which each paper is given a set of identifying codes that places it within 
certain subfields of economics. The JEL also contains a list of articles published in a 
wide variety of journals, organized by topic, and it even contains short abstracts of 
some articles.
 Especially convenient for finding published papers on various topics are Internet 
services, such as EconLit, which many universities subscribe to. EconLit allows users to 
do a comprehensive search of almost all economics journals by author, subject, words in 
the title, and so on. The Social Sciences Citation Index is useful for finding papers on a 
broad range of topics in the social sciences, including popular papers that have been cited 
often in other published works.
 Google Scholar is an Internet search engine that can be very helpful for tracking down 
research on various topics or research by a particular author. This is especially true of work 
that has not been published in an academic journal or that has yet to be  published.
 In thinking about a topic, you should keep some things in mind. First, for a question 
to be interesting, it does not need to have broad-based policy implications; rather, it can 
be of local interest. For example, you might be interested in knowing whether living in a 
fraternity at your university causes students to have lower or higher grade point averages. 
This may or may not be of interest to people outside your university, but it is probably of 
concern to at least some people within the university. On the other hand, you might study 
a problem that starts by being of local interest but turns out to have widespread interest, 
such as determining which factors affect, and which university policies can stem, alcohol 
abuse on college campuses.
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 Second, it is very difficult, especially for a quarter or semester project, to do truly 
original research using the standard macroeconomic aggregates on the U.S. economy. 
For example, the question of whether money growth, government spending growth, and 
so on affect economic growth has been and continues to be studied by professional macro-
economists. The question of whether stock or other asset returns can be systematically 
predicted using known information has, for obvious reasons, been studied pretty care-
fully. This does not mean that you should avoid estimating macroeconomic or empirical 
finance models, as even just using more recent data can add constructively to a debate. In 
addition, you can sometimes find a new variable that has an important effect on economic 
aggregates or financial returns; such a discovery can be exciting.
 The point is that exercises such as using a few additional years to estimate a standard 
Phillips curve or an aggregate consumption function for the U.S. economy, or some other 
large economy, are unlikely to yield additional insights, although they can be instructive 
for the student. Instead, you might use data on a smaller country to estimate a static or 
dynamic Phillips curve, or to test the efficient markets hypothesis, and so on.
 At the nonmacroeconomic level, there are also plenty of questions that have been stud-
ied extensively. For example, labor economists have published many papers on estimating 
the return to education. This question is still studied because it is very important, and new 
data sets, as well as new econometric approaches, continue to be developed. For example, 
as we saw in Chapter 9, certain data sets have better proxy variables for unobserved abil-
ity than other data sets. (Compare WAGE1.RAW and WAGE2.RAW.) In other cases, we 
can obtain panel data or data from a natural experiment—see Chapter 13—that allow us 
to approach an old question from a different perspective.
 As another example, criminologists are interested in studying the effects of various 
laws on crime. The question of whether capital punishment has a deterrent effect has long 
been debated. Similarly, economists have been interested in whether taxes on cigarettes 
and alcohol reduce consumption (as always, in a ceteris paribus sense). As more years of 
data at the state level become available, a richer panel data set can be created, and this 
can help us better answer major policy questions. Plus, the effectiveness of fairly recent 
crime-fighting innovations—such as community policing—can be evaluated empirically.
 While you are formulating your question, it is helpful to discuss your ideas with your 
classmates, instructor, and friends. You should be able to convince people that the answer 
to your question is of some interest. (Of course, whether you can persuasively answer your 
question is another issue, but you need to begin with an interesting question.) If someone 
asks you about your paper and you respond with “I’m doing my paper on crime” or “I’m 
doing my paper on interest rates,” chances are you have only decided on a general area 
without formulating a true question. You should be able to say something like “I’m study-
ing the effects of community policing on city crime rates in the United States” or “I’m 
looking at how inflation volatility affects short-term interest rates in Brazil.”

19.2 Literature Review
All papers, even if they are relatively short, should contain a review of relevant literature. 
It is rare that one attempts an empirical project for which no published precedent exists. 
If you search through journals or use online search services such as EconLit to come 
up with a topic, you are already well on your way to a literature review. If you select a 
topic on your own—such as studying the effects of drug usage on college performance at 
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your university—then you will probably have to work a little harder. But online search 
ser vices make that work a lot easier, as you can search by keywords, by words in the title, 
by author, and so on. You can then read abstracts of papers to see how relevant they are 
to your own work.
 When doing your literature search, you should think of related topics that might not 
show up in a search using a handful of keywords. For example, if you are studying the 
effects of drug usage on wages or grade point average, you should probably look at the 
literature on how alcohol usage affects such factors. Knowing how to do a thorough litera-
ture search is an acquired skill, but you can get a long way by thinking before searching.
 Researchers differ on how a literature review should be incorporated into a paper. 
Some like to have a separate section called “literature review,” while others like to include 
the literature review as part of the introduction. This is largely a matter of taste, although 
an extensive literature review probably deserves its own section. If the term paper is the 
focus of the course—say, in a senior seminar or an advanced econometrics course—your 
literature review probably will be lengthy. Term papers at the end of a first course are 
typically shorter, and the literature reviews are briefer.

19.3 Data Collection
Deciding on the Appropriate Data Set

Collecting data for a term paper can be educational, exciting, and sometimes even frustrat-
ing. You must first decide on the kind of data needed to answer your posed question. As 
we discussed in the introduction and have covered throughout this text, data sets come in 
a variety of forms. The most common kinds are cross-sectional, time series, pooled cross 
sections, and panel data sets.
 Many questions can be addressed using any of the data structures we have described. 
For example, to study whether more law enforcement lowers crime, we could use a cross 
section of cities, a time series for a given city, or a panel data set of cities—which consists 
of data on the same cities over two or more years.
 Deciding on which kind of data to collect often depends on the nature of the analysis. 
To answer questions at the individual or family level, we often only have access to a single 
cross section; typically, these are obtained via surveys. Then, we must ask whether we can 
obtain a rich enough data set to do a convincing ceteris paribus analysis. For example, sup-
pose we want to know whether families who save through individual retirement accounts 
(IRAs)—which have certain tax advantages—have less non-IRA savings. In other words, 
does IRA saving simply crowd out other forms of saving? There are data sets, such as the 
Survey of Consumer Finances, that contain information on various kinds of saving for a 
different sample of families each year. Several issues arise in using such a data set. Perhaps 
the most important is whether there are enough controls—including income, demograph-
ics, and proxies for saving tastes—to do a reasonable ceteris paribus analysis. If these are 
the only kinds of data available, we must do what we can with them.
 The same issues arise with cross-sectional data on firms, cities, states, and so on. In 
most cases, it is not obvious that we will be able to do a ceteris paribus analysis with a 
single cross section. For example, any study of the effects of law enforcement on crime 
must recognize the endogeneity of law enforcement expenditures. When using standard 
regression methods, it may be very hard to complete a convincing ceteris paribus analysis, 
no matter how many controls we have. (See Section 19.4 for more discussion.)
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 If you have read the advanced chapters on panel data methods, you know that hav-
ing the same cross-sectional units at two or more different points in time can allow us 
to control for time-constant unobserved effects that would normally confound regression 
on a single cross section. Panel data sets are relatively hard to obtain for individuals 
or families—although some important ones exist, such as the Panel Study of Income 
Dynamics—but they can be used in very convincing ways. Panel data sets on firms also 
exist. For example, Compustat and the Center for Research in Security Prices (CRSP) 
manage very large panel data sets of financial information on firms. Easier to obtain are 
panel data sets on larger units, such as schools, cities, counties, and states, as these tend 
not to disappear over time, and government agencies are responsible for collecting infor-
mation on the same variables each year. For example, the Federal Bureau of Investigation 
collects and reports detailed information on crime rates at the city level. Sources of data 
are listed at the end of this chapter.
 Data come in a variety of forms. Some data sets, especially historical ones, are avail-
able only in printed form. For small data sets, entering the data yourself from the printed 
source is manageable and convenient. Sometimes, articles are published with small data 
sets—especially time series applications. These can be used in an empirical study, perhaps 
by supplementing the data with more recent years.
 Many data sets are available in electronic form. Various government agencies provide 
data on their web sites. Private companies sometimes compile data sets to make them 
user friendly, and then they provide them for a fee. Authors of papers are often willing 
to provide their data sets in electronic form. More and more data sets are available on the 
Internet. The web is a vast resource of online databases. Numerous websites containing 
economic and related data sets have been created. Several other websites contain links to 
data sets that are of interest to economists; some of these are listed at the end of this chapter. 
Generally, searching the Internet for data sources is easy and will become even more 
convenient in the future.

Entering and Storing Your Data

Once you have decided on a data type and have located a data source, you must put the 
data into a usable format. If the data came in electronic form, they are already in some 
format, hopefully one in widespread use. The most flexible way to obtain data in electronic 
form is as a standard text (ASCII) file. All statistics and econometrics software packages 
allow raw data to be stored this way. Typically, it is straightforward to read a text file 
directly into an econometrics package, provided the file is properly structured. The data 
files we have used throughout the text provide several examples of how cross-sectional, 
time series, pooled cross sections, and panel data sets are usually stored. As a rule, the 
data should have a tabular form, with each observation representing a different row; the 
columns in the data set represent different variables. Occasionally, you might encounter 
a data set stored with each column representing an observation and each row a different 
variable. This is not ideal, but most software packages allow data to be read in this form 
and then reshaped. Naturally, it is crucial to know how the data are organized before read-
ing them into your econometrics package.
 For time series data sets, there is only one sensible way to enter and store the data: 
namely, chronologically, with the earliest time period listed as the first observation and 
the most recent time period as the last observation. It is often useful to include variables 
indicating year and, if relevant, quarter or month. This facilitates estimation of a variety 
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of models later on, including allowing for seasonality and breaks at different time periods. 
For cross sections pooled over time, it is usually best to have the cross section for the ear-
liest year fill the first block of observations, followed by the cross section for the second 
year, and so on. (See FERTIL1.RAW as an example.) This arrangement is not crucial, but 
it is very important to have a variable stating the year attached to each observation.
 For panel data, as we discussed in Section 13.5, it is best if all the years for each cross-
sectional observation are adjacent and in chronological order. With this ordering, we can 
use all of the panel data methods from Chapters 13 and 14. With panel data, it is important 
to include a unique identifier for each cross-sectional unit, along with a year variable.
 If you obtain your data in printed form, you have several options for entering it into 
a computer. First, you can create a text file using a standard text editor. (This is how 
several of the raw data sets included with the text were initially created.) Typically, it is 
required that each row starts a new observation, that each row contains the same ordering 
of the variables—in particular, each row should have the same number of entries—and 
that the values are separated by at least one space. Sometimes, a different separator, such 
as a comma, is better, but this depends on the software you are using. If you have missing 
observations on some variables, you must decide how to denote that; simply leaving a 
blank does not generally work. Many regression packages accept a period as the missing 
value symbol. Some people prefer to use a number—presumably an impossible value for 
the variable of interest—to denote missing values. If you are not careful, this can be dan-
gerous; we discuss this further later.
 If you have nonnumerical data—for example, you want to include the names in a sam-
ple of colleges or the names of cities—then you should check the econometrics package 
you will use to see the best way to enter such variables (often called strings). Typically, 
strings are put between double or single quotation marks. Or the text file can follow a rigid 
formatting, which usually requires a small program to read in the text file. But you need 
to check your econometrics package for details.
 Another generally available option is to use a spreadsheet to enter your data, such as 
Excel. This has a couple of advantages over a text file. First, because each observation on 
each variable is a cell, it is less likely that numbers will be run together (as would happen if 
you forget to enter a space in a text file). Second, spreadsheets allow manipulation of data, 
such as sorting or computing averages. This benefit is less important if you use a software 
package that allows sophisticated data management; many software packages, including 
EViews and Stata, fall into this category. If you use a spreadsheet for initial data entry, then 
you must often export the data in a form that can be read by your econometrics package. This 
is usually straightforward, as spreadsheets export to text files using a variety of formats.
 A third alternative is to enter the data directly into your econometrics package. 
Although this obviates the need for a text editor or a spreadsheet, it can be more awkward 
if you cannot freely move across different observations to make corrections or additions.
 Data downloaded from the Internet may come in a variety of forms. Often data come 
as text files, but different conventions are used for separating variables; for panel data 
sets, the conventions on how to order the data may differ. Some Internet data sets come as 
spreadsheet files, in which case you must use an appropriate spreadsheet to read them.

Inspecting, Cleaning, and Summarizing Your Data

It is extremely important to become familiar with any data set you will use in an empirical 
analysis. If you enter the data yourself, you will be forced to know everything about it. But 
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if you obtain data from an outside source, you should still spend some time understanding 
its structure and conventions. Even data sets that are widely used and heavily documented 
can contain glitches. If you are using a data set obtained from the author of a paper, you 
must be aware that rules used for data set construction can be forgotten.
 Earlier, we reviewed the standard ways that various data sets are stored. You also need 
to know how missing values are coded. Preferably, missing values are indicated with a 
nonnumeric character, such as a period. If a number is used as a missing value code, such 
as “999” or “�1”, you must be very careful when using these observations in computing 
any statistics. Your econometrics package will probably not know that a certain number 
really represents a missing value: it is likely that such observations will be used as if they 
are valid, and this can produce rather misleading results. The best approach is to set any 
numerical codes for missing values to some other character (such as a period) that cannot 
be mistaken for real data.
 You must also know the nature of the variables in the data set. Which are binary vari-
ables? Which are ordinal variables (such as a credit rating)? What are the units of measure-
ment of the variables? For example, are monetary values expressed in dollars, thousands 
of dollars, millions of dollars, or so on? Are variables representing a rate—such as school 
dropout rates, inflation rates, unionization rates, or interest rates—measured as a percent-
age or a proportion?
 Especially for time series data, it is crucial to know if monetary values are in nominal 
(current) or real (constant) dollars. If the values are in real terms, what is the base year or 
period?
 If you receive a data set from an author, some variables may already be transformed in 
certain ways. For example, sometimes only the log of a variable (such as wage or salary) 
is reported in the data set.
 Detecting mistakes in a data set is necessary for preserving the integrity of any data 
analysis. It is always useful to find minimums, maximums, means, and standard devia-
tions of all, or at least the most important, variables in the analysis. For example, if you 
find that the minimum value of education in your sample is �99, you know that at least 
one entry on education needs to be set to a missing value. If, upon further inspection, you 
find that several observations have �99 as the level of education, you can be confident 
that you have stumbled onto the missing value code for education. As another example, if 
you find that an average murder conviction rate across a sample of cities is .632, you know 
that conviction rate is measured as a proportion, not a percentage. Then, if the maximum 
value is above one, this is likely a typographical error. (It is not uncommon to find data 
sets where most of the entries on a rate variable were entered as a percentage, but where 
some were entered as a proportion, and vice versa. Such data coding errors can be difficult 
to detect, but it is important to try.)
 We must also be careful in using time series data. If we are using monthly or quarterly 
data, we must know which variables, if any, have been seasonally adjusted. Transforming 
data also requires great care. Suppose we have a monthly data set and we want to create the 
change in a variable from one month to the next. To do this, we must be sure that the data 
are ordered chronologically, from earliest period to latest. If for some reason this is not 
the case, the differencing will result in garbage. To be sure the data are properly ordered, 
it is useful to have a time period indicator. With annual data, it is sufficient to know the 
year, but then we should know whether the year is entered as four digits or two digits (for 
example, 1998 versus 98). With monthly or quarterly data, it is also useful to have a vari-
able or variables indicating month or quarter. With monthly data, we may have a set of 
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dummy variables (11 or 12) or one variable indicating the month (1 through 12 or a string 
variable, such as jan,  feb, and so on).
 With or without yearly, monthly, or quarterly indicators, we can easily construct time 
trends in all econometrics software packages. Creating seasonal dummy variables is easy 
if the month or quarter is indicated; at a minimum, we need to know the month or quarter 
of the first observation.
 Manipulating panel data can be even more challenging. In Chapter 13, we discussed 
pooled OLS on the differenced data as one general approach to controlling for unobserved 
effects. In constructing the differenced data, we must be careful not to create phantom 
observations. Suppose we have a balanced panel on cities from 1992 through 1997. Even 
if the data are ordered chronologically within each cross-sectional unit—something that 
should be done before proceeding—a mindless differencing will create an observation for 
1992 for all cities except the first in the sample. This observation will be the 1992 value for 
city i, minus the 1997 value for city i � 1; this is clearly nonsense. Thus, we must make 
sure that 1992 is missing for all differenced variables.

19.4 Econometric Analysis
This text has focused on econometric analysis, and we are not about to provide a review 
of econometric methods in this section. Nevertheless, we can give some general guidelines 
about the sorts of issues that need to be considered in an empirical analysis.
 As we discussed earlier, after deciding on a topic, we must collect an appropriate data 
set. Assuming that this has also been done, we must next decide on the appropriate econo-
metric methods.
 If your course has focused on ordinary least squares estimation of a multiple lin-
ear regression model, using either cross-sectional or time series data, the econometric 
approach has pretty much been decided for you. This is not necessarily a weakness, as 
OLS is still the most widely used econometric method. Of course, you still have to decide 
whether any of the variants of OLS—such as weighted least squares or correcting for serial 
correlation in a time series regression—are warranted.
 In order to justify OLS, you must also make a convincing case that the key OLS 
assumptions are satisfied for your model. As we have discussed at some length, the first 
issue is whether the error term is uncorrelated with the explanatory variables. Ideally, you 
have been able to control for enough other factors to assume that those that are left in the 
error are unrelated to the regressors. Especially when dealing with individual-, family-, 
or firm-level cross-sectional data, the self-selection problem—which we discussed in 
Chapters 7 and 15—is often relevant. For instance, in the IRA example from Section 19.3, 
it may be that families with unobserved taste for saving are also the ones that open IRAs. 
You should also be able to argue that the other potential sources of endogeneity—namely, 
measurement error and simultaneity—are not a serious problem.
 When specifying your model you must also make functional form decisions. Should 
some variables appear in logarithmic form? (In econometric applications, the answer is 
often yes.) Should some variables be included in levels and squares, to possibly capture 
a diminishing effect? How should qualitative factors appear? Is it enough to just include 
binary variables for different attributes or groups? Or, do these need to be interacted with 
quantitative variables? (See Chapter 7 for details.)
 A common mistake, especially among beginners, is to incorrectly include explanatory 
variables in a regression model that are listed as numerical values but have no quantitative 
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meaning. For example, in an individual-level data set that contains information on wages, 
education, experience, and other variables, an “occupation” variable might be included. 
Typically, these are just arbitrary codes that have been assigned to different occupations; 
the fact that an elementary school teacher is given, say, the value 453 while a computer 
technician is, say, 751 is relevant only in that it allows us to distinguish between the two 
occupations. It makes no sense to include the raw occupational variable in a regression 
model. (What sense would it make to measure the effect of increasing occupation by one 
unit when the one-unit increase has no quantitative meaning?) Instead, different dummy 
variables should be defined for different occupations (or groups of occupations, if there are 
many occupations). Then, the dummy variables can be included in the regression model. 
A less egregious problem occurs when an ordered qualitative variable is included as an 
explanatory variable. Suppose that in a wage data set a variable is included measuring 
“job satisfaction,” defined on a scale from 1 to 7, with 7 being the most satisfied. Provided 
we have enough data, we would want to define a set of six dummy variables for, say, 
job satisfaction levels of 2 through 7, leaving job satisfaction level 1 as the base group. 
By including the six job satisfaction dummies in the regression, we allow a completely 
flexible relationship between the response variable and job satisfaction. Putting in the job 
satisfaction variable in raw form implicitly assumes that a one-unit increase in the ordinal 
variable has quantitative meaning. While the direction of the effect will often be estimated 
appropriately, interpreting the coefficient on an ordinal variable is difficult. If an ordinal 
variable takes on many values, then we can define a set of dummy variables for ranges of 
values. See Section 7.3 for an example.
 Sometimes, we want to explain a variable that is an ordinal response. For example, one 
could think of using a job satisfaction variable of the type described above as the depen-
dent variable in a regression model, with both worker and employer characteristics among 
the independent variables. Unfortunately, with the job satisfaction variable in its original 
form, the coefficients in the model are hard to interpret: each measures the change in job 
satisfaction given a unit increase in the independent variable. Certain models—ordered 
probit and ordered logit are the most common—are well suited for ordered responses. 
These models essentially extend the binary probit and logit models we discussed in 
Chapter 17. [See Wooldridge (2002, Chapter 15) for a treatment of ordered response mod-
els.] A simple solution is to turn any ordered response into a binary response. For example, 
we could define a variable equal to one if job satisfaction is at least 4, and zero otherwise. 
Unfortunately, creating a binary variable throws away information and requires us to use 
a somewhat arbitrary cutoff.
 For cross-sectional analysis, a secondary, but nevertheless important, issue is whether 
there is heteroskedasticity. In Chapter 8, we explained how this can be dealt with. The 
simplest way is to compute heteroskedasticity-robust statistics.
 As we emphasized in Chapters 10, 11, and 12, time series applications require addi-
tional care. Should the equation be estimated in levels? If levels are used, are time trends 
needed? Is differencing the data more appropriate? If the data are monthly or quarterly, 
does seasonality have to be accounted for? If you are allowing for dynamics—for  example, 
distributed lag dynamics—how many lags should be included? You must start with some 
lags based on intuition or common sense, but eventually it is an empirical matter.
 If your model has some potential misspecification, such as omitted variables, and 
you use OLS, you should attempt some sort of misspecification analysis of the kinds 
we discussed in Chapters 3 and 5. Can you determine, based on reasonable assumptions, 
the direction of any bias in the estimators?
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 If you have studied the method of instrumental variables, you know that it can be used 
to solve various forms of endogeneity, including omitted variables (Chapter 15), errors-in-
variables (Chapter 15), and simultaneity (Chapter 16). Naturally, you need to think hard 
about whether the instrumental variables you are considering are likely to be valid.
 Good papers in the empirical social sciences contain sensitivity analysis. Broadly, 
this means you estimate your original model and modify it in ways that seem reason-
able. Hopefully, the important conclusions do not change. For example, if you use as an 
explanatory variable a measure of alcohol consumption (say, in a grade point average 
equation), do you get qualitatively similar results if you replace the quantitative measure 
with a dummy variable indicating alcohol usage? If the binary usage variable is significant 
but the alcohol quantity variable is not, it could be that usage reflects some unobserved 
attribute that affects GPA and is also correlated with alcohol usage. But this needs to be 
considered on a case-by-case basis.
 If some observations are much different from the bulk of the sample—say, you have 
a few firms in a sample that are much larger than the other firms—do your results change 
much when those observations are excluded from the estimation? If so, you may have to 
alter functional forms to allow for these observations or argue that they follow a com-
pletely different model. The issue of outliers was discussed in Chapter 9.
 Using panel data raises some additional econometric issues. Suppose you have col-
lected two periods. There are at least four ways to use two periods of panel data with-
out resorting to instrumental variables. You can pool the two years in a standard OLS 
analysis, as discussed in Chapter 13. Although this might increase the sample size relative 
to a single cross section, it does not control for time-constant unobservables. In addition, 
the errors in such an equation are almost always serially correlated because of an unob-
served effect. Random effects estimation corrects the serial correlation problem and pro-
duces asymptotically efficient estimators, provided the unobserved effect has zero mean 
given values of the explanatory variables in all time periods.
 Another possibility is to include a lagged dependent variable in the equation for the 
 second year. In Chapter 9, we presented this as a way to at least mitigate the omitted vari-
ables problem, as we are in any event holding fixed the initial outcome of the dependent 
variable. This often leads to similar results as differencing the data, as we covered in 
Chapter 13.
 With more years of panel data, we have the same options, plus an additional choice. 
We can use the fixed effects transformation to eliminate the unobserved effect. (With two 
years of data, this is the same as differencing.) In Chapter 15, we showed how instrumental 
variables techniques can be combined with panel data transformations to relax exogeneity 
assumptions even more. As a rule, it is a good idea to apply several reasonable econo-
metric methods and compare the results. This often allows us to determine which of our 
assumptions are likely to be false.
 Even if you are very careful in devising your topic, postulating your model, collect-
ing your data, and carrying out the econometrics, it is quite possible that you will obtain 
puzzling results—at least some of the time. When that happens, the natural inclination is 
to try different models, different estimation techniques, or perhaps different subsets of 
data until the results correspond more closely to what was expected. Virtually all applied 
researchers search over various models before finding the “best” model. Unfortunately, 
this practice of data mining violates the assumptions we have made in our econometric 
analysis. The results on unbiasedness of OLS and other estimators, as well as the t and F 
distributions we derived for hypothesis testing, assume that we observe a sample following 
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the population model and we estimate that model once. Estimating models that are variants 
of our original model violates that assumption because we are using the same set of data in 
a specification search. In effect, we use the outcome of tests by using the data to respecify 
our model. The estimates and tests from different model specifications are not independent 
of one another.
 Some specification searches have been programmed into standard software packages. 
A popular one is known as stepwise regression, where different combinations of explana-
tory variables are used in multiple regression analysis in an attempt to come up with the 
best model. There are various ways that stepwise regression can be used, and we have no 
intention of reviewing them here. The general idea is either to start with a large model 
and keep variables whose p-values are below a certain significance level or to start with a 
simple model and add variables that have significant p-values. Sometimes, groups of vari-
ables are tested with an F test. Unfortunately, the final model often depends on the order 
in which variables were dropped or added. [For more on stepwise regression, see Draper 
and Smith (1981).] In addition, this is a severe form of data mining, and it is difficult to 
interpret t and F statistics in the final model. One might argue that stepwise regression sim-
ply automates what researchers do anyway in searching over various models. However, in 
most applications, one or two explanatory variables are of primary interest, and then the 
goal is to see how robust the coefficients on those variables are to either adding or drop-
ping other variables, or to changing functional form.
 In principle, it is possible to incorporate the effects of data mining into our statistical 
inference; in practice, this is very difficult and is rarely done, especially in sophisticated 
empirical work. [See Leamer (1983) for an engaging discussion of this problem.] But we 
can try to minimize data mining by not searching over numerous models or estimation 
methods until a significant result is found and then reporting only that result. If a variable 
is statistically significant in only a small fraction of the models estimated, it is quite likely 
that the variable has no effect in the population.

19.5 Writing an Empirical Paper
Writing a paper that uses econometric analysis is very challenging, but it can also be 
rewarding. A successful paper combines a careful, convincing data analysis with good 
explanations and exposition. Therefore, you must have a good grasp of your topic, 
good understanding of econometric methods, and solid writing skills. Do not be discour-
aged if you find writing an empirical paper difficult; most professional researchers have 
spent many years learning how to craft an empirical analysis and to write the results in a 
convincing form.
 While writing styles vary, many papers follow the same general outline. The following 
paragraphs include ideas for section headings and explanations about what each section 
should contain. These are only suggestions and hardly need to be strictly followed. In 
the final paper, each section would be given a number, usually starting with one for the 
introduction.

Introduction

The introduction states the basic objectives of the study and explains why it is important. 
It generally entails a review of the literature, indicating what has been done and how 
previous work can be improved upon. (As discussed in Section 19.2, an extensive literature 
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review can be put in a separate section.) Presenting simple statistics or graphs that reveal 
a seemingly paradoxical relationship is a useful way to introduce the paper’s topic. 
For example, suppose that you are writing a paper about factors affecting fertility in a 
developing country, with the focus on education levels of women. An appealing way to 
introduce the topic would be to produce a table or a graph showing that fertility has been 
falling (say) over time and a brief explanation of how you hope to examine the factors 
contributing to the decline. At this point, you may already know that, ceteris paribus, more 
highly educated women have fewer children and that average education levels have risen 
over time.
 Most researchers like to summarize the findings of their paper in the introduction. This 
can be a useful device for grabbing the reader’s attention. For example, you might state 
that your best estimate of the effect of missing 10 hours of lecture during a 30-hour term is 
about one-half a grade point. But the summary should not be too involved because neither 
the methods nor the data used to obtain the estimates have yet been introduced.

Conceptual (or Theoretical) Framework

In this section, you describe the general approach to answering the question you have 
posed. It can be formal economic theory, but in many cases, it is an intuitive discussion 
about what conceptual problems arise in answering your question.
 As an example, suppose you are studying the effects of economic opportunities and 
severity of punishment on criminal behavior. One approach to explaining participation 
in crime is to specify a utility maximization problem where the individual chooses the 
amount of time spent in legal and illegal activities, given wage rates in both kinds of activi-
ties, as well as variable measuring probability and severity of punishment for criminal 
activity. The usefulness of such an exercise is that it suggests which variables should be 
included in the empirical analysis; it gives guidance (but rarely specifics) as to how the 
variables should appear in the econometric model.
 Often, there is no need to write down an economic theory. For econometric policy 
analysis, common sense usually suffices for specifying a model. For example, sup-
pose you are interested in estimating the effects of participation in Aid to Families 
with Dependent Children (AFDC) on the effects of child performance in school. 
AFDC provides supplemental income, but participation also makes it easier to receive 
Medicaid and other benefits. The hard part of such an analysis is deciding on the set 
of variables that should be controlled for. In this example, we could control for family 
income (including AFDC and any other welfare income), mother’s education, whether 
the family lives in an urban area, and other variables. Then, the inclusion of an AFDC 
participation indicator (hopefully) measures the nonincome benefits of AFDC par-
ticipation. A discussion of which factors should be controlled for and the mechanisms 
through which AFDC participation might improve school performance substitute for 
formal economic theory.

Econometric Models and Estimation Methods

It is very useful to have a section that contains a few equations of the sort you estimate 
and present in the results section of the paper. This allows you to fix ideas about what 
the key explanatory variable is and what other factors you will control for. Writing 
equations containing error terms allows you to discuss whether OLS is a suitable 
estimation method.
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 The distinction between a model and an estimation method should be made in this 
section. A model represents a population relationship (broadly defined to allow for time 
series equations). For example, we should write

 colGPA � �
0
 � �

1
alcohol � �

2
hsGPA � �

3
SAT � �

4
  female � u 19.1

to describe the relationship between college GPA and alcohol consumption, with some 
other controls in the equation. Presumably, this equation represents a population, such as 
all undergraduates at a particular university. There are no “hats” (ˆ) on the �

j
 or on colGPA 

because this is a model, not an estimated equation. We do not put in numbers for the �
j
 

because we do not know (and never will know) these numbers. Later, we will estimate 
them. In this section, do not anticipate the presentation of your empirical results. In other 
words, do not start with a general model and then say that you omitted certain variables 
because they turned out to be insignificant. Such discussions should be left for the results 
section.
 A time series model to relate city-level car thefts to the unemployment rate and convic-
tion rates could look like

 thefts
t
 � �

0
 � �

1
unem

t
 � �

2
unem

t�1
 � �

3
cars

t

 � �
4
convrate

t
 � �

5
convrate

t�1
 � u

t
,  

19.2

where the t subscript is useful for emphasizing any dynamics in the equation (in this 
case, allowing for unemployment and the automobile theft conviction rate to have lagged 
effects).
 After specifying a model or models, it is appropriate to discuss estimation methods. In 
most cases, this will be OLS, but, for example, in a time series equation, you might use 
feasible GLS to do a serial correlation correction (as in Chapter 12). However, the method 
for estimating a model is quite distinct from the model itself. It is not meaningful, for 
instance, to talk about “an OLS model.” Ordinary least squares is a method of estimation, 
and so are weighted least squares, Cochrane-Orcutt, and so on. There are usually several 
ways to estimate any model. You should explain why the method you are choosing is 
warranted.
 Any assumptions that are used in obtaining an estimable econometric model from 
an underlying economic model should be clearly discussed. For example, in the quality 
of high school example mentioned in Section 19.1, the issue of how to measure school 
quality is central to the analysis. Should it be based on average SAT scores, percentage 
of graduates attending college, student-teacher ratios, average education level of teachers, 
some combination of these, or possibly other measures?
 We always have to make assumptions about functional form whether or not a theoreti-
cal model has been presented. As you know, constant elasticity and constant semi-elasticity 
models are attractive because the coefficients are easy to interpret (as percentage effects). 
There are no hard rules on how to choose functional form, but the guidelines discussed 
in Section 6.2 seem to work well in practice. You do not need an extensive discussion of 
functional form, but it is useful to mention whether you will be estimating elasticities or a 
semi-elasticity. For example, if you are estimating the effect of some variable on wage or sal-
ary, the dependent variable will almost surely be in logarithmic form, and you might as well 
include this in any equations from the beginning. You do not have to present every one, or 
even most, of the functional form variations that you will report later in the results section.
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 Often, the data used in empirical economics are at the city or county level. For exam-
ple, suppose that for the population of small to midsize cities, you wish to test the hypoth-
esis that having a minor league baseball team causes a city to have a lower divorce rate. 
In this case, you must account for the fact that larger cities will have more divorces. One 
way to account for the size of the city is to scale divorces by the city or adult population. 
Thus, a reasonable model is

 log(div/pop) � �
0
 � �

1
mlb � �

2
perCath � �

3
log(inc/pop)

 19.3
 � other factors,

where mlb is a dummy variable equal to one if the city has a minor league baseball team 
and perCath is the percentage of the population that is Catholic (so a number such as 34.6 
means 34.6%). Note that div/pop is a divorce rate, which is generally easier to interpret 
than the absolute number of divorces.
 Another way to control for population is to estimate the model

 log(div) � �
0
 � �

1
mlb � �

2
perCath � �

3
log(inc) � �

4
log(pop)

 19.4
 � other factors.

The parameter of interest, �
1
, when multiplied by 100, gives the percentage difference 

between divorce rates, holding population, percent Catholic, income, and whatever else is 
in “other factors” constant. In equation (19.3), �

1
 measures the percentage effect of minor 

league baseball on div/pop, which can change either because the number of divorces or the 
population changes. Using the fact that log(div/pop) � log(div) � log(pop) and log(inc/
pop) � log(inc) � log(pop), we can rewrite (19.3) as

 log(div) � �
0
 � �

1
mlb � �

2
perCath � �

3
log(inc) � (1 � �

3
)log(pop)

 � other factors,

which shows that (19.3) is a special case of (19.4) with �
4
 � (1 � �

3
) and �

j
 � �

j
,

j � 0,1,2,3. Alternatively, (19.4) is equivalent to adding log(pop) as an additional explana-
tory variable to (19.3). This makes it easy to test for a separate population effect on the 
divorce rate.
 If you are using a more advanced estimation method, such as two stage least 
squares, you need to provide some reasons for doing so. If you use 2SLS, you must 
provide a careful discussion on why your IV choices for the endogenous explana-
tory variable (or variables) are valid. As we mentioned in Chapter 15, there are two 
requirements for a variable to be considered a good IV. First, it must be omitted from 
and exogenous to the equation of interest (structural equation). This is something 
we must assume. Second, it must have some partial correlation with the endogenous 
explanatory variable. This we can test. For example, in equation (19.1), you might use 
a binary variable for whether a student lives in a dormitory (dorm) as an IV for alcohol 
consumption. This requires that living situation has no direct impact on colGPA—so 
that it is omitted from (19.1)—and that it is uncorrelated with unobserved factors in 
u that have an effect on colGPA. We would also have to verify that dorm is partially 
correlated with alcohol by regressing alcohol on dorm, hsGPA, SAT, and female. (See 
Chapter 15 for details.)
 You might account for the omitted variable problem (or omitted heterogeneity) by 
using panel data. Again, this is easily described by writing an equation or two. In fact, 
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it is useful to show how to difference the equations over time to remove time-constant 
unobservables; this gives an equation that can be estimated by OLS. Or, if you are using 
fixed effects estimation instead, you simply state so.
 As a simple example, suppose you are testing whether higher county tax rates reduce 
economic activity, as measured by per capita manufacturing output. Suppose that for the 
years 1982, 1987, and 1992, the model is

 log(manuf
it
) � �

0
 � �

1
d87

t
 � �

2
d92

t
 � �

1
tax

it
 � … � a

i
 � u

it
,

where d87
t
 and d92

t
 are year dummy variables and tax

it
 is the tax rate for county i at time 

t (in percent form). We would have other variables that change over time in the equa-
tion, including measures for costs of doing business (such as average wages), measures 
of worker productivity (as measured by average education), and so on. The term a

i
 is the 

fixed effect, containing all factors that do not vary over time, and u
it
 is the idiosyncratic 

error term. To remove a
i
, we can either difference across the years or use time-demeaning 

(the fixed effects transformation).

The Data

You should always have a section that carefully describes the data used in the empiri-
cal analysis. This is particularly important if your data are nonstandard or have not been 
widely used by other researchers. Enough information should be presented so that a reader 
could, in principle, obtain the data and redo your analysis. In particular, all applicable pub-
lic data sources should be included in the references, and short data sets can be listed in 
an appendix. If you used your own survey to collect the data, a copy of the questionnaire 
should be presented in an appendix.
 Along with a discussion of the data sources, be sure to discuss the units of each of 
the variables (for example, is income measured in hundreds or thousands of dollars?). 
Including a table of variable definitions is very useful to the reader. The names in the 
table should correspond to the names used in describing the econometric results in the 
following section.
 It is also very informative to present a table of summary statistics, such as mini-
mum and maximum values, means, and standard deviations for each variable. Having 
such a table makes it easier to interpret the coefficient estimates in the next section, 
and it emphasizes the units of measurement of the variables. For binary variables, the 
only necessary summary statistic is the fraction of ones in the sample (which is the 
same as the sample mean). For trending variables, things like means are less interesting. 
It is often useful to compute the average growth rate in a variable over the years in 
your sample.
 You should always clearly state how many observations you have. For time series data 
sets, identify the years that you are using in the analysis, including a description of any 
special periods in history (such as World War II). If you use a pooled cross section or a 
panel data set, be sure to report how many cross-sectional units (people, cities, and so on) 
you have for each year.

Results

The results section should include your estimates of any models formulated in the models 
section. You might start with a very simple analysis. For example, suppose that percentage 
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of students attending college from the graduating class (percoll) is used as a measure of 
the quality of the high school a person attended. Then, an equation to estimate is

 log(wage) � �
0
 � �

1
percoll � u.

Of course, this does not control for several other factors that may determine wages and that 
may be correlated with percoll. But a simple analysis can draw the reader into the more 
sophisticated analysis and reveal the importance of controlling for other factors.
 If only a few equations are estimated, you can present the results in equation form 
with standard errors in parentheses below estimated coefficients. If your model has several 
explanatory variables and you are presenting several variations on the general model, it is 
better to report the results in tabular rather than equation form. Most of your papers should 
have at least one table, which should always include at least the R-squared and the number 
of observations for each equation. Other statistics, such as the adjusted R-squared, can also 
be listed.
 The most important thing is to discuss the interpretation and strength of your empiri-
cal results. Do the coefficients have the expected signs? Are they statistically signifi-
cant? If a coefficient is statistically significant but has a counterintuitive sign, why might 
this be true? It might be revealing a problem with the data or the econometric method 
(for example, OLS may be inappropriate due to omitted variables problems).
 Be sure to describe the magnitudes of the coefficients on the major explanatory vari-
ables. Often, one or two policy variables are central to the study. Their signs, magnitudes, 
and statistical significance should be treated in detail. Remember to distinguish between 
economic and statistical significance. If a t statistic is small, is it because the coefficient is 
practically small or because its standard error is large?
 In addition to discussing estimates from the most general model, you can provide 
interesting special cases, especially those needed to test certain multiple hypotheses. For 
example, in a study to determine wage differentials across industries, you might present 
the equation without the industry dummies; this allows the reader to easily test whether the 
industry differentials are statistically significant (using the R-squared form of the F test). 
Do not worry too much about dropping various variables to find the “best” combination 
of explanatory variables. As we mentioned earlier, this is a difficult and not even very 
well-defined task. Only if eliminating a set of variables substantially alters the magnitudes 
and/or significance of the coefficients of interest is this important. Dropping a group of 
variables to simplify the model—such as quadratics or interactions—can be justified via 
an F test.
 If you have used at least two different methods—such as OLS and 2SLS, or levels and 
differencing for a time series, or pooled OLS versus differencing with a panel data set—then 
you should comment on any critical differences. If OLS gives counterintuitive results, did 
using 2SLS or panel data methods improve the estimates? Or, did the opposite happen?

Conclusions

This can be a short section that summarizes what you have learned. For example, you 
might want to present the magnitude of a coefficient that was of particular interest. The 
conclusion should also discuss caveats to the conclusions drawn, and it might even suggest 
directions for further research. It is useful to imagine readers turning first to the conclusion 
to decide whether to read the rest of the paper.
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Style Hints

You should give your paper a title that reflects its topic. Papers should be typed and 
 double-spaced. All equations should begin on a new line, and they should be centered and 
numbered consecutively, that is, (1), (2), (3), and so on. Large graphs and tables may be 
included after the main body. In the text, refer to papers by author and date, for example, 
White (1980). The reference section at the end of the paper should be done in standard 
format. Several examples are given in the references at the back of the text.
 When you introduce an equation in the econometric models section, you should 
describe the important variables: the dependent variable and the key independent vari-
able or variables. To focus on a single independent variable, you can write an equation, 
such as

 GPA � �
0
 � �

1
alcohol � x� � u

or

 log(wage) � �
0
 � �

1
educ � x� � u,

where the notation x� is shorthand for several other explanatory variables. At this point, 
you need only describe them generally; they can be described specifically in the data 
section in a table. For example, in a study of the factors affecting chief executive officer 
salaries, you might include a table like Table 19.1.

TABLE  19 . 1

Variable Descriptions

salary annual salary (including bonuses) in 1990 (in thousands)

sales firm sales in 1990 (in millions)

roe average return on equity, 1988–1990 (in percent)

pcsal percentage change in salary, 1988–1990

pcroe percentage change in roe, 1988–1990

indust � 1 if an industrial company, 0 otherwise

finance � 1 if a financial company, 0 otherwise

consprod � 1 if a consumer products company, 0 otherwise

util � 1 if a utility company, 0 otherwise

ceoten number of years as CEO of the company
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 In the results section, you can write the estimates either in equation form, as we often 
have done, or in a table. Especially when several models have been estimated with differ-
ent sets of explanatory variables, tables are very useful. If you write out the estimates as 
an equation, for example,

 3log(salary) � 2.45 � .236 log(sales) � .008 roe � .061 ceoten

 (0.93) (.115) (.003) (.028)

 n � 204, R2 � .351,

be sure to state near the first equation that standard errors are in parentheses. It is accept-
able to report the t statistics for testing H

0
: �

j
 � 0, or their absolute values, but it is most 

important to state what you are doing.
 If you report your results in tabular form, make sure the dependent and independent 
variables are clearly indicated. Again, state whether standard errors or t statistics are 
below the coefficients (with the former preferred). Some authors like to use asterisks 
to indicate statistical significance at different significance levels (for example, one star 
means significant at 5%, two stars mean significant at 10% but not 5%, and so on). This 
is not necessary if you carefully discuss the significance of the explanatory variables in 
the text.
 A sample table of results is shown in Table 19.3.
 Your results will be easier to read and interpret if you choose the units of both your 
dependent and independent variables so that coefficients are not too large or too small. 
You should never report numbers such as 1.051e�007 or 3.524e�006 for your coef-
ficients or standard errors, and you should not use scientific notation. If coefficients are 

Variable Mean
Standard 
Deviation Minimum Maximum

prate .869 .167 .023 1

mrate .746 .844 .011 5

employ 4,621.01 16,299.64 53 443,040

age 13.14 9.63 4 76

sole .415 .493 0 1

Number of observations � 3,784

TABLE  19 . 2

Summary Statistics

A table of summary statistics using the data set 401K.RAW, which we used for studying 
the factors that affect participation in 401(k) pension plans, might be set up as shown in 
Table 19.2.
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TABLE  19 . 3

OLS Results. Dependent Variable: Participation Rate

Independent Variables (1) (2) (3)

mrate  .156
 (.012)

 .239
 (.042)

 .218
 (.342)

mrate2 —  �.087
 (.043)

 �.096
 (.073)

log(emp)  �.112
 (.014)

 �.112
 (.014)

 �.098
 (.111)

log(emp)2  .0057
 (.0009)

 .0057
 (.0009)

 .0052
 (.0007)

age  .0060
 (.0010)

 .0059
 (.0010)

 .0050
 (.0021)

age2  �.00007
 (.00002)

 �.00007
 (.00002)

 �.00006
 (.00002)

sole  �.0001
 (.0058)

 .0008
 (.0058)

 .0006
 (.0061)

constant  1.213
 (.051)

 .198
 (.052)

 .085
 (.041)

industry dummies? no no yes

Observations
R-squared

 3,784
.143

 3,784
.152

 3,784
.162

Note: The quantities in parentheses below the estimates are the standard errors.

either extremely small or large, rescale the dependent or independent variables, as we 
discussed in Chapter 6. You should limit the number of digits reported after the decimal 
point. For example, if your regression package estimates a coefficient to be .54821059, 
you should report this as .548, or even .55, in the paper.
 As a rule, the commands that your particular econometrics package uses to produce 
results should not appear in the paper; only the results are important. If some special com-
mand was used to carry out a certain estimation method, this can be given in an appendix. 
An appendix is also a good place to include extra results that support your analysis but are 
not central to it.
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S U M M A R Y

In this chapter, we have discussed the ingredients of a successful empirical study and have 
provided hints that can improve the quality of an analysis. Ultimately, the success of any study 
depends crucially on the care and effort put into it.

K E Y  T E R M S

Data Mining
Internet
Misspecification Analysis

Online Databases
Online Search Services
Sensitivity Analysis

Spreadsheet
Text Editor
Text (ASCII) File

S A M P L E  E M P I R I C A L  P R O J E C T S

Throughout the text, we have seen examples of econometric analysis that either came from 
or were motivated by published works. We hope these have given you a good idea about the 
scope of empirical analysis. We include the following list as additional examples of questions 
that others have found or are likely to find interesting. These are intended to stimulate your 
 imagination; no attempt is made to fill in all the details of specific models, data requirements, or 
alternative estimation methods. It should be possible to complete these projects in one term.

1.  Do your own campus survey to answer a question of interest at your university. For 
example: What is the effect of working on college GPA? You can ask students about 
high school GPA, college GPA, ACT or SAT scores, hours worked per week, partici-
pation in athletics, major, gender, race, and so on. Then, use these variables to create a 
model that explains GPA. How much of an effect, if any, does another hour worked per 
week have on GPA? One issue of concern is that hours worked might be endogenous: 
it might be correlated with unobserved factors that affect college GPA, or lower GPAs 
might cause students to work more.

A better approach would be to collect cumulative GPA prior to the semester and then 
to obtain GPA for the most recent semester, along with amount worked during that 
semester, and the other variables. Now, cumulative GPA could be used as a control 
(explanatory variable) in the equation.

2.  There are many variants on the preceding topic. You can study the effects of drug 
or alcohol usage, or of living in a fraternity, on grade point average. You would want 
to control for many family background variables, as well as previous performance 
variables.

3.  Do gun control laws at the city level reduce violent crimes? Such questions can be 
difficult to answer with a single cross section because city and state laws are often 
endogenous. [See Kleck and Patterson (1993) for an example. They used cross-
 sectional data and instrumental variables methods, but their IVs are questionable.] Panel 
data can be very useful for inferring causality in these contexts. At a minimum, you 
could control for a previous year’s violent crime rate.

4.  Low and McPheters (1983) used city cross-sectional data on wage rates and estimates 
of risk of death for police officers, along with other controls. The idea is to determine 
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whether police officers are compensated for working in cities with a higher risk of on-
the-job injury or death.

5.  Do parental consent laws increase the teenage birthrate? You can use state level data for 
this: either a time series for a given state or, even better, a panel data set of states. Do 
the same laws reduce abortion rates among teenagers? The Statistical Abstract of the 
United States contains all kinds of state-level data. Levine, Trainor, and Zimmerman 
(1996) studied the effects of abortion funding restrictions on similar outcomes. Other 
factors, such as access to abortions, may affect teen birth and abortion rates.

6.  Do changes in traffic laws affect traffic fatalities? McCarthy (1994) contains an 
analysis of monthly time series data for the state of California. A set of dummy vari-
ables can be used to indicate the months in which certain laws were in effect. The file 
TRAFFIC2.RAW contains the data used by McCarthy. An alternative is to obtain a 
panel data set on states in the United States, where you can exploit variation in laws 
across states, as well as across time. (See the file TRAFFIC1.RAW.)

Mullahy and Sindelar (1994) used individual-level data matched with state laws 
and taxes on alcohol to estimate the effects of laws and taxes on the probability of 
driving drunk.

7.  Are blacks discriminated against in the lending market? Hunter and Walker (1996) 
looked at this question; in fact, we used their data in Computer Exercises C7.8 and 
C17.2.

8.  Is there a marriage premium for professional athletes? Korenman and Neumark 
(1991) found a significant wage premium for married men after using a variety 
of econometric methods, but their analysis is limited because they cannot directly 
observe productivity. (Plus, Korenman and Neumark used men in a variety of occupa-
tions.) Professional athletes provide an interesting group in which to study the mar-
riage premium because we can easily collect data on various productivity measures, 
in addition to salary. The data set NBASAL.RAW, on players in the National 
Basketball Association (NBA), is one example. For each player, we have information 
on points scored, rebounds, assists, playing time, and demographics. As in Computer 
Exercise C6.9, we can use multiple regression analysis to test whether the producti v-
ity measures differ by marital status. We can also use this kind of data to test whether 
married men are paid more after we account for productivity differences. (For exam-
ple, NBA owners may think that married men bring stability to the team, or are better 
for the team image.) For individual sports—such as golf and tennis—annual earnings 
directly reflect productivity. Such data, along with age and experience, are relatively 
easy to collect.

9.  Answer this question: Are cigarette smokers less productive? A variant on this is: Do 
workers who smoke take more sick days (everything else being equal)? Mullahy and 
Portney (1990) use individual-level data to evaluate this question. You could use data 
at, say, the metropolitan level. Something like average productivity in manufacturing 
can be related to percentage of manufacturing workers who smoke. Other variables, 
such as average worker education, capital per worker, and size of the city (you can 
think of more), should be controlled for.

10.  Do minimum wages alleviate poverty? You can use state or county data to answer this 
question. The idea is that the minimum wage varies across states because some states 
have higher minimums than the federal minimum. Further, there are changes over time 
in the nominal minimum within a state, some due to changes at the federal level and 
some because of changes at the state level. Neumark and Wascher (1995) used a panel 
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data set on states to estimate the effects of the minimum wage on the employment rates 
of young workers, as well as on school enrollment rates.

11.  What factors affect student performance at public schools? It is fairly easy to get 
school-level or at least district-level data in most states. Does spending per student mat-
ter? Do student-teacher ratios have any effects? It is difficult to estimate ceteris paribus 
effects because spending is related to other factors, such as family incomes or poverty 
rates. The data set MEAP93.RAW, for Michigan high schools, contains a measure 
of the poverty rates. Another possibility is to use panel data, or to at least control for 
a previous year’s performance measure (such as average test score or percentage of 
students passing an exam).

You can look at less obvious factors that affect student performance. For exam-
ple, after controlling for income, does family structure matter? Perhaps families with 
two parents, but only one working for a wage, have a positive effect on performance. 
(There could be at least two channels: parents spend more time with the children, and 
they might also volunteer at school.) What about the effect of single-parent house-
holds, controlling for income and other factors? You can merge census data for one or 
two years with school district data.

Do public schools with more private schools nearby better educate their students 
because of competition? There is a tricky simultaneity issue here because private 
schools are probably located in areas where the public schools are already poor. Hoxby 
(1994) used an instrumental variables approach, where population proportions of vari-
ous religions were IVs for the number of private schools.

Rouse (1998) studied a different question: Did students who were able to attend 
a private school due to the Milwaukee voucher program perform better than those 
who did not? She used panel data and was able to control for an unobserved student 
effect.

12.  Can excess returns on a stock, or a stock index, be predicted by the lagged price/
dividend ratio? Or by lagged interest rates or weekly monetary policy? It would be 
interesting to pick a foreign stock index, or one of the less well-known U.S. indexes. 
Cochrane (1997) provides a nice survey of recent theories and empirical results for 
explaining excess stock returns.

13.  Is there racial discrimination in the market for baseball cards? This involves relating 
the prices of baseball cards to factors that should affect their prices, such as career 
statistics, whether the player is in the Hall of Fame, and so on. Holding other factors 
fixed, do cards of black or Hispanic players sell at a discount?

14.  You can test whether the market for gambling on sports is efficient. For example, does 
the spread on football or basketball games contain all usable information for picking 
against the spread? The data set PNTSPRD.RAW contains information on men’s 
 college basketball games. The outcome variable is binary. Was the spread covered or 
not? Then, you can try to find information that was known prior to each game’s being 
played in order to predict whether the spread is covered. (Good luck!)

15.  What effect, if any, does success in college athletics have on other aspects of the 
university (applications, quality of students, quality of nonathletic departments)? 
McCormick and Tinsley (1987) looked at the effects of athletic success at major 
colleges on changes in SAT scores of entering freshmen. Timing is important here: 
presumably, it is recent past success that affects current applications and student 
quality. One must control for many other factors—such as tuition and measures 
of school quality—to make the analysis convincing because, without controlling 
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for other factors, there is a negative correlation between academics and athletic 
performance.

A variant is to match natural rivals in football or men’s basketball and to look at 
differences across schools as a function of which school won the football game or one 
or more basketball games. ATHLET1.RAW and ATHLET2.RAW are small data sets 
that could be expanded and updated.

16.  Collect murder rates for a sample of counties (say, from the FBI Uniform Crime 
Reports) for two years. Make the latter year such that economic and demographic 
variables are easy to obtain from the County and City Data Book. You can obtain the 
total number of people on death row plus executions for intervening years at the county 
level. If the years are 1990 and 1985, you might estimate

mrdrte
90

 � �
0
 � �

1
mrdrte

85
 � �

2
executions � other factors,

where interest is in the coefficient on executions. The lagged murder rate and other 
factors serve as controls.

Other factors may also act as a deterrent to crime. For example, Cloninger 
(1991) presented a cross-sectional analysis of the effects of lethal police response 
on crime rates.

As a different twist, what factors affect crime rates on college campuses? Does the 
fraction of students living in fraternities or sororities have an effect? Does the size of 
the police force matter, or the kind of policing used? (Be careful about inferring causal-
ity here.) Does having an escort program help reduce crime? What about crime rates in 
nearby communities? Recently, colleges and universities have been required to report 
crime statistics; in previous years, reporting was voluntary.

17.  What factors affect manufacturing productivity at the state level? In addition to levels 
of capital and worker education, you could look at degree of unionization. A panel data 
analysis would be most convincing here, using two census years (say, 1980 and 1990). 
Clark (1984) provides an analysis of how unionization affects firm performance and 
productivity. What other variables might explain productivity?

Firm-level data can be obtained from Compustat. For example, other factors being 
fixed, do changes in unionization affect stock price of a firm?

18.  Use state- or county-level data or, if possible, school district-level data to look at the 
factors that affect education spending per pupil. An interesting question is: Other 
things being equal (such as income and education levels of residents), do districts 
with a larger percentage of elderly people spend less on schools? Census data can be 
matched with school district spending data to obtain a very large cross section. The 
U.S. Department of Education compiles such data.

19.  What are the effects of state regulations, such as motorcycle helmet laws, on motor-
cycle fatalities? Or do differences in boating laws—such as minimum operating 
age—help to explain boating accident rates? The U.S. Department of Transportation 
compiles such information. This can be merged with data from the Statistical Abstract 
of the United States. A panel data analysis seems to be warranted here.

20.  What factors affect output growth? Two factors of interest are inflation and investment 
[for example, Blomström, Lipsey, and Zejan (1996)]. You might use time series data 
on a country you find interesting. Or you could use a cross section of countries, as in 
De Long and Summers (1991). Friedman and Kuttner (1992) found evidence that, at 
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least in the 1980s, the spread between the commercial paper rate and the Treasury bill 
rate affects real output.

21.  What is the behavior of mergers in the U.S. economy (or some other economy)? 
Shughart and Tollison (1984) characterize (the log of) annual mergers in the U.S. 
economy as a random walk by showing that the difference in logs—roughly, the 
growth rate—is unpredictable given past growth rates. Does this still hold? Does it 
hold across various industries? What past measures of economic activity can be used 
to forecast mergers?

22.  What factors might explain racial and gender differences in employment and wages? 
For example, Holzer (1991) reviewed the evidence on the “spatial mismatch hypoth-
esis” to explain differences in employment rates between blacks and whites. Korenman 
and Neumark (1992) examined the effects of childbearing on women’s wages, while 
Hersch and Stratton (1997) looked at the effects of household responsibilities on men’s 
and women’s wages.

23.  Obtain monthly or quarterly data on teenage employment rates, the minimum wage, 
and factors that affect teen employment to estimate the effects of the minimum wage 
on teen employment. Solon (1985) used quarterly U.S. data, while Castillo-Freeman 
and Freeman (1992) used annual data on Puerto Rico. It might be informative to 
analyze time series data on a low-wage state in the United States—where changes in 
the minimum wage are likely to have the largest effect.

24.  At the city level, estimate a time series model for crime. An example is Cloninger and 
Sartorius (1979). As a recent twist, you might estimate the effects of community policing 
or midnight basketball programs, relatively new innovations in fighting crime. Inferring 
causality is tricky. Including a lagged dependent variable might be helpful. Because you 
are using time series data, you should be aware of the spurious regression problem.

Grogger (1990) used data on daily homicide counts to estimate the deterrent 
effects of capital punishment. Might there be other factors—such as news on lethal 
response by police—that have an effect on daily crime counts?

25.  Are there aggregate productivity effects of computer usage? You would need to 
obtain time series data, perhaps at the national level, on productivity, percentage of 
employees using computers, and other factors. What about spending (probably as a 
fraction of total sales) on research and development? What sociological factors (for 
example, alcohol usage or divorce rates) might affect productivity? 

26.  What factors affect chief executive officer salaries? The files CEOSAL1.RAW and 
CEOSAL2.RAW are data sets that have various firm performance measures as well 
as information such as tenure and education. You can certainly update these data 
files and look for other interesting factors. Rose and Shepard (1997) considered firm 
diversification as one important determinant of CEO compensation.

27.  Do differences in tax codes across states affect the amount of foreign direct invest-
ment? Hines (1996) studied the effects of state corporate taxes, along with the ability 
to apply foreign tax credits, on investment from outside the United States.

28.  What factors affect election outcomes? Does spending matter? Do votes on specific 
issues matter? Does the state of the local economy matter? See, for example, Levitt 
(1994) and the data sets VOTE1.RAW and VOTE2.RAW. Fair (1996) performed a 
time series analysis of U.S. presidential elections.

29.  Test whether stores or restaurants practice price discrimination based on race or 
ethnicity. Graddy (1997) used data on fast-food restaurants in New Jersey and 
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Pennsylvania, along with zip code-level characteristics, to see whether prices vary by 
characteristics of the local population. She found that prices of standard items, such as 
sodas, increase when the fraction of black residents increases. (Her data are contained 
in the file DISCRIM.RAW.) You can collect similar data in your local area by survey-
ing stores or restaurants for prices of common items and matching those with recent 
census data. See Graddy’s paper for details of her analysis.

30.  Do your own “audit” study to test for race or gender discrimination in hiring. (One 
such study is described in Example C.3 of Appendix C.) Have pairs of equally qualified 
friends, say, one male and one female, apply for job openings in local bars or restaurants. 
You can provide them with phony résumés that give each the same experience and back-
ground, where the only difference is gender (or race). Then, you can keep track of who 
gets the interviews and job offers. Neumark (1996) described one such study conducted 
in Philadelphia. A variant would be to test whether general physical attractiveness or a 
specific characteristic, such as being obese or having visible tattoos or body piercings, 
plays a role in hiring decisions. You would want to use the same gender in the matched 
pairs, and it may not be easy to get volunteers for such a study.

L I S T  O F  J O U R N A L S

The following is a partial list of popular journals containing empirical research in business, 
economics, and other social sciences. A complete list of journals can be found on the Internet 
at http://www.econlit.org.

American Economic Review
American Journal of Agricultural Economics
American Political Science Review
Applied Economics
Brookings Papers on Economic Activity
Canadian Journal of Economics
Demography
Economic Development and Cultural Change
Economic Inquiry 
Economica 
Economics Letters
Empirical Economics
Federal Reserve Bulletin
International Economic Review
International Tax and Public Finance
Journal of Applied Econometrics
Journal of Business and Economic Statistics
Journal of Development Economics
Journal of Economic Education
Journal of Empirical Finance
Journal of Environmental Economics and Management
Journal of Finance
Journal of Health Economics

http://www.econlit.org
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Journal of Human Resources
Journal of Industrial Economics
Journal of International Economics
Journal of Labor Economics
Journal of Monetary Economics
Journal of Money, Credit and Banking
Journal of Political Economy
Journal of Public Economics
Journal of Quantitative Criminology
Journal of Urban Economics
National Bureau of Economic Research Working Papers Series
National Tax Journal
Public Finance Quarterly
Quarterly Journal of Economics
Regional Science & Urban Economics
Review of Economic Studies
Review of Economics and Statistics

D A T A  S O U R C E S

Numerous data sources are available throughout the world. Governments of most 
countries compile a wealth of data; some general and easily accessible data sources for the 
United States, such as the Economic Report of the President, the Statistical Abstract of the 
United States, and the County and City Data Book, have already been mentioned. International 
financial data on many countries are published annually in International Financial Statistics. 
Various magazines, like BusinessWeek and U.S. News and World Report, often publish 
 statistics—such as CEO salaries and firm performance, or ranking of academic programs—that 
are novel and can be used in an econometric analysis.
 Rather than attempting to provide a list here, we instead give some Internet addresses 
that are comprehensive sources for economists. A very useful site for economists, called 
Resources for Economists on the Internet, is maintained by Bill Goffe at SUNY, Oswego. The 
address is

http://www.rfe.org.

This site provides links to journals, data sources, and lists of professional and academic econo-
mists. It is quite simple to use.
 The Business and Economic Statistics section of the American Statistical Association 
contains an extremely detailed list of data sources and provides links to them. The address is

http://www.econ-datalinks.org.

In addition, the Journal of Applied Econometrics and the Journal of Business and Economic 
Statistics have data archives that contain data sets used in most papers published in the journals 
over the past several years. If you find a data set that interests you, this is a good way to go, as 
much of the cleaning and formatting of the data have already been done. The downside is that 
some of these data sets are used in econometric analyses that are more advanced than we have 

http://www.rfe.org
http://www.econ-datalinks.org
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learned about in this text. On the other hand, it is often useful to estimate simpler models using 
standard econometric methods for comparison.
 Many universities, such as the University of California–Berkeley, the University of 
Michigan, and the University of Maryland, maintain very extensive data sets as well as links to 
a variety of data sets. Your own library possibly contains an extensive set of links to databases 
in business, economics, and the other social sciences. The regional Federal Reserve banks, such 
as the one in St. Louis, manage a variety of data. The National Bureau of Economic Research 
posts data sets used by some of its researchers. State and federal governments now publish a 
wealth of data that can be accessed via the Internet. Census data are publicly available from 
the U.S. Census Bureau. (Two useful publications are the Economic Census, published in years 
ending with two and seven, and the Census of Population and Housing, published at the begin-
ning of each decade.) Other agencies, such as the U.S. Department of Justice, also make data 
available to the public.
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This appendix covers some basic mathematics that are used in econometric analysis. 
We summarize various properties of the summation operator, study properties of 
linear and certain nonlinear equations, and review proportions and percentages. We 

also present some special functions that often arise in applied econometrics, including 
 quadratic functions and the natural logarithm. The first four sections require only basic 
algebra skills. Section A.5 contains a brief review of differential calculus; although a 
knowledge of calculus is not necessary to understand most of the text, it is used in some 
end-of-chapter appendices and in several of the more advanced chapters in Part 3.

A.1 The Summation Operator 
and Descriptive Statistics
The summation operator is a useful shorthand for manipulating expressions involving 
the sums of many numbers, and it plays a key role in statistics and econometric analysis. 
If {x

i
: i � 1, …, n} denotes a sequence of n numbers, then we write the sum of these 

 numbers as

  ∑ 
i�1

   
n

   x
i
  � x

1
 � x

2
 � … � x

n
. A.1

With this definition, the summation operator is easily shown to have the following 
 properties:

Property Sum.1: For any constant c,

  ∑ 
i�1

   
n

   c  � nc. A.2

Property Sum.2: For any constant c,

  ∑ 
i�1

   
n

    cx
i
 � c ∑ 

i�1

   
n

   x
i
 . A.3

Basic Mathematical Tools

Appendix A
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Property Sum.3: If {(x
i
,y

i
): i � 1, 2, …, n} is a set of n pairs of numbers, and a and b 

are constants, then
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 It is also important to be aware of some things that cannot be done with the summation 
operator. Let {(x

i
,y

i
): i � 1, 2, …, n} again be a set of n pairs of numbers with y

i 
	 0 for 

each i. Then,
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In other words, the sum of the ratios is not the ratio of the sums. In the n � 2 case, the 
application of familiar elementary algebra also reveals this lack of equality: x
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x
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)/(y
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2
). Similarly, the sum of the squares is not the square of the 
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 � 2, except in special cases. That these two quantities are not 

generally equal is easiest to see when n � 2: x2
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.

 Given n numbers {x
i
: i � 1, …, n}, we compute their average or mean by adding them 

up and dividing by n:

  - x  � (1/n)  ∑ 
i�1

   
n

    x
i
. A.5

When the x
i
 are a sample of data on a particular variable (such as years of education), we 

often call this the sample average (or sample mean) to emphasize that it is computed from 
a particular set of data. The sample average is an example of a descriptive statistic; in this 
case, the statistic describes the central tendency of the set of points x

i
.

 There are some basic properties about averages that are important to understand. 
First, suppose we take each observation on x and subtract off the average: d

i 
� x

i
 �  - x  

(the “d” here stands for deviation from the average). Then, the sum of these deviations 
is always zero:

 ∑ 
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We summarize this as

  ∑ 
i�1

   
n

    (x
i
 �  - x ) � 0. A.6

A simple numerical example shows how this works. Suppose n � 5 and x
1
 � 6, x

2
 � 1, 

x
3
 � �2, x

4
 � 0, and x

5
 � 5. Then,  - x  � 2, and the demeaned sample is {4, �1, �4, �2, 3}. 

Adding these gives zero, which is just what equation (A.6) says.
 In our treatment of regression analysis in Chapter 2, we need to know some additional 
algebraic facts involving deviations from sample averages. An important one is that the 
sum of squared deviations is the sum of the squared xi minus n times the square of  - x :

  ∑ 
i�1

   
n

    (x
i
 �  - x )2 �  ∑ 

i�1

   
n
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i
2 � n( - x )2. A.7
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This can be shown using basic properties of the summation operator:
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 Given a data set on two variables, {(xi,yi): i � 1, 2, …,  n}, it can also be shown that
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 A.8

this is a generalization of equation (A.7). (There, y
i
 � x

i
 for all i.)

 The average is the measure of central tendency that we will focus on in most of this text. 
However, it is sometimes informative to use the median (or sample median) to describe the 
central value. To obtain the median of the n numbers {x

1
, …, x

n
}, we first order the values 

of the xi from smallest to largest. Then, if n is odd, the sample median is the middle num-
ber of the ordered observations. For example, given the numbers {�4,8,2,0,21,�10,18}, 
the median value is 2 (because the ordered sequence is {�10,�4,0,2,8,18,21}). If we 
change the largest number in this list, 21, to twice its value, 42, the median is still 2. By 
contrast, the sample average would increase from 5 to 8, a sizable change. Generally, the 
median is less sensitive than the average to changes in the extreme values (large or small) 
in a list of numbers. This is why “median incomes” or “median housing values” are often 
reported, rather than averages, when summarizing income or housing values in a city or 
county.
 If n is even, there is no unique way to define the median because there are two  numbers 
at the center. Usually, the median is defined to be the average of the two middle values 
(again, after ordering the numbers from smallest to largest). Using this rule, the median 
for the set of numbers {4,12,2,6} would be (4 � 6)/2 � 5.

A.2 Properties of Linear Functions
Linear functions play an important role in econometrics because they are simple to inter-
pret and manipulate. If x and y are two variables related by

 y � �
0
 � �

1
x, A.9

then we say that y is a linear function of x, and �
0
 and �

1
 are two parameters (numbers) 

describing this relationship. The intercept is �
0
, and the slope is �

1
.

 The defining feature of a linear function is that the change in y is always �
1
 times the 

change in x:
 �y � �

1
�x, A.10

where � denotes “change.” In other words, the marginal effect of x on y is constant and 
equal to �

1
.
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E x a m p l e  A . 1

[Linear Housing Expenditure Function]

Suppose that the relationship between monthly housing expenditure and monthly in come is

 housing � 164 � .27 income. A.11

Then, for each additional dollar of income, 27 cents is spent on housing. If family income in creases 
by $200, then housing expenditure increases by (.27)200 � $54. This function is graphed in 
Figure A.1.
 According to equation (A.11), a family with no income spends $164 on housing, which of course 
cannot be literally true. For low levels of income, this linear function would not describe the relation-
ship between housing and income very well, which is why we will eventually have to use other types 
of functions to describe such relationships.
 In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. This is 
different from the average propensity to consume (APC), which is 

  
housing

 _______ 
income

   � 164/income � .27.

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC as income 
increases.

F I GURE  A . 1

Graph of housing � 164 � .27 income.
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 Linear functions are easily defined for more than two variables. Suppose that y is 
related to two variables, x

1
 and x

2
, in the general form

 y � �
0
 � �

1
x

1
 � �

2
x

2
. A.12

It is rather difficult to envision this function because its graph is three-dimensional. 
 Nevertheless, �

0
 is still the intercept (the value of y when x

1
 � 0 and x

2
 � 0), and �

1
 and 

�
2
 measure particular slopes. From (A.12), the change in y, for given changes in x

1
 and 

x
2
, is

 �y � �
1
�x

1
 � �

2
�x

2
. A.13

If x
2
 does not change, that is, �x

2
 � 0, then we have

�y � �
1
�x

1
 if �x

2
 � 0,

so that �
1
 is the slope of the relationship in the direction of x

1
:

�
1
 �   

 �y
 ____ 

�x
1

   if �x
2
 � 0.

Because it measures how y changes with x
1
, holding x

2
 fixed, �

1
 is often called the partial 

effect of x
1
 on y. Because the partial effect involves holding other factors fixed, it is closely 

linked to the notion of ceteris paribus. The parameter �
2
 has a similar interpretation: 

�
2
 � �y/�x

2
 if �x

1
 � 0, so that �

2
 is the partial effect of x

2
 on y.

E x a m p l e  A . 2

[Demand for Compact Discs]

For college students, suppose that the monthly quantity demanded of compact discs is related to the 
price of compact discs and monthly discretionary income by

quantity � 120 � 9.8 price � .03 income,

where price is dollars per disc and income is measured in dollars. The demand curve is the rela-
tionship between quantity and price, holding income (and other factors) fixed. This is graphed in 
two dimensions in Figure A.2 at an income level of $900. The slope of the demand curve, �9.8, is 
the partial effect of price on quantity: holding income fixed, if the price of compact discs increases 
by one dollar, then the quantity demanded falls by 9.8. (We abstract from the fact that CDs can 
only be purchased in discrete units.) An increase in income simply shifts the demand curve up 
(changes the intercept), but the slope remains the same.

 

A.3 Proportions and Percentages
Proportions and percentages play such an important role in applied economics that it 
is necessary to become very comfortable in working with them. Many quantities reported 
in the popular press are in the form of percentages; a few examples are interest rates, 
unemployment rates, and high school graduation rates.
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 An important skill is being able to convert proportions to percentages and vice versa. 
A percentage is easily obtained by multiplying a proportion by 100. For  example, if the 
proportion of adults in a county with a high school degree is .82, then we say that 82% 
(82 percent) of adults have a high school degree. Another way to think of percentages 
and proportions is that a proportion is the decimal form of a percentage. For example, if 
the marginal tax rate for a family earning $30,000 per year is reported as 28%, then the 
 proportion of the next dollar of income that is paid in income taxes is .28 (or 28¢).
 When using percentages, we often need to convert them to decimal form. For example, 
if a state sales tax is 6% and $200 is spent on a taxable item, then the sales tax paid is 
200(.06) � $12. If the annual return on a certificate of deposit (CD) is 7.6% and we invest 
$3,000 in such a CD at the beginning of the year, then our interest income is 3,000(.076) � 
$228. As much as we would like it, the interest income is not obtained by multiplying 
3,000 by 7.6.
 We must be wary of proportions that are sometimes incorrectly reported as percent-
ages in the popular media. If we read, “The percentage of high school students who drink 
alcohol is .57,” we know that this really means 57% (not just over one-half of a percent, 
as the statement literally implies). College volleyball fans are probably familiar with press 
clips containing statements such as “Her hitting percentage was .372.” This really means 
that her hitting percentage was 37.2%.
 In econometrics, we are often interested in measuring the changes in various quanti-
ties. Let x denote some variable, such as an individual’s income, the number of crimes 
committed in a community, or the profits of a firm. Let x

0
 and x

1
 denote two values for 

F I GURE  A . 2

Graph of quantity � 120 � 9.8 price � .03 income, with income fixed at $900.
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x: x
0
 is the initial value, and x

1 
is the subsequent value. For example, x

0
 could be the 

annual income of an individual in 1994 and x
1
 the income of the same individual in 1995. 

The proportionate change in x in moving from x
0
 to x

1
, sometimes called the relative 

change, is simply

 (x
1
 � x

0
)/x

0
 � �x/x

0
, A.14

assuming, of course, that x
0 
	 0. In other words, to get the proportionate change, we sim-

ply divide the change in x by its initial value. This is a way of standardizing the change so 
that it is free of units. For example, if an individual’s income goes from $30,000 per year 
to $36,000 per year, then the proportionate change is 6,000/30,000 � .20.
 It is more common to state changes in terms of percentages. The percentage change 
in x in going from x

0
 to x

1
 is simply 100 times the proportionate change:

 %�x � 100(�x/x
0
); A.15

the notation “%�x” is read as “the percentage change in x.” For example, when income 
goes from $30,000 to $33,750, income has increased by 12.5%; to get this, we simply 
multiply the proportionate change, .125, by 100.
 Again, we must be on guard for proportionate changes that are reported as percentage 
changes. In the previous example, for instance, reporting the percentage change in income 
as .125 is incorrect and could lead to confusion.
 When we look at changes in things like dollar amounts or population, there is no 
 ambiguity about what is meant by a percentage change. By contrast, interpreting percent-
age change calculations can be tricky when the variable of interest is itself a percentage, 
something that happens often in economics and other social sciences. To illustrate, let x 
denote the percentage of adults in a particular city having a college education. Suppose the 
initial value is x

0
 � 24 (24% have a college education), and the new value is x

1
 � 30. We 

can compute two quantities to describe how the percentage of college-educated  people has 
changed. The first is the change in x, �x. In this case, �x � x

1
 � x

0
 � 6: the percentage 

of people with a college education has increased by six percentage points. On the other 
hand, we can compute the percentage change in x using equation (A.15): %� x � 100[(30 � 
24)/24] � 25.
 In this example, the percentage point change and the percentage change are very 
 different. The percentage point change is just the change in the percentages. The 
 percentage change is the change relative to the initial value. Generally, we must pay close 
attention to which number is being computed. The careful researcher makes this distinc-
tion perfectly clear; unfortunately, in the popular press as well as in academic research, the 
type of reported change is often unclear.

E x a m p l e  A . 3

[Michigan Sales Tax Increase]

In March 1994, Michigan voters approved a sales tax increase from 4% to 6%. In political advertise-
ments, supporters of the measure referred to this as a two percentage point increase, or an increase of 
two cents on the dollar. Opponents to the tax increase called it a 50% increase in the sales tax rate. 
Both claims are correct; they are simply different ways of measuring the increase in the sales tax. 
Naturally, each group reported the measure that made its position most favorable.
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 For a variable such as salary, it makes no sense to talk of a “percentage point change 
in salary” because salary is not measured as a percentage. We can describe a change in 
salary either in dollar or percentage terms.

A.4 Some Special Functions and 
Their Properties
In Section A.2, we reviewed the basic properties of linear functions. We already indicated 
one important feature of functions like y � �

0
 � �

1
x: a one-unit change in x results in 

the same change in y, regardless of the initial value of x. As we noted earlier, this is the 
same as saying the marginal effect of x on y is constant, something that is not realistic for 
many economic relationships. For example, the important economic notion of diminishing 
marginal returns is not consistent with a linear relationship.
 In order to model a variety of economic phenomena, we need to study several nonlin-
ear functions. A nonlinear function is characterized by the fact that the change in y for a 
given change in x depends on the starting value of x. Certain nonlinear functions appear 
frequently in empirical economics, so it is important to know how to interpret them. A 
complete understanding of nonlinear functions takes us into the realm of calculus. Here, 
we simply summarize the most significant aspects of the functions, leaving the details of 
some derivations for Section A.5.

Quadratic Functions
One simple way to capture diminishing returns is to add a quadratic term to a linear rela-
tionship. Consider the equation

 y � �
0
 � �

1
x � �

2
  x2, A.16

where �
0
, �

1
, and �

2
 are parameters. When �

1
 � 0 and �

2
 � 0, the relationship between y 

and x has the parabolic shape given in Figure A.3, where �
0
 � 6, �

1
 � 8, and �

2
 � �2.

 When �
1
 � 0 and �

2
 � 0, it can be shown (using calculus in the next section) that the 

maximum of the function occurs at the point

 x* � �
1
/(�2�

2
). A.17

For example, if y � 6 � 8x � 2x2 (so �
1
 � 8 and �

2
 � �2), then the largest value of y 

occurs at x* � 8/4 � 2, and this value is 6 � 8(2) � 2(2)2 � 14 (see Figure A.3).
 The fact that equation (A.16) implies a diminishing marginal effect of x on y is  easily 
seen from its graph. Suppose we start at a low value of x and then increase x by some 
amount, say, c. This has a larger effect on y than if we start at a higher value of x and increase 
x by the same amount c. In fact, once x � x*, an increase in x actually decreases y.
 The statement that x has a diminishing marginal effect on y is the same as saying that 
the slope of the function in Figure A.3 decreases as x increases. Although this is clear from 
looking at the graph, we usually want to quantify how quickly the slope is changing. An 
application of calculus gives the approximate slope of the quadratic function as

 slope �   �
y
 ___ 

�x
   � �

1
 � 2�

2
  x, A.18
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for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of the 
function in equation (A.16) with respect to x.] Another way to write this is

 �y � (�
1
 � 2�

2
x)�x  for “small” �x. A.19

To see how well this approximation works, consider again the function y � 6 � 8x � 2x2. 
Then, according to equation (A.19), �y � (8 � 4x)�x. Now, suppose we start at x � 1 and 
change x by �x � .1. Using (A.19), �y � (8 � 4)(.1) � .4. Of course, we can compute 
the change exactly by finding the values of y when x � 1 and x � 1.1: y

0
 � 6 � 8(1) � 

2(1)2 � 12 and y
1
 � 6 � 8(1.1) � 2(1.1)2 � 12.38, so the exact change in y is .38. The 

approximation is pretty close in this case.
 Now, suppose we start at x � 1 but change x by a larger amount: �x � .5. Then, the 
approximation gives �y � 4(.5) � 2. The exact change is determined by finding the dif-
ference in y when x � 1 and x � 1.5. The former value of y was 12, and the latter value 
is 6 � 8(1.5) � 2(1.5)2 � 13.5, so the actual change is 1.5 (not 2). The approximation is 
worse in this case because the change in x is larger.
 For many applications, equation (A.19) can be used to compute the approximate mar-
ginal effect of x on y for any initial value of x and small changes. And, we can always 
compute the exact change if necessary.

F I GURE  A . 3

Graph of y � 6 � 8x � 2x2. 
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E x a m p l e  A . 4

[A Quadratic Wage Function]

Suppose the relationship between hourly wages and years in the workforce (exper) is given by

 wage � 5.25 � .48 exper � .008 exper2. A.20

This function has the same general shape as the one in Figure A.3. Using equation (A.17), exper 
has a positive effect on wage up to the turning point, exper* � .48/[2(.008)] � 30. The first year 
of experience is worth approximately .48, or 48 cents [see (A.19) with x � 0, �x � 1]. Each addi-
tional year of experience increases wage by less than the previous year—reflecting a diminishing 
marginal return to experience. At 30 years, an additional year of experience would actually lower 
the wage. This is not very realistic, but it is one of the consequences of using a quadratic function 
to capture a diminishing marginal effect: at some point, the function must reach a maximum and 
curve downward. For practical purposes, the point at which this happens is often large enough to be 
inconsequential, but not always.

 

 The graph of the quadratic function in (A.16) has a U-shape if �
1
 � 0 and �

2
 � 0, in 

which case there is an increasing marginal return. The minimum of the function is at the 
point ��

1
/(2�

2
).

The Natural Logarithm
The nonlinear function that plays the most important role in econometric analysis is the 
natural logarithm. In this text, we denote the natural logarithm, which we often refer to 
simply as the log function, as

 y � log(x). A.21

You might remember learning different symbols for the natural log; ln(x) or log
e
(x) are 

the most common. These different notations are useful when logarithms with several dif-
ferent bases are being used. For our purposes, only the natural logarithm is important, 
and so log(x) denotes the natural logarithm throughout this text. This corresponds to the 
notational usage in many statistical packages, although some use ln(x) [and most calcula-
tors use ln(x)]. Economists use both log(x) and ln(x), which is useful to know when you 
are reading papers in applied economics.
 The function y � log(x) is defined only for x � 0, and it is plotted in Figure A.4. It is 
not very important to know how the values of log(x) are obtained. For our purposes, the 
function can be thought of as a black box: we can plug in any x � 0 and obtain log(x) from 
a calculator or a computer.
 Several things are apparent from Figure A.4. First, when y � log(x), the relation-
ship between y and x displays diminishing marginal returns. One important difference 
between the log and the quadratic function in Figure A.3 is that when y � log(x), 
the effect of x on y never becomes negative: the slope of the function gets closer and 
closer to zero as x gets large, but the slope never quite reaches zero and certainly never 
becomes negative.
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 The following are also apparent from Figure A.4:

 log(x) � 0 for 0 � x � 1

 log(1) � 0

log(x) � 0 for x � 1.

In particular, log(x) can be positive or negative. Some useful algebraic facts about the log 
function are

log(x
1
�x

2
) � log(x

1
) � log(x

2
), x

1
, x

2
 � 0

log(x
1
/x

2
) � log(x

1
) � log(x

2
), x

1
, x

2
 � 0

log(xc) � clog(x), x � 0, c any number.

Occasionally, we will need to rely on these properties.
 The logarithm can be used for various approximations that arise in econometric appli-
cations. First, log(1 � x) � x for x � 0. You can try this with x � .02, .1, and .5 to see 
how the quality of the approximation deteriorates as x gets larger. Even more useful is the 
fact that the difference in logs can be used to approximate proportionate changes. Let x

0
 

and x
1
 be positive values. Then, it can be shown (using calculus) that

 log(x
1
) � log(x

0
) � (x

1
 � x

0
)/x

0
 � �x/x

0
 A.22

for small changes in x. If we multiply equation (A.22) by 100 and write �log(x) � log(x
1
) � 

log(x
0
), then

 100��log(x) � %�x A.23

F IGURE  A .4

Graph of y � log(x).
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for small changes in x. The meaning of “small” depends on the context, and we will 
encounter several examples throughout this text.
 Why should we approximate the percentage change using (A.23) when the exact per-
centage change is so easy to compute? Momentarily, we will see why the approximation 
in (A.23) is useful in econometrics. First, let us see how good the approximation is in two 
examples.
 First, suppose x

0
 � 40 and x

1
 � 41. Then, the percentage change in x in moving from 

x
0
 to x

1
 is 2.5%, using 100(x

1
 � x

0
)/x

0
. Now, log(41) � log(40) � .0247 to four decimal 

places, which when multiplied by 100 is very close to 2.5. The approximation works pretty 
well. Now, consider a much bigger change: x

0
 � 40 and x

1
 � 60. The exact percentage 

change is 50%. However, log(60) � log(40) � .4055, so the approximation gives 40.55%, 
which is much farther off.
 Why is the approximation in (A.23) useful if it is only satisfactory for small changes? 
To build up to the answer, we first define the elasticity of y with respect to x as

   
�y

 ___ 
�  x

    .    
x
 __  y
   �   

%�y
 _____ 

%�  x
   . A.24

In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics.
 If y is a linear function of x, y � �

0
 � �

1
x, then the elasticity is

   
�y

 ___ 
�  x

    .    
x
 __  y
   � �

1
�    

x
 __  y
    � �

1
�   

x
 ________ 

�
0
 � �

1
x
   , A.25

which clearly depends on the value of x. (This is a generalization of the well-known result 
from basic demand theory: the elasticity is not constant along a straight-line demand 
curve.)
 Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x and y, then the elasticity is approximately equal to �log(y)/�log(x). Thus, a 
constant elasticity model is approximated by the equation

 log(y) � �
0
 � �

1
log(x), A.26

and �
1
 is the elasticity of y with respect to x (assuming that x, y � 0).

E x a m p l e  A . 5

[Constant Elasticity Demand Function]

If q is quantity demanded and p is price and these variables are related by

 log(q) � 4.7 � 1.25 log(p),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a 1.25% fall 
in the quantity demanded.

 

 For our purposes, the fact that �
1
 in (A.26) is only close to the elasticity is not 

important. In fact, when the elasticity is defined using calculus—as in Section A.5—the 
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 definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics.
 Other possibilities for using the log function often arise in empirical work. Suppose 
that y � 0 and

 log(y) � �
0
 � �

1
x. A.27

Then, �log(y) � �
1
�x, so 100��log(y) � (100��

1
)�x. It follows that, when y and x are 

related by equation (A.27),

 %�y � (100��
1
)�x. A.28

E x a m p l e  A . 6

[Logarithmic Wage Equation]

Suppose that hourly wage and years of education are related by

 log(wage) � 2.78 � .094 educ.

Then, using equation (A.28),

 %�wage � 100(.094) �educ � 9.4 �educ.

It follows that one more year of education increases hourly wage by about 9.4%.

 

 Generally, the quantity %�y/�x is called the semi-elasticity of y with respect to x. 
The semi-elasticity is the percentage change in y when x increases by one unit. What 
we have just shown is that, in model (A.27), the semi-elasticity is constant and equal to 
100��

1
. In Example A.6, we can conveniently summarize the relationship between wages 

and  education by saying that one more year of education—starting from any amount of 
 education—increases the wage by about 9.4%. This is why such models play an important 
role in economics.
 Another relationship of some interest in applied economics is

 y � �
0
 � �

1
log(x), A.29

where x � 0. How can we interpret this equation? If we take the change in y, we get 
�y � �

1
�log(x), which can be rewritten as �y � (�

1
/100)[100��log(x)]. Thus, using the 

approximation in (A.23), we have

 �y � (  �
1
/100)(%�x). A.30

In other words, �
1
/100 is the unit change in y when x increases by 1%.

E x a m p l e  A . 7

[Labor Supply Function]

Assume that the labor supply of a worker can be described by

 hours � 33 � 45.1 log(wage),
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where wage is hourly wage and hours is hours worked per week. Then, from (A.30),

 �hours � (45.1/100)(%�wage) � .451 %�wage.

In other words, a 1% increase in wage increases the weekly hours worked by about .45, or slightly 
less than one-half hour. If the wage increases by 10%, then �hours � .451(10) � 4.51, or about 
four and one-half hours. We would not want to use this approximation for much larger percentage 
changes in wages.

 

The Exponential Function
Before leaving this section, we need to discuss a special function that is related to the log. 
As motivation, consider equation (A.27). There, log(y) is a linear function of x. But how 
do we find y itself as a function of x? The answer is given by the exponential function.
 We will write the exponential function as y � exp(x), which is graphed in Figure A.5. 
From Figure A.5, we see that exp(x) is defined for any value of x and is always greater 
than zero. Sometimes, the exponential function is written as y � e x, but we will not use this 
notation. Two important values of the exponential function are exp(0) � 1 and exp(1) � 
2.7183 (to four decimal places).
 The exponential function is the inverse of the log function in the following sense: 
log[exp(x)] � x for all x, and exp[log(x)] � x for x � 0. In other words, the log “undoes” 
the exponential, and vice versa. (This is why the exponential function is sometimes called 
the anti-log function.) In particular, note that log(y) � �

0
 � �

1
x is equivalent to

 y � exp(  �
0
 � �

1
x).

F I GURE  A . 5

Graph of y � exp(x).
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If �
1
 � 0, the relationship between x and y has the same shape as in Figure A.5. Thus, 

if log(y) � �
0
 � �

1
x with �

1
 � 0, then x has an increasing marginal effect on y. In 

Example A.6, this means that another year of education leads to a larger change in wage 
than the previous year of education.
 Two useful facts about the exponential function are exp(x

1
 � x

2
) � exp(x

1
)exp(x

2
) and 

exp[c�log(x)] � x c.

A.5 Differential Calculus
In the previous section, we asserted several approximations that have foundations in cal-
culus. Let y � f (x) for some function f. Then, for small changes in x,

 �y �   
df

 ___ 
dx

   ��x, A.31

where df/dx is the derivative of the function f, evaluated at the initial point x
0
. We also 

write the derivative as dy/dx.
 For example, if y � log(x), then dy/dx � 1/x. Using (A.31), with dy/dx evaluated at x

0
, 

we have �y � (1/x
0
)�x, or �log(x) � �x/x

0
, which is the approximation given in (A.22).

 In applying econometrics, it helps to recall the derivatives of a handful of functions 
because we use the derivative to define the slope of a function at a given point. We can 
then use (A.31) to find the approximate change in y for small changes in x. In the linear 
case, the derivative is simply the slope of the line, as we would hope: if y � �

0
 � �

1
x, then 

dy/dx � �
1
.

 If y � xc, then dy/dx � cx c�1. The derivative of a sum of two functions is the sum 
of the derivatives: d[ f(x) � g(x)]/dx � df(x)/dx � dg(x)/dx. The derivative of a con stant 
times any function is that same constant times the derivative of the function: d[cf(x)]/dx � 
c[df(x)/dx]. These simple rules allow us to find derivatives of more complicated functions. 
Other rules, such as the product, quotient, and chain rules, will be familiar to those who 
have taken calculus, but we will not review those here.
 Some functions that are often used in economics, along with their deriva tives, are

y � �
0
 � �

1
x � �

2
x2; dy/dx � �

1
 � 2�

2
x

y � �
0
 � �

1
/x; dy/dx � ��

1
/(x2)

y � �
0
 � �

1
  �

__
 x  ; dy/dx � (�

1
/2)x�1/2

y � �
0
 � �

1
log(x); dy/dx � �

1
/x

y � exp(�
0
 � �

1
x); dy/dx � �

1
exp(�

0
 � �

1
x).

If �
0
 � 0 and �

1
 � 1 in this last expression, we get dy/dx � exp(x), when y � exp(x).

 In Section A.4, we noted that equation (A.26) defines a constant elasticity model when 
calculus is used. The calculus definition of elasticity is (dy/dx) � (x/y). It can be shown 
using properties of logs and exponentials that, when (A.26) holds, (dy/dx) � (x/y) � �

1
.

 When y is a function of multiple variables, the notion of a partial derivative becomes 
important. Suppose that

 y � f (x
1
, x

2
). A.32
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Then, there are two partial derivatives, one with respect to x
1
 and one with respect to x

2
. 

The partial derivative of y with respect to x
1
, denoted here by �y/�x

1
, is just the usual 

 derivative of (A.32) with respect to x
1
, where x

2
 is treated as a constant. Similarly, �y/�x

2
  

is just the derivative of (A.32) with respect to x
2
, holding x

1
 fixed.

 Partial derivatives are useful for much the same reason as ordinary derivatives. We can 
approximate the change in y as

 �y �   
�y

 ___ 
�x

1

   ��  x
1
, holding x

2
 fixed. A.33

Thus, calculus allows us to define partial effects in nonlinear models just as we could in 
linear models. In fact, if

 y � �
0
 � �

1
x

1
 � �

2
x

2
,

then

   
�y

 ___ 
�x

1

   � �
1
,    

�y
 ____ 

�x
2
    � �

2
.

These can be recognized as the partial effects defined in Section A.2.
 A more complicated example is

 y � 5 � 4x
1
 � x

1
2 � 3x

2
 � 7x

1
�x

2
. A.34

Now, the derivative of (A.34), with respect to x
1
 (treating x

2
 as a constant), is simply

   
�y

 ___ 
�x

1

   � 4 � 2x
1
 � 7x

2
;

note how this depends on x
1
 and x

2
. The derivative of (A.34), with respect to x

2
, is 

�y/�x
2
 � �3 � 7x

1
, so this depends only on x

1
. 

E x a m p l e  A . 8

[Wage Function with Interaction]

A function relating wages to years of education and experience is

 wage � 3.10 � .41 educ � .19 exper � .004 exper2

 � .007 educ�exper. A.35

The partial effect of exper on wage is the partial derivative of (A.35):

    
�wage

 _______ 
�exper

   � .19 � .008 exper � .007 educ. 

This is the approximate change in wage due to increasing experience by one year. Notice that this 
partial effect depends on the initial level of exper and educ. For example, for a worker who is starting 
with educ � 12 and exper � 5, the next year of experience increases wage by about .19 � .008(5) � 
.007(12) � .234, or 23.4 cents per hour. The exact change can be calculated by computing (A.35) at 
exper � 5, educ � 12 and at exper � 6, educ � 12, and then taking the difference. This turns out 
to be .23, which is very close to the  approximation.
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 Differential calculus plays an important role in minimizing and maximizing functions 
of one or more variables. If f(x

1
,  x

2
,  …,  x

k
 ) is a differentiable function of k variables, then 

a necessary condition for x
1
*, x

2
*,  …,  x

k
* to either minimize or maximize f over all possible 

values of x
j
 is

   
�f

 ___ 
�x

j

   (x
1
*,  x

2
*,  …,  x

k
*) � 0, j � 1, 2, …, k. A.36

In other words, all of the partial derivatives of f must be zero when they are evaluated at 
the x

h
*. These are called the first order conditions for minimizing or maximizing a func-

tion. Practically, we hope to solve equation (A.36) for the x
h
*. Then, we can use other 

criteria to determine whether we have minimized or maximized the function. We will not 
need those here. [See Sydsaeter and Hammond (1995) for a discussion of multivariable 
calculus and its use in optimizing functions.]

S U M M A R Y

The math tools reviewed here are crucial for understanding regression analysis and the 
probability and statistics that are  covered in Appendices B and C. The material on nonlin-
ear functions—especially quadratic, logarithmic, and exponential functions—is critical for 
understanding modern applied economic research. The level of comprehension required of 
these functions does not include a deep knowledge of calculus, although calculus is needed 
for certain derivations.

K E Y  T E R M S

Average
Ceteris Paribus
Constant Elasticity Model
Derivative
Descriptive Statistic
Diminishing Marginal Effect
Elasticity
Exponential Function

Intercept
Linear Function
Log Function
Marginal Effect
Median
Natural Logarithm
Nonlinear Function
Partial Derivative

Partial Effect
Percentage Change
Percentage Point Change
Proportionate Change
Relative Change
Semi-Elasticity
Slope
Summation Operator

P R O B L E M S

A.1 The following table contains monthly housing expenditures for 10 families.

Family
Monthly Housing

Expenditures
(Dollars)

1 300

2 440

3 350

(continued  )
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Family
Monthly Housing

Expenditures
(Dollars)

4 1,100

5 640

6 480

7 450

8 700

9 670

10 530

 (i) Find the average monthly housing expenditure.
 (ii) Find the median monthly housing expenditure.
 (iii)  If monthly housing expenditures were measured in hundreds of dollars, rather than 

in dollars, what would be the average and median expenditures?
 (iv)  Suppose that family number 8 increases its monthly housing expenditure to 

$900 dollars, but the expenditures of all other families remain the same. Compute 
the average and median housing expenditures.

A.2  Suppose the following equation describes the relationship between the average number 
of classes missed during a semester (missed ) and the distance from school (distance, 
measured in miles):

missed � 3 � 0.2 distance.

 (i)  Sketch this line, being sure to label the axes. How do you interpret the intercept in 
this equation?

 (ii)  What is the average number of classes missed for someone who lives five miles 
away?

 (iii)  What is the difference in the average number of classes missed for someone who 
lives 10 miles away and someone who lives 20 miles away?

A.3  In Example A.2, quantity of compact discs was related to price and income by quantity � 
120 � 9.8 price � .03 income. What is the demand for CDs if price � 15 and 
income � 200? What does this suggest about using linear functions to describe 
demand curves?

A.4  Suppose the unemployment rate in the United States goes from 6.4% in one year to 5.6% 
in the next.

 (i) What is the percentage point decrease in the unemployment rate?
 (ii) By what percentage has the unemployment rate fallen?
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A.5  Suppose that the return from holding a particular firm’s stock goes from 15% in one year 
to 18% in the following year. The majority shareholder claims that “the stock return only 
increased by 3%,” while the chief executive officer claims that “the return on the firm’s 
stock has increased by 20%.” Reconcile their disagreement.

A.6 Suppose that Person A earns $35,000 per year and Person B earns $42,000.
 (i) Find the exact percentage by which Person B’s salary exceeds Person A’s.
 (ii)  Now, use the difference in natural logs to find the approximate percentage 

difference.

A.7  Suppose the following model describes the relationship between annual salary (salary) 
and the number of previous years of labor market experience (exper):

 log(salary) � 10.6 � .027 exper.

 (i)  What is salary when exper � 0? When exper � 5? (Hint: You will need to 
exponentiate.)

 (ii)  Use equation (A.28) to approximate the percentage increase in salary when exper 
increases by five years.

 (iii)  Use the results of part (i) to compute the exact percentage difference in salary when 
exper � 5 and exper � 0. Comment on how this compares with the approximation 
in part (ii).

A.8  Let grthemp denote the proportionate growth in employment, at the county level, from 
1990 to 1995, and let salestax denote the county sales tax rate, stated as a proportion. 
Interpret the intercept and slope in the equation

 grthemp � .043 � .78 salestax.

A.9  Suppose the yield of a certain crop (in bushels per acre) is related to fertilizer amount (in 
pounds per acre) as

 yield � 120 � .19  �
________

  fertilizer  .

 (i) Graph this relationship by plugging in several values for fertilizer.
 (ii)  Describe how the shape of this relationship compares with a linear relationship 

between yield and fertilizer.
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Appendix B

This appendix covers key concepts from basic probability. Appendices B and C are 
primarily for review; they are not intended to replace a course in probability and sta-
tistics. However, all of the probability and statistics concepts that we use in the text 

are covered in these appendices.
 Probability is of interest in its own right for students in business, economics, and other 
social sciences. For example, consider the problem of an airline trying to decide how many 
reservations to accept for a flight that has 100 available seats. If fewer than 100 people 
want reservations, then these should all be accepted. But what if more than 100 people 
request reservations? A safe solution is to accept at most 100 reservations. However, 
because some people book reservations and then do not show up for the flight, there is 
some chance that the plane will not be full even if 100 reservations are booked. This results 
in lost revenue to the airline. A different strategy is to book more than 100 reservations and 
to hope that some people do not show up, so the final number of passengers is as close to 
100 as possible. This policy runs the risk of the airline having to compensate people who 
are necessarily bumped from an overbooked flight.
 A natural question in this context is: Can we decide on the optimal (or best) number 
of reservations the airline should make? This is a nontrivial problem. Nevertheless, given 
certain information (on airline costs and how frequently people show up for reservations), 
we can use basic probability to arrive at a solution.

B.1 Random Variables 
and Their Probability Distributions
Suppose that we flip a coin 10 times and count the number of times the coin turns up 
heads. This is an example of an experiment. Generally, an experiment is any procedure 
that can, at least in theory, be infinitely repeated and has a well-defined set of outcomes. 
We could, in principle, carry out the coin-flipping procedure again and again. Before we 
flip the coin, we know that the number of heads appearing is an integer from 0 to 10, so 
the outcomes of the experiment are well defined.
 A random variable is one that takes on numerical values and has an outcome that 
is determined by an experiment. In the coin-flipping example, the number of heads  

Fundamentals of Probability
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appearing in 10 flips of a coin is an example of a random variable. Before we flip the coin 
10 times, we do not know how many times the coin will come up heads. Once we flip 
the coin 10 times and count the number of heads, we obtain the outcome of the random 
variable for this particular trial of the experiment. Another trial can produce a different 
outcome. 
 In the airline reservation example mentioned earlier, the number of people showing 
up for their flight is a random variable: before any particular flight, we do not know how 
many people will show up.
 To analyze data collected in business and the social sciences, it is important to have 
a basic understanding of random variables and their properties. Following the usual con-
ventions in probability and statistics throughout Appendices B and C, we denote random 
variables by uppercase letters, usually W, X, Y, and Z; particular outcomes of random 
variables are denoted by the corresponding lowercase letters, w, x, y, and z. For example, 
in the coin-flipping experiment, let X denote the number of heads appearing in 10 flips of 
a coin. Then, X is not associated with any particular value, but we know X will take on a 
value in the set {0, 1, 2, …, 10}. A particular outcome is, say, x � 6.
 We indicate large collections of random variables by using subscripts. For example, if 
we record last year’s income of 20 randomly chosen households in the United States, we 
might denote these random variables by X

1
, X

2
, …, X

20
; the particular outcomes would be 

denoted x
1
, x

2
, …, x

20
.

 As stated in the definition, random variables are always defined to take on numerical 
values, even when they describe qualitative events. For example, consider tossing a single 
coin, where the two outcomes are heads and tails. We can define a random variable as 
follows: X � 1 if the coin turns up heads, and X � 0 if the coin turns up tails.
 A random variable that can only take on the values zero and one is called a Bernoulli
(or binary) random variable. In basic probability, it is traditional to call the event X � 1 a 
“success” and the event X � 0 a “failure.” For a particular application, the success-failure 
nomenclature might not correspond to our notion of a success or failure, but it is a useful 
terminology that we will adopt.

Discrete Random Variables

A discrete random variable is one that takes on only a finite or countably infinite number 
of values. The notion of “countably infinite” means that even though an infinite number 
of values can be taken on by a random variable, those values can be put in a one-to-one 
correspondence with the positive integers. Because the distinction between “countably 
infinite” and “uncountably infinite” is somewhat subtle, we will concentrate on discrete 
random variables that take on only a finite number of values. Larsen and Marx (1986, 
Chapter 3) provide a detailed treatment.
 A Bernoulli random variable is the simplest example of a discrete random variable. 
The only thing we need to completely describe the behavior of a Bernoulli random vari-
able is the probability that it takes on the value one. In the coin-flipping example, if the 
coin is “fair,” then P(X � 1) � 1/2 (read as “the probability that X equals one is one-half”). 
Because probabilities must sum to one, P(X � 0) � 1/2, also.
 Social scientists are interested in more than flipping coins, so we must allow for more gen-
eral situations. Again, consider the example where the airline must decide how many people to 
book for a flight with 100 available seats. This problem can be analyzed in the context of several 
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Bernoulli random variables as follows: for a randomly selected customer, define a Bernoulli 
random variable as X � 1 if the person shows up for the reservation, and X � 0 if not.
 There is no reason to think that the probability of any particular customer showing 
up is 1/2; in principle, the probability can be any number between zero and one. Call this 
number �, so that

 P(X � 1) � � B.1

 P(X � 0) � 1 � �. B.2

For example, if � � .75, then there is a 75% chance that a customer shows up after making 
a reservation and a 25% chance that the customer does not show up. Intuitively, the value 
of � is crucial in determining the airline’s strategy for booking reservations. Methods for 
estimating �, given historical data on airline reservations, are a subject of mathematical 
statistics, something we turn to in Appendix C.
 More generally, any discrete random variable is completely described by listing its 
possible values and the associated probability that it takes on each value. If X takes on the 
k possible values {x

1
, …, x

k
}, then the probabilities p

1
, p

2
, …, p

k
 are defined by

 p
j
 � P(X � x

j
), j � 1, 2, …, k, B.3

where each p
j
 is between 0 and 1 and

 p
1
 � p

2
 � … � p

k
 � 1. B.4

Equation (B.3) is read as: “The probability that X takes on the value x
j
 is equal to p

j
.”

 Equations (B.1) and (B.2) show that the probabilities of success and failure for a 
Bernoulli random variable are determined entirely by the value of �. Because Bernoulli 
random variables are so prevalent, we have a special notation for them: X ~ Bernoulli(�) 
is read as “X has a Bernoulli distribution with probability of success equal to �.”
 The probability density function (pdf ) of X summarizes the information concerning 
the possible outcomes of X and the corresponding probabilities:

 f (x
j
) � p

j
, j � 1, 2, …, k, B.5

with f (x) � 0 for any x not equal to x
j
 for some j. In other words, for any real number x, 

f (x) is the probability that the random variable X takes on the particular value x. When 
dealing with more than one random variable, it is sometimes useful to subscript the pdf in 
question: f

X
 is the pdf of X, f

Y
 is the pdf of Y, and so on.

 Given the pdf of any discrete random variable, it is simple to compute the probability 
of any event involving that random variable. For example, suppose that X is the number 
of free throws made by a basketball player out of two attempts, so that X can take on the 
three values {0,1,2}. Assume that the pdf of X is given by

 f (0) � .20, f (1) � .44, and f (2) � .36.

The three probabilities sum to one, as they must. Using this pdf, we can calculate the prob-
ability that the player makes at least one free throw: P(X � 1) � P(X � 1) � P(X � 2) � 
.44 � .36 � .80. The pdf of X is shown in Figure B.1.
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Continuous Random Variables

A variable X is a continuous random variable if it takes on any real value with zero 
probability. This definition is somewhat counterintuitive, since in any application, we 
eventually observe some outcome for a random variable. The idea is that a continuous 
random variable X can take on so many possible values that we cannot count them or 
match them up with the positive integers, so logical consistency dictates that X can take 
on each value with probability zero. While measurements are always discrete in prac-
tice, random variables that take on numerous values are best treated as continuous. For 
example, the most refined measure of the price of a good is in terms of cents. We can 
imagine listing all possible values of price in order (even though the list may continue 
indefinitely), which technically makes price a discrete random variable. However, there 
are so many possible values of price that using the mechanics of discrete random vari-
ables is not feasible.
 We can define a probability density function for continuous random variables, and, 
as with discrete random variables, the pdf provides information on the likely outcomes of 
the random variable. However, because it makes no sense to discuss the probability that 
a continuous random variable takes on a particular value, we use the pdf of a continuous 
random variable only to compute events involving a range of values. For example, if a 
and b are constants where a � b, the probability that X lies between the numbers a and b, 
P(a 
 X 
 b), is the area under the pdf between points a and b, as shown in Figure B.2. If 
you are familiar with calculus, you recognize this as the integral of the function f between 
the points a and b. The entire area under the pdf must always equal one.

F I GURE  B . 1

The pdf of the number of free throws made out of two attempts.

f (x)

0 1 2 x

.20

.44

.36
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 When computing probabilities for continuous random variables, it is easiest to work 
with the cumulative distribution function (cdf ). If X is any random variable, then its cdf 
is defined for any real number x by

 F(x) � P(X 
 x). B.6

For discrete random variables, (B.6) is obtained by summing the pdf over all values x
j
 such 

that x
j
 
 x. For a continuous random variable, F(x) is the area under the pdf, f, to the left 

of the point x. Because F(x) is simply a probability, it is always between 0 and 1. Further, 
if x

1
 � x

2
, then P(X 
 x

1
) 
 P(X 
 x

2
), that is, F(x

1
) 
 F(x

2
). This means that a cdf is an 

increasing (or at least a nondecreasing) function of x.
 Two important properties of cdfs that are useful for computing probabilities are the 
following:

 For any number c, P(X � c) � 1 � F(c). B.7

 For any numbers a � b, P(a � X 
 b) � F(b) � F(a). B.8

F IGURE  B . 2

The probability that X lies between the points a and b.

a

f(x)

b x
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In our study of econometrics, we will use cdfs to compute probabilities only for continu-
ous random variables, in which case it does not matter whether inequalities in probability 
statements are strict or not. That is, for a continuous random variable X,

 P(X � c) � P(X � c), B.9

and

 P(a � X � b) � P(a 
 X 
 b) � P(a 
 X � b) � P(a � X 
 b). B.10

Combined with (B.7) and (B.8), equations (B.9) and (B.10) greatly expand the probability 
calculations that can be done using continuous cdfs.
 Cumulative distribution functions have been tabulated for all of the important continu-
ous distributions in probability and statistics. The most well-known of these is the normal 
distribution, which we cover along with some related distributions in Section B.5.

B.2 Joint Distributions, Conditional 
Distributions, and Independence
In economics, we are usually interested in the occurrence of events involving more than 
one random variable. For example, in the airline reservation example referred to earlier, 
the airline might be interested in the probability that a person who makes a reservation 
shows up and is a business traveler; this is an example of a joint probability. Or, the airline 
might be interested in the following conditional probability: conditional on the person 
being a business traveler, what is the probability of his or her showing up? In the next 
two subsections, we formalize the notions of joint and conditional distributions and the 
important notion of independence of random variables.

Joint Distributions and Independence

Let X and Y be discrete random variables. Then, (X,Y ) have a joint distribution, which is 
fully described by the joint probability density function of (X,Y ):

 f
X,Y

(x,y) � P(X � x,Y � y), B.11

where the right-hand side is the probability that X � x and Y � y. When X and Y are con-
tinuous, a joint pdf can also be defined, but we will not cover such details because joint 
pdfs for continuous random variables are not used explicitly in this text.
 In one case, it is easy to obtain the joint pdf if we are given the pdfs of X and Y. In 
particular, random variables X and Y are said to be independent if, and only if,

 f
X,Y

(x,y) � f
X
(x)f

Y
(y) B.12

for all x and y, where f
X
 is the pdf of X and f

Y
 is the pdf of Y. In the context of more than 

one random variable, the pdfs f
X
 and f

Y
 are often called marginal probability density func-

tions to distinguish them from the joint pdf f
X,Y

. This definition of independence is valid 
for discrete and continuous random variables.
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 To understand the meaning of (B.12), it is easiest to deal with the discrete case. If X 
and Y are discrete, then (B.12) is the same as

 P(X � x,Y � y) � P(X � x)P(Y � y); B.13

in other words, the probability that X � x and Y � y is the product of the two probabilities 
P(X � x) and P(Y � y). One implication of (B.13) is that joint probabilities are fairly easy 
to compute, since they only require knowledge of P(X � x) and P(Y � y).
 If random variables are not independent, then they are said to be dependent.

E x a m p l e  B . 1

[Free Throw Shooting]

Consider a basketball player shooting two free throws. Let X be the Bernoulli random variable equal 
to one if she or he makes the first free throw, and zero otherwise. Let Y be a Bernoulli random vari-
able equal to one if he or she makes the second free throw. Suppose that she or he is an 80% free 
throw shooter, so that P(X � 1) � P(Y � 1) � .8. What is the probability of the player making both 
free throws?
 If X and Y are independent, we can easily answer this question: P(X � 1,Y � 1) � 

P(X � 1)P(Y � 1) � (.8)(.8) � .64. Thus, there is a 64% chance of making both free throws. If the 
chance of making the second free throw depends on whether the first was made—that is, X and Y 
are not independent—then this simple calculation is not valid.

 

 Independence of random variables is a very important concept. In the next subsection, 
we will show that if X and Y are independent, then knowing the outcome of X does not 
change the probabilities of the possible outcomes of Y, and vice versa. One useful fact 
about independence is that if X and Y are independent and we define new random vari-
ables g(X) and h(Y) for any functions g and h, then these new random variables are also 
independent.
 There is no need to stop at two random variables. If X

1
, X

2
, …, X

n
 are discrete random 

variables, then their joint pdf is f (x
1
, x

2
, …, x

n
) � P(X

1
 � x

1
, X

2
 � x

2
, …, X

n
 � x

n
). The 

random variables X
1
, X

2
, …, X

n
 are independent random variables if, and only if, their 

joint pdf is the product of the individual pdfs for any (x
1
, x

2
, …, x

n
). This definition of 

independence also holds for continuous random variables.
 The notion of independence plays an important role in obtaining some of the classic 
distributions in probability and statistics. Earlier, we defined a Bernoulli random variable 
as a zero-one random variable indicating whether or not some event occurs. Often, we 
are interested in the number of successes in a sequence of independent Bernoulli trials. 
A standard example of independent Bernoulli trials is flipping a coin again and again. 
Because the outcome on any particular flip has nothing to do with the outcomes on other 
flips, independence is an appropriate assumption.
 Independence is often a reasonable approximation in more complicated situations. In 
the airline reservation example, suppose that the airline accepts n reservations for a partic-
ular flight. For each i � 1, 2, …, n, let Y

i
 denote the Bernoulli random variable indicating 

whether customer i shows up: Y
i
 � 1 if customer i appears, and Y

i
 � 0 otherwise. Letting 

� again denote the probability of success (using reservation), each Y
i
 has a Bernoulli(�) 
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distribution. As an approximation, we might assume that the Y
i
 are independent of one 

another, although this is not exactly true in reality: some people travel in groups, which 
means that whether or not a person shows up is not truly independent of whether all others 
show up. Modeling this kind of dependence is complex, however, so we might be willing 
to use independence as an approximation.
 The variable of primary interest is the total number of customers showing up out of 
the n reservations; call this variable X. Since each Y

i
 is unity when a person shows up, we 

can write X � Y
1
 � Y

2
 � … � Y

n
. Now, assuming that each Y

i
 has probability of success 

� and that the Y
i
 are independent, X can be shown to have a binomial distribution. That 

is, the probability density function of X is

 f(x) �  �  n   
x
  �  � x (1 � �)n�x, x � 0, 1, 2, …, n, B.14

where  �  n   
x
  �  �   n! ________ 

x!(n � x)!
  , and for any integer n, n! (read “n factorial”) is defined as n! � 

n.(n � 1) . (n � 2) …1. By convention, 0! � 1. When a random variable X has the pdf 
given in (B.14), we write X ~ Binomial(n,�). Equation (B.14) can be used to compute 
P(X � x) for any value of x from 0 to n.
 If the flight has 100 available seats, the airline is interested in P(X � 100). Suppose, 
initially, that n � 120, so that the airline accepts 120 reservations, and the probability that 
each person shows up is � � .85. Then, P(X � 100) � P(X � 101) � P(X � 102) � … � 
P(X � 120), and each of the probabilities in the sum can be found from equation (B.14) 
with n � 120, � � .85, and the appropriate value of x (101 to 120). This is a difficult hand 
calculation, but many statistical packages have commands for computing this kind of 
probability. In this case, the probability that more than 100 people will show up is about 
.659, which is probably more risk of overbooking than the airline wants to tolerate. If, 
instead, the number of reservations is 110, the probability of more than 100 passengers 
showing up is only about .024.

Conditional Distributions

In econometrics, we are usually interested in how one random variable, call it Y, is related 
to one or more other variables. For now, suppose that there is only one variable whose 
effects we are interested in, call it X. The most we can know about how X affects Y is 
contained in the conditional distribution of Y given X. This information is summarized 
by the conditional probability density function, defined by

 f
Y|X

(y|x) � f
X,Y

(x,y) /f
X
(x) B.15

for all values of x such that f
X
(x) � 0. The interpretation of (B.15) is most easily seen when 

X and Y are discrete. Then,

 f
Y|X

(y|x) � P(Y � y|X � x), B.16

where the right-hand side is read as “the probability that Y � y given that X � x.” When 
Y is continuous, f

Y|X
(y|x) is not interpretable directly as a probability, for the reasons 

discussed earlier, but conditional probabilities are found by computing areas under the 
conditional pdf.
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 An important feature of conditional distributions is that, if X and Y are independent 
random variables, knowledge of the value taken on by X tells us nothing about the prob-
ability that Y takes on various values (and vice versa). That is, f

Y|X
(y|x) � f

Y
(y), and 

f
X |Y

(x|y) � f
X
(x).

E x a m p l e  B . 2

[Free Throw Shooting]

Consider again the basketball-shooting example, where two free throws are to be attempted. Assume 
that the conditional density is

 f
Y|X

(1|1) � .85, f
Y|X

(0|1) � .15

 f
Y|X

(1|0) � .70, f
Y|X

(0|0) � .30.

This means that the probability of the player making the second free throw depends on whether the 
first free throw was made: if the first free throw is made, the chance of making the second is .85; if 
the first free throw is missed, the chance of making the second is .70. This implies that X and Y are 
not independent; they are dependent.
 We can still compute P(X � 1,Y � 1) provided we know P(X � 1). Assume that the probability 
of making the first free throw is .8, that is, P(X � 1) � .8. Then, from (B.15), we have

 P(X � 1,Y � 1) � P(Y � 1|X � 1).P(X � 1) � (.85)(.8) � .68.

 

B.3 Features of Probability Distributions
For many purposes, we will be interested in only a few aspects of the distributions of 
random variables. The features of interest can be put into three categories: measures of 
central tendency, measures of variability or spread, and measures of association between 
two random variables. We cover the last of these in Section B.4.

A Measure of Central Tendency: The Expected Value

The expected value is one of the most important probabilistic concepts that we will 
encounter in our study of econometrics. If X is a random variable, the expected value (or 
expectation) of X, denoted E(X) and sometimes 
X or simply 
, is a weighted average of 
all possible values of X. The weights are determined by the probability density function. 
Sometimes, the expected value is called the population mean, especially when we want to 
emphasize that X represents some variable in a population.
 The precise definition of expected value is simplest in the case that X is a discrete 
random variable taking on a finite number of values, say, {x

1
, …, x

k
}. Let f (x) denote the 

probability density function of X. The expected value of X is the weighted average

 E(X ) � x
1
 f (x

1
) � x

2
 f (x

2
) � … � x

k
 f (x

k
) � ∑ 

j�1

   
k

    x
j
 f (x

j
). B.17

This is easily computed given the values of the pdf at each possible outcome of X.
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E x a m p l e  B . 3

[Computing an Expected Value]

Suppose that X takes on the values �1, 0, and 2 with probabilities 1/8, 1/2, and 3/8, respectively. 
Then,

 E(X) � (�1).(1/8) � 0.(1/2) � 2.(3/8) � 5/8.

 
This example illustrates something curious about expected values: the expected value of 
X can be a number that is not even a possible outcome of X. We know that X takes on the 
values �1, 0, or 2, yet its expected value is 5/8. This makes the expected value deficient 
for summarizing the central tendency of certain discrete random variables, but calculations 
such as those just mentioned can be useful, as we will see later.
 If X is a continuous random variable, then E(X) is defined as an integral:

 E(X ) �  ∫ 
�

  


   x f (x)dx, B.18

which we assume is well defined. This can still be interpreted as a weighted average. For 
the most common continuous distributions, E(X) is a number that is a possible outcome 
of X. In this text, we will not need to compute expected values using integration, although 
we will draw on some well-known results from probability for expected values of special 
random variables.
 Given a random variable X and a function g(.), we can create a new random variable 
g(X). For example, if X is a random variable, then so is X2 and log(X) (if X � 0). The 
expected value of g(X) is, again, simply a weighted average:

 E[g(X )] � ∑ 
j�1

   
k

    g(x
j
)f

X
(x

j
) B.19

or, for a continuous random variable,

 E[g(X )] �  ∫ 
�

  


   g(x)f
X
(x)dx. B.20

E x a m p l e  B . 4

[Expected Value of X2]

For the random variable in Example B.3, let g(X) � X2. Then,

 E(X2) � (�1)2(1/8) � (0)2(1/2) � (2)2(3/8) � 13/8.

 
In Example B.3, we computed E(X) � 5/8, so that [E(X)]2 � 25/64. This shows that E(X2) 
is not the same as [E(X)]2. In fact, for a nonlinear function g(X), E[g(X)] 	 g[E(X)] (except 
in very special cases).
 If X and Y are random variables, then g(X,Y ) is a random variable for any function g, 
and so we can define its expectation. When X and Y are both discrete, taking on values 
{x

1
, x

2
, …, x

k
} and {y

1
, y

2
, …, y

m
}, respectively, the expected value is

 E[g(X,Y )] �  ∑ 
h�1

   
k

     ∑ 
j�1

   
m

    g(x
h
,y

j
)f

X,Y
(x

h
, y

j
),
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where f
X,Y

 is the joint pdf of (X,Y ). The definition is more complicated for continuous ran-
dom variables since it involves integration; we do not need it here. The extension to more 
than two random variables is straightforward.

Properties of Expected Values

In econometrics, we are not so concerned with computing expected values from various 
distributions; the major calculations have been done many times, and we will largely take 
these on faith. We will need to manipulate some expected values using a few simple rules. 
These are so important that we give them labels:

Property E.1: For any constant c, E(c) � c.

Property E.2: For any constants a and b, E(aX � b) � aE(X ) � b.

One useful implication of E.2 is that, if 
 � E(X ), and we define a new random variable 
as Y � X � 
, then E(Y ) � 0; in E.2, take a � 1 and b � �
.
 As an example of Property E.2, let X be the temperature measured in Celsius at noon 
on a particular day at a given location; suppose the expected temperature is E(X) � 25. If 
Y is the temperature measured in Fahrenheit, then Y � 32 � (9/5)X. From Property E.2, the 
expected temperature in Fahrenheit is E(Y ) � 32 � (9/5).E(X) � 32 � (9/5).25 � 77.
 Generally, it is easy to compute the expected value of a linear function of many ran-
dom variables.

Property E.3: If {a
1
, a

2
, …, a

n
} are constants and {X

1
, X

2
, …, X

n
} are random variables, 

then

 E(a
1
X

1
 � a

2
X

2
 � … � a

n
X

n
) � a

1
E(X

1
) � a

2
E(X

2
) � … � a

n
E(X

n
).

Or, using summation notation,

 E  �  ∑ 
i�1

   
n

    a
i
 X

i
 �  � ∑ 

i�1

   
n

    a
i
 E(X

i
). B.21

As a special case of this, we have (with each a
i
 � 1)

 E  �  ∑ 
i�1

   
n

    X
i
 �  � ∑ 

i�1

   
n

    E(X
i
). B.22

so that the expected value of the sum is the sum of expected values. This property is used 
often for derivations in mathematical statistics.

E x a m p l e  B . 5

[Finding Expected Revenue]

Let X
1
, X

2
, and X

3
 be the numbers of small, medium, and large pizzas, respectively, sold during the 

day at a pizza parlor. These are random variables with expected values E(X
1
) � 25, E(X

2
) � 57, and 
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E(X
3
) � 40. The prices of small, medium, and large pizzas are $5.50, $7.60, and $9.15. Therefore, 

the expected revenue from pizza sales on a given day is

 E(5.50 X
1
 � 7.60 X

2
 � 9.15 X

3
) � 5.50 E(X

1
) � 7.60 E(X

2
) � 9.15 E(X

3
) 

 � 5.50(25) � 7.60(57) � 9.15(40) � 936.70,

that is, $936.70. The actual revenue on any particular day will generally differ from this value, but 
this is the expected revenue.

 
 We can also use Property E.3 to show that if X ~ Binomial(n,�), then E(X) � n�. That 
is, the expected number of successes in n Bernoulli trials is simply the number of trials 
times the probability of success on any particular trial. This is easily seen by writing X as 
X � Y

1
 � Y

2
 � … � Y

n
, where each Y

i
 ~ Bernoulli(�). Then,

 E(X) �  ∑ 
i�1

   
n

    E(Y
i
) �  ∑ 

i�1

   
n

   �  � n�.

We can apply this to the airline reservation example, where the airline makes n � 120 
reservations, and the probability of showing up is � � .85. The expected number of people 
showing up is 120(.85) � 102. Therefore, if there are 100 seats available, the expected 
number of people showing up is too large; this has some bearing on whether it is a good 
idea for the airline to make 120 reservations.
 Actually, what the airline should do is define a profit function that accounts for the 
net revenue earned per seat sold and the cost per passenger bumped from the flight. This 
profit function is random because the actual number of people showing up is random. Let 
r be the net revenue from each passenger. (You can think of this as the price of the ticket 
for simplicity.) Let c be the compensation owed to any passenger bumped from the flight. 
Neither r nor c is random; these are assumed to be known to the airline. Let Y denote 
profits for the flight. Then, with 100 seats available,

 Y � rX if X 
 100

 � 100r � c(X � 100) if X � 100.

The first equation gives profit if no more than 100 people show up for the flight; the sec-
ond equation is profit if more than 100 people show up. (In the latter case, the net revenue 
from ticket sales is 100r, since all 100 seats are sold, and then c(X � 100) is the cost of 
making more than 100 reservations.) Using the fact that X has a Binomial(n,.85) distribu-
tion, where n is the number of reservations made, expected profits, E(Y ), can be found as 
a function of n (and r and c). Computing E(Y ) directly would be quite difficult, but it can 
be found quickly using a computer. Once values for r and c are given, the value of n that 
maximizes expected profits can be found by searching over different values of n.

Another Measure of Central Tendency: The Median 

The expected value is only one possibility for defining the central tendency of a random 
variable. Another measure of central tendency is the median. A general definition of 
median is too complicated for our purposes. If X is continuous, then the median of X, say, 
m, is the value such that one-half of the area under the pdf is to the left of m, and one-half 
of the area is to the right of m.
 When X is discrete and takes on a finite number of odd values, the median is obtained 
by ordering the possible values of X and then selecting the value in the middle. For 
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 example, if X can take on the values {�4,0,2,8,10,13,17}, then the median value of X 
is 8. If X takes on an even number of values, there are really two median values; some-
times, these are averaged to get a unique median value. Thus, if X takes on the values 
{–5,3,9,17}, then the median values are 3 and 9; if we average these, we get a median 
equal to 6.
 In general, the median, sometimes denoted Med(X), and the expected value, E(X), are 
different. Neither is “better” than the other as a measure of central tendency; they are both 
valid ways to measure the center of the distribution of X. In one special case, the median 
and expected value (or mean) are the same. If X has a symmetric distribution about the 
value 
, then 
 is both the expected value and the median. Mathematically, the condition 
is f (
 � x) � f (
 � x) for all x. This case is illustrated in Figure B.3.

Measures of Variability: Variance and Standard Deviation

Although the central tendency of a random variable is valuable, it does not tell us every-
thing we want to know about the distribution of a random variable. Figure B.4 shows the 
pdfs of two random variables with the same mean. Clearly, the distribution of X is more 
tightly centered about its mean than is the distribution of Y. We would like to have a simple 
way of summarizing differences in the spreads of distributions.

Variance

For a random variable X, let 
 � E(X). There are various ways to measure how far X is 
from its expected value, but the simplest one to work with algebraically is the squared 

F I GURE  B . 3

A symmetric probability distribution.

x

f(x)

m
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 difference, (X � 
)2. (The squaring eliminates the sign from the distance measure; the 
resulting positive value corresponds to our intuitive notion of distance, and treats values 
above and below 
 symmetrically.) This distance is itself a random variable since it can 
change with every outcome of X. Just as we needed a number to summarize the central 
tendency of X, we need a number that tells us how far X is from 
, on average. One such 
number is the variance, which tells us the expected distance from X to its mean:

 Var(X) � E[(X � 
)2]. B.23

Variance is sometimes denoted �2
X
, or simply �2, when the context is clear. From (B.23), 

it follows that the variance is always nonnegative.
 As a computational device, it is useful to observe that

 �2 � E(X2 � 2X
 � 
2) � E(X2) � 2
2 � 
2 � E(X2) � 
2. B.24

In using either (B.23) or (B.24), we need not distinguish between discrete and continuous 
random variables: the definition of variance is the same in either case. Most often, we first 
compute E(X), then E(X2), and then we use the formula in (B.24). For example, if X ~ 
Bernoulli(�), then E(X) � �, and, since X2 � X, E(X2) � �. It follows from equation (B.24) 
that Var(X) � E(X2) � 
2 � � � �2 � �(1 � �).
 Two important properties of the variance follow.

Property VAR.1: Var(X) � 0 if, and only if, there is a constant c, such that P(X � c) � 1, 
in which case, E(X) � c.

F I GURE  B . 4

Random variables with the same mean but different distributions.

x,y

pdf

m

fX

fY
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This first property says that the variance of any constant is zero and if a random variable 
has zero variance, then it is essentially constant.

Property VAR.2: For any constants a and b, Var(aX � b) � a2Var(X).

This means that adding a constant to a random variable does not change the variance, but 
multiplying a random variable by a constant increases the variance by a factor equal to the 
square of that constant. For example, if X denotes temperature in Celsius and Y � 32 � 
(9/5)X is temperature in Fahrenheit, then Var(Y ) � (9/5)2Var(X) � (81/25)Var(X).

Standard Deviation

The standard deviation of a random variable, denoted sd(X), is simply the positive square 
root of the variance: sd(X) � � �

______
 Var(X)  . The standard deviation is sometimes denoted �

X
, 

or simply �, when the random variable is understood. Two standard deviation properties 
immediately follow from Properties VAR.1 and VAR.2.

Property SD.1: For any constant c, sd(c) � 0.

Property SD.2: For any constants a and b,

 sd(aX � b) � �a�sd(X).

In particular, if a � 0, then sd(aX) � a�sd(X).

 This last property makes the standard deviation more natural to work with than the vari-
ance. For example, suppose that X is a random variable measured in thousands of dollars, 
say, income. If we define Y � 1,000X, then Y is income measured in dollars. Suppose that 
E(X) � 20, and sd(X) � 6. Then, E(Y ) � 1,000E(X) � 20,000, and sd(Y ) � 1,000�sd(X) � 
6,000, so that the expected value and standard deviation both increase by the same factor, 
1,000. If we worked with variance, we would have Var(Y ) � (1,000)2Var(X), so that the 
variance of Y is one million times larger than the variance of X.

Standardizing a Random Variable

As an application of the properties of variance and standard deviation—and a topic of prac-
tical interest in its own right—suppose that given a random variable X, we define a new 
random variable by subtracting off its mean m and dividing by its standard deviation �:

 Z �   
X � 


 ______ 
�

  , B.25

which we can write as Z � aX � b, where a � (1/�), and b � �(
/�). Then, from 
Property E.2,

 E(Z) � aE(X) � b � (
 /�) � (
 /�) � 0.

From Property VAR.2,

 Var(Z ) � a2Var(X) � (�2/�2) � 1.

Thus, the random variable Z has a mean of zero and a variance (and therefore a standard 
deviation) equal to one. This procedure is sometimes known as standardizing the random 
variable X, and Z is called a standardized random variable. (In introductory statistics 
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courses, it is sometimes called the z-transform of X.) It is important to remember that the 
standard deviation, not the variance, appears in the denominator of (B.25). As we will see, 
this transformation is frequently used in statistical inference.
 As a specific example, suppose that E(X) � 2, and Var(X) � 9. Then, Z � 
(X � 2)/3 has expected value zero and variance one.

Skewness and Kurtosis

We can use the standardized version of a random variable to define other features of 
the distribution of a random variable. These features are described by using what are 
called higher order moments. For example, the third moment of the random variable Z 
in (B.25) is used to determine whether a distribution is symmetric about its mean. We can 
write

 E(Z 3) � E[(X � 
)3]/�3

If X has a symmetric distribution about 
, then Z has a symmetric distribution about 
zero. (The division by �3 does not change whether the distribution is symmetric.) 
That means the density of Z at any two points z and −z is the same, which means that, 
in computing E(Z 3), positive values z3 when z � 0 are exactly offset with the nega-
tive value (�z)3 � �z3. It follows that, if X is symmetric about zero, then E(Z) � 0. 
Generally, E[(X � 
)3]/�3 is viewed as a measure of skewness in the distribution of 
X. In a statistical setting, we might use data to estimate E(Z 3) to determine whether an 
underlying population distribution appears to be symmetric. (Computer Exercise C5.4 
in Chapter 5 provides an illustration.)
 It also can be informative to compute the fourth moment of Z,

 E(Z 4) � E[(X � 
)4]/�4.

Because Z 4 � 0, E(Z 4) � 0 (and, in any interesting case, strictly greater than zero). 
Without having a reference value, it is difficult to interpret values of E(Z 4), but larger 
values mean that the tails in the distribution of X are thicker. The fourth moment 
E(Z 4) is called a measure of kurtosis in the distribution of X. In Section B.5 we will 
obtain E(Z 4) for the normal distribution.

B.4 Features of Joint and 
Conditional Distributions
Measures of Association: Covariance and Correlation

While the joint pdf of two random variables completely describes the relationship between 
them, it is useful to have summary measures of how, on average, two random variables 
vary with one another. As with the expected value and variance, this is similar to using a 
single number to summarize something about an entire distribution, which in this case is 
a joint distribution of two random variables.

Covariance

Let 

X
 � E(X ) and 


Y
 � E(Y ) and consider the random variable (X � 


X
)(Y � 


Y
). Now, 

if X is above its mean and Y is above its mean, then (X � 

X
)(Y � 


Y
) � 0. This is also 
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true if X � 

X
 and Y � 


Y
. On the other hand, if X � 


X
 and Y � 


Y
, or vice versa, then 

(X � 

X
)(Y � 


Y
) � 0. How, then, can this product tell us anything about the relationship 

between X and Y?
 The covariance between two random variables X and Y, sometimes called the popu-
lation covariance to emphasize that it concerns the relationship between two variables 
describing a population, is defined as the expected value of the product (X � 


X
)(Y � 


Y
):

 Cov(X,Y ) � E[(X � 

X
)(Y � 


Y
)], B.26

which is sometimes denoted �
XY

 . If �
XY

 � 0, then, on average, when X is above its mean, 
Y is also above its mean. If �

XY
 � 0, then, on average, when X is above its mean, Y is 

below its mean.
 Several expressions useful for computing Cov(X,Y ) are as follows:

 Cov(X,Y ) � E[(X � 

X
)(Y � 


Y
)] � E[(X � 


X
)Y]

 B.27
 � E[X(Y � 


Y
)] � E(XY ) � 


X



Y
 .

It follows from (B.27), that if E(X) � 0 or E(Y ) � 0, then Cov(X,Y ) � E(XY ).
 Covariance measures the amount of linear dependence between two random variables. 
A positive covariance indicates that two random variables move in the same direction, 
while a negative covariance indicates they move in opposite directions. Interpreting the 
magnitude of a covariance can be a little tricky, as we will see shortly.
 Because covariance is a measure of how two random variables are related, it is natural 
to ask how covariance is related to the notion of independence. This is given by the fol-
lowing property.

Property COV.1: If X and Y are independent, then Cov(X,Y ) � 0.

This property follows from equation (B.27) and the fact that E(XY ) � E(X)E(Y ) when 
X and Y are independent. It is important to remember that the converse of COV.1 is not 
true: zero covariance between X and Y does not imply that X and Y are independent. In 
fact, there are random variables X such that, if Y � X2, Cov(X,Y ) � 0. [Any random vari-
able with E(X) � 0 and E(X3) � 0 has this property.] If Y � X2, then X and Y are clearly 
not independent: once we know X, we know Y. It seems rather strange that X and X2 
could have zero covariance, and this reveals a weakness of covariance as a general mea-
sure of association between random variables. The covariance is useful in contexts when 
 relationships are at least approximately linear.
 The second major property of covariance involves covariances between linear 
 functions.

Property COV.2: For any constants a
1
, b

1
, a

2
, and b

2
,

 Cov(a
1
X � b

1
,a

2
Y � b

2
) � a

1
a

2
Cov(X,Y ). B.28

An important implication of COV.2 is that the covariance between two random variables 
can be altered simply by multiplying one or both of the random variables by a constant. 
This is important in economics because monetary variables, inflation rates, and so on can 
be defined with different units of measurement without changing their meaning.
 Finally, it is useful to know that the absolute value of the covariance between any two 
random variables is bounded by the product of their standard deviations; this is known as 
the Cauchy-Schwartz inequality.
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Property COV.3: �Cov(X,Y )� 
 sd(X)sd(Y ).

Correlation Coefficient

Suppose we want to know the relationship between amount of education and annual earn-
ings in the working population. We could let X denote education and Y denote earnings 
and then compute their covariance. But the answer we get will depend on how we choose 
to measure education and earnings. Property COV.2 implies that the covariance between 
 education and earnings depends on whether earnings are measured in dollars or thousands 
of dollars, or whether education is measured in months or years. It is pretty clear that 
how we measure these variables has no bearing on how strongly they are related. But the 
 covariance between them does depend on the units of measurement.
 The fact that the covariance depends on units of measurement is a deficiency that is 
overcome by the correlation coefficient between X and Y:

 Corr(X,Y ) �   
Cov(X,Y )

 __________ 
sd(X)�sd(Y )

   �   
�

XY ____ �
X
�

Y
  ; B.29

the correlation coefficient between X and Y is sometimes denoted �
XY

 (and is sometimes 
called the population correlation).
 Because �

X
 and �

Y
 are positive, Cov(X,Y ) and Corr(X,Y ) always have the same sign, 

and Corr(X,Y ) � 0 if, and only if, Cov(X,Y ) � 0. Some of the properties of covariance 
carry over to correlation. If X and Y are independent, then Corr(X,Y ) � 0, but zero correla-
tion does not imply independence. (Like the covariance, the correlation coefficient is also 
a measure of linear dependence.) However, the magnitude of the correlation coefficient is 
easier to interpret than the size of the covariance due to the following property.

Property CORR.1: �1 
 Corr(X,Y ) 
 1.

If Corr(X,Y ) � 0, or equivalently Cov(X,Y ) � 0, then there is no linear relationship 
between X and Y, and X and Y are said to be uncorrelated random variables; otherwise, 
X and Y are correlated. Corr(X,Y ) � 1 implies a perfect positive linear relationship, which 
means that we can write Y � a � bX for some constant a and some constant b � 0. 
Corr(X,Y ) � �1 implies a perfect negative linear relationship, so that Y � a � bX for 
some b � 0. The extreme cases of positive or negative 1 rarely occur. Values of �

XY
 closer 

to 1 or �1 indicate stronger linear relationships.
 As mentioned earlier, the correlation between X and Y is invariant to the units of 
 measurement of either X or Y. This is stated more generally as follows.

Property CORR.2: For constants a
1
, b

1
, a

2
, and b

2
, with a

1
a

2
 � 0,

 Corr(a
1
X � b

1
,a

2
Y � b

2
) � Corr(X,Y ).

If a
1
a

2
 � 0, then

 Corr(a
1
X � b

1
,a

2
Y � b

2
) � �Corr(X,Y ).

As an example, suppose that the correlation between earnings and education in the work-
ing population is .15. This measure does not depend on whether earnings are measured 
in dollars, thousands of dollars, or any other unit; it also does not depend on whether 
 education is measured in years, quarters, months, and so on.
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Variance of Sums of Random Variables

Now that we have defined covariance and correlation, we can complete our list of major 
properties of the variance.

Property VAR.3: For constants a and b,

 Var(aX � bY ) � a2Var(X) � b2Var(Y ) � 2abCov(X,Y ).

It follows immediately that, if X and Y are uncorrelated—so that Cov(X,Y ) � 0—then

 Var(X � Y) � Var(X) � Var(Y ) B.30

and

 Var(X � Y ) � Var(X) � Var(Y ). B.31

In the latter case, note how the variance of the difference is the sum of the variances, not 
the difference in the variances.
 As an example of (B.30), let X denote profits earned by a restaurant during a Friday 
night and let Y be profits earned on the following Saturday night. Then, Z � X � Y is profits 
for the two nights. Suppose X and Y each have an expected value of $300 and a stan-
dard deviation of $15 (so that the variance is 225). Expected profits for the two nights is 
E(Z) � E(X) � E(Y ) � 2�(300) � 600 dollars. If X and Y are independent, and therefore 
uncorrelated, then the variance of total profits is the sum of the variances: Var(Z) � 
Var(X) � Var(Y ) � 2�(225) � 450. It follows that the standard deviation of total profits 
is  �

____
 450   or about $21.21.

 Expressions (B.30) and (B.31) extend to more than two random variables. To state this 
extension, we need a definition. The random variables {X

1
, …, X

n
} are pairwise uncor-

related random variables if each variable in the set is uncorrelated with every other 
variable in the set. That is, Cov(X

i
,X

j
) � 0, for all i 	 j.

Property VAR.4: If {X
1
, …, X

n
} are pairwise uncorrelated random variables and {a

i
: 

i � 1, …, n} are constants, then

 Var(a
1
X

1
 � … � a

n
X

n
) � a2

1
Var(X

1
) � … � a2

n
Var(X

n
).

In summation notation, we can write

 Var  �  ∑ 
i�1

   
n

    a
i
X

i
 �  �  ∑ 

i�1

   
n

    a
i
2Var(X

i
). B.32

A special case of Property VAR.4 occurs when we take a
i
 � 1 for all i. Then, for pairwise 

uncorrelated random variables, the variance of the sum is the sum of the variances:

 Var  �  ∑ 
i�1

   
n

    X
i
 �  � ∑ 

i�1

   
n

    Var(X
i
). B.33

Because independent random variables are uncorrelated (see Property COV.1), the vari-
ance of a sum of independent random variables is the sum of the variances.
 If the X

i
 are not pairwise uncorrelated, then the expression for Var  �  ∑ 

i�1
  

n
    a

i
X

i
 �  is much 

more complicated; we must add to the right-hand side of (B.32) the terms 2a
i
a

j
Cov(x

i
,x

j
) for 

all i � j.
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 We can use (B.33) to derive the variance for a binomial random variable. Let X ~ 
 Binomial(n,�) and write X � Y

1
 � … � Y

n
, where the Y

i
 are independent Bernoulli(�) 

random variables. Then, by (B.33), Var(X) � Var(Y
1
) � … � Var(Y

n
) � n�(1 � �).

 In the airline reservation example with n � 120 and � � .85, the variance of the num-
ber of passengers arriving for their reservations is 120(.85)(.15) � 15.3, so the  standard 
deviation is about 3.9.

Conditional Expectation

Covariance and correlation measure the linear relationship between two random variables 
and treat them symmetrically. More often in the social sciences, we would like to explain 
one variable, called Y, in terms of another variable, say, X. Further, if Y is related to X 
in a nonlinear fashion, we would like to know this. Call Y the explained variable and X 
the explanatory variable. For example, Y might be hourly wage, and X might be years of 
formal education.
 We have already introduced the notion of the conditional probability density function 
of Y given X. Thus, we might want to see how the distribution of wages changes with 
education level. However, we usually want to have a simple way of summarizing this dis-
tribution. A single number will no longer suffice, since the distribution of Y given X � x 
generally depends on the value of x. Nevertheless, we can summarize the relationship 
between Y and X by looking at the conditional expectation of Y given X, sometimes called 
the conditional mean. The idea is this. Suppose we know that X has taken on a particular 
value, say, x. Then, we can compute the expected value of Y, given that we know this 
outcome of X. We denote this expected value by E(Y �X � x), or sometimes E(Y �x) for 
shorthand. Generally, as x changes, so does E(Y �x).
 When Y is a discrete random variable taking on values {y

1
, …, y

m
}, then

 E(Y �x) �  ∑ 
j�1

   
m

    y
j  
f
Y�X(y

j
�x).

When Y is continuous, E(Y �x) is defined by integrating yf
Y �X(y�x) over all possible values 

of y. As with unconditional expectations, the conditional expectation is a weighted average 
of possible values of Y, but now the weights reflect the fact that X has taken on a specific 
value. Thus, E(Y �x) is just some function of x, which tells us how the expected value of 
Y varies with x.
 As an example, let (X,Y ) represent the population of all working individuals, where X 
is years of education and Y is hourly wage. Then, E(Y �X � 12) is the average hourly wage 
for all people in the population with 12 years of education (roughly a high school educa-
tion). E(Y �X � 16) is the average hourly wage for all people with 16 years of education. 
Tracing out the expected value for various levels of education provides important informa-
tion on how wages and education are related. See Figure B.5 for an illustration.
 In principle, the expected value of hourly wage can be found at each level of educa-
tion, and these expectations can be summarized in a table. Because education can vary 
widely—and can even be measured in fractions of a year—this is a cumbersome way 
to show the relationship between average wage and amount of education. In economet-
rics, we typically specify simple functions that capture this relationship. As an example, 
 suppose that the expected value of WAGE given EDUC is the linear function

 E(WAGE�EDUC) � 1.05 � .45 EDUC.
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If this relationship holds in the population of working people, the average wage for people 
with 8 years of education is 1.05 � .45(8) � 4.65, or $4.65. The average wage for people 
with 16 years of education is 8.25, or $8.25. The coefficient on EDUC implies that each 
year of education increases the expected hourly wage by .45, or 45¢.
 Conditional expectations can also be nonlinear functions. For example, suppose that 
E(Y �x) � 10/x, where X is a random variable that is always greater than zero. This  function 
is graphed in Figure B.6. This could represent a demand function, where Y is quantity 
demanded and X is price. If Y and X are related in this way, an analysis of linear associa-
tion, such as correlation analysis, would be incomplete.

Properties of Conditional Expectation

Several basic properties of conditional expectations are useful for derivations in econo-
metric analysis.

Property CE.1: E[c(X)�X] � c(X), for any function c(X).

This first property means that functions of X behave as constants when we compute expec-
tations conditional on X. For example, E(X2�X) � X2. Intuitively, this simply means that if 
we know X, then we also know X2.

Property CE.2: For functions a(X) and b(X),

 E[a(X)Y � b(X)�X] � a(X)E(Y �X) � b(X).

F I GURE  B . 5

The expected value of hourly wage given various levels of education.
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For example, we can easily compute the conditional expectation of a function such as 
XY � 2X2: E(XY � 2X2�X) � XE(Y �X) � 2X2.
 The next property ties together the notions of independence and conditional 
 expectations.

Property CE.3: If X and Y are independent, then E(Y �X) � E(Y ).

This property means that, if X and Y are independent, then the expected value of Y 
given X does not depend on X, in which case, E(Y �X) always equals the (unconditional) 
expected-value of Y. In the wage and education example, if wages were independent of 
education, then the average wages of high school and college graduates would be the 
same. Since this is almost certainly false, we cannot assume that wage and education are 
 independent.
 A special case of Property CE.3 is the following: if U and X are independent and 
E(U) � 0, then E(U�X) � 0.
 There are also properties of the conditional expectation that have to do with the fact 
that E(Y �X) is a function of X, say, E(Y �X) � 
(X). Because X is a random variable, 
(X) is 
also a random variable. Furthermore, 
(X) has a probability distribution and therefore an 
expected value. Generally, the expected value of 
(X) could be very difficult to compute 
directly. The law of iterated expectations says that the expected value of 
(X) is simply 
equal to the expected value of Y. We write this as follows.

Property CE.4: E[E(Y �X)] � E(Y ).

This property is a little hard to grasp at first. It means that, if we first obtain E(Y �X) as a 
function of X and take the expected value of this (with respect to the distribution of X, of 

F I GURE  B . 6

Graph of E(Y|x) = 10/x.
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course), then we end up with E(Y ). This is hardly obvious, but it can be derived using the 
definition of expected values.
 As an example of how to use Property CE.4, let Y � WAGE and X � EDUC, where 
WAGE is measured in hours and EDUC is measured in years. Suppose the expected value 
of WAGE given EDUC is E(WAGE�EDUC) � 4 � .60 EDUC. Further, E(EDUC) � 11.5. 
Then, the law of iterated expectations implies that E(WAGE) � E(4 � .60 EDUC) � 4 � 
.60 E(EDUC) � 4 � .60(11.5) � 10.90, or $10.90 an hour.
 The next property states a more general version of the law of iterated expectations.

Property CE.4�: E(Y �X) � E[E(Y �X,Z)�X].

In other words, we can find E(Y �X) in two steps. First, find E(Y �X,Z) for any other random 
variable Z. Then, find the expected value of E(Y �X,Z), conditional on X.

Property CE.5: If E(Y �X) � E(Y ), then Cov(X,Y ) � 0 [and so Corr(X,Y ) � 0]. In fact, 
every function of X is uncorrelated with Y.

This property means that, if knowledge of X does not change the expected value of Y, then 
X and Y must be uncorrelated, which implies that if X and Y are correlated, then E(Y �X) 
must depend on X. The converse of Property CE.5 is not true: if X and Y are uncorrelated, 
E(Y �X) could still depend on X. For example, suppose Y � X2. Then, E(Y �X) � X2, which 
is clearly a function of X. However, as we mentioned in our discussion of covariance 
and correlation, it is possible that X and X2 are uncorrelated. The conditional expectation 
 captures the nonlinear relationship between X and Y that correlation analysis would miss 
entirely.
 Properties CE.4 and CE.5 have two important implications: if U and X are random 
variables such that E(U�X) � 0, then E(U) � 0, and U and X are uncorrelated.

Property CE.6: If E(Y 2) �  and E[g(X)2] �  for some function g, then E{[Y � 

(X)]2�X} 
 E{[Y � g(X)]2�X} and E{[Y � 
(X)]2} 
 E{[Y � g(X)]2}.

Property CE.6 is very useful in predicting or forecasting contexts. The first inequality 
says that, if we measure prediction inaccuracy as the expected squared prediction error, 
 conditional on X, then the conditional mean is better than any other function of X for 
 predicting Y. The conditional mean also minimizes the unconditional expected squared 
prediction error.

Conditional Variance

Given random variables X and Y, the variance of Y, conditional on X � x, is simply the 
variance associated with the conditional distribution of Y, given X � x: E{[Y � E(Y �x)]2�x}. 
The formula

 Var(Y �X � x) � E(Y 2�x) � [E(Y �x)]2

is often useful for calculations. Only occasionally will we have to compute a conditional 
variance. But we will have to make assumptions about and manipulate conditional vari-
ances for certain topics in regression analysis.
 As an example, let Y � SAVING and X � INCOME (both of these measured annually 
for the population of all families). Suppose that Var(SAVING�INCOME) � 400 � .25 
INCOME. This says that, as income increases, the variance in saving levels also 
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increases. It is important to see that the relationship between the variance of SAVING 
and INCOME is totally separate from that between the expected value of SAVING and 
INCOME.
 We state one useful property about the conditional variance.

Property CV.1: If X and Y are independent, then Var(Y �X) � Var(Y ).

This property is pretty clear, since the distribution of Y given X does not depend on X, and 
Var(Y �X) is just one feature of this distribution.

B.5 The Normal and Related Distributions
The Normal Distribution

The normal distribution and those derived from it are the most widely used distributions 
in statistics and econometrics. Assuming that random variables defined over popula-
tions are normally distributed simplifies probability calculations. In addition, we will 
rely heavily on the normal and related distributions to conduct inference in statistics 
and econometrics—even when the underlying population is not necessarily normal. We 
must postpone the details, but be assured that these distributions will arise many times 
throughout this text.
 A normal random variable is a continuous random variable that can take on any value. 
Its probability density function has the familiar bell shape graphed in Figure B.7.

F I GURE  B . 7

The general shape of the normal probability density function.
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 Mathematically, the pdf of X can be written as

 f (x) �   1 _____ 
�  �

___
 2�  
   exp[�(x � 
)2/2�2], � � x � , B.34

where 
 � E(X) and �2 � Var(X). We say that X has a normal distribution with expected 
value 
 and variance �2, written as X ~ Normal(
,�2). Because the normal distribution is 
symmetric about 
, 
 is also the median of X. The normal distribution is sometimes called 
the Gaussian distribution after the famous statistician C. F. Gauss.
 Certain random variables appear to roughly follow a normal distribution. Human 
heights and weights, test scores, and county unemployment rates have pdfs roughly the 
shape in Figure B.7. Other distributions, such as income distributions, do not appear to 
follow the normal probability function. In most countries, income is not symmetrically 
distributed about any value; the distribution is skewed toward the upper tail. In some 
cases, a variable can be transformed to achieve normality. A popular transformation is the 
natural log, which makes sense for positive random variables. If X is a positive random 
variable, such as income, and Y � log(X) has a normal distribution, then we say that X has 
a lognormal distribution. It turns out that the lognormal distribution fits income distribu-
tion pretty well in many countries. Other variables, such as prices of goods, appear to be 
well described as lognormally distributed.

The Standard Normal Distribution

One special case of the normal distribution occurs when the mean is zero and the variance 
(and, therefore, the standard deviation) is unity. If a random variable Z has a Normal(0,1) 
distribution, then we say it has a standard normal distribution. The pdf of a  standard 
normal random variable is denoted �(z); from (B.34), with 
 � 0 and �2 � 1,
it is given by

 �(z) �   1 ____ 
  �

___
 2�  
   exp(�z2/2), � � z � . B.35

 The standard normal cumulative distribution function is denoted �(z) and is obtained 
as the area under �, to the left of z; see Figure B.8. Recall that �(z) � P(Z 
 z); because 
Z is continuous, �(z) � P(Z � z) as well.
 No simple formula can be used to obtain the values of �(z) [because �(z) is the integral 
of the function in (B.35), and this intregral has no closed form]. Nevertheless, the  values 
for �(z) are easily tabulated; they are given for z between �3.1 and 3.1 in Table G.1 
in Appendix G. For z 
 �3.1, �(z) is less than .001, and for z � 3.1, �(z) is greater than 
.999. Most statistics and econometrics software packages include simple commands for 
computing values of the standard normal cdf, so we can often avoid printed tables entirely 
and obtain the probabilities for any value of z.
 Using basic facts from probability—and, in particular, properties (B.7) and (B.8) con-
cerning cdfs—we can use the standard normal cdf for computing the probability of any 
event involving a standard normal random variable. The most important formulas are

 P(Z � z) � 1 � �(z), B.36

 P(Z � �z) � P(Z � z), B.37
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and

 P(a 
 Z 
 b) � �(b) � �(a). B.38

Because Z is a continuous random variable, all three formulas hold whether or not the 
inequalities are strict. Some examples include P(Z � .44) � 1 � .67 � .33, P(Z � �.92) � 
P(Z � .92) � 1 � .821 � .179, and P(�1 � Z 
 .5) � .692 � .159 � .533.
 Another useful expression is that, for any c � 0,

 P(�Z� � c) � P(Z � c) � P(Z � �c) 
B.39

  � 2�P(Z � c) � 2[1 � �(c)].

Thus, the probability that the absolute value of Z is bigger than some positive constant c 
is simply twice the probability P(Z � c); this reflects the symmetry of the standard normal 
distribution.
 In most applications, we start with a normally distributed random variable, X ~ 
 Normal(
,�2), where 
 is different from zero and �2 	 1. Any normal random variable 
can be turned into a standard normal using the following property.

Property Normal.1: If X ~ Normal(
,�2), then (X � 
)/� ~ Normal(0,1).

Property Normal.1 shows how to turn any normal random variable into a standard normal. 
Thus, suppose X ~ Normal(3,4), and we would like to compute P(X 
 1). The steps always 

F I GURE  B . 8

The standard normal cumulative distribution function.
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involve the normalization of X to a standard normal:

 P(X 
 1) � P(X � 3 
 1 � 3) � P  �   X � 3 ______ 
2

   
 �1 �  

 � P(Z 
 �1) � �(�1) � .159.

E x a m p l e  B . 6

[Probabilities for a Normal Random Variable]

First, let us compute P(2 � X 
 6) when X ~ Normal(4,9) (whether we use � or 
 is irrelevant 
because X is a continuous random variable). Now,

 P(2 � X 
 6) � P  �   2 � 4 _____ 
3

   �   X � 4 ______ 
3

   
   6 � 4 _____ 
3

   �  � P(�2/3 � Z 
 2/3)

 � �(.67) � �(�.67) � .749 � .251 � .498.

Now, let us compute P(�X� � 2):

 P(�X� � 2) � P(X � 2) � P(X � �2)

 � P[(X � 4)/3 � (2 � 4)/3] � P[(X � 4)/3 � (�2 � 4)/3]

 � 1 � �(�2/3) � �(�2)

 � 1 � .251 � .023 � .772.

 

Additional Properties of the Normal Distribution

We end this subsection by collecting several other facts about normal distributions that 
we will later use.

Property Normal.2: If X ~ Normal(
,�2), then aX � b ~ Normal(a
 � b,a2�2).

Thus, if X ~ Normal(1,9), then Y � 2X � 3 is distributed as normal with mean
2E(X) � 3 � 5 and variance 22�9 � 36; sd(Y ) � 2sd(X) � 2�3 � 6.
 Earlier, we discussed how, in general, zero correlation and independence are not the 
same. In the case of normally distributed random variables, it turns out that zero correla-
tion suffices for independence.

Property Normal.3: If X and Y are jointly normally distributed, then they are independent 
if, and only if, Cov(X,Y ) � 0.

Property Normal.4: Any linear combination of independent, identically distributed 
normal random variables has a normal distribution.

For example, let X
i
, for i � 1, 2, and 3, be independent random variables distributed as 

Normal(
,�2). Define W � X
1
 � 2X

2
 � 3X

3
. Then, W is normally distributed; we must 

simply find its mean and variance. Now,

 E(W ) � E(X
1
) � 2E(X

2
) � 3E(X

3
) � 
 � 2
 � 3
 � 0.
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Also,

 Var(W ) � Var(X
1
) � 4Var(X

2
) � 9Var(X

3
) � 14�2.

 Property Normal.4 also implies that the average of independent, normally distrib-
uted random variables has a normal distribution. If Y

1
, Y

2
, …, Y

n
 are independent random 

variables and each is distributed as Normal(
, �2), then

 Y
–

 ~ Normal(
, �2/n). B.40

This result is critical for statistical inference about the mean in a normal population.
 Other features of the normal distribution are worth knowing, although they do not play 
a central role in the text. Because a normal random variable is symmetric about its mean, 
it has zero skewness, that is, E[(X � 
)3] � 0. Further, it can be shown that

 E[(X � 
)4]/� 4 � 3,

or E(Z4) � 3, where Z has a standard normal distribution. Because the normal distribution 
is so prevalent in probability and statistics, the measure of kurtosis for any given random 
variable � (whose fourth moment exists) is often defined to be E[(X � 
)4]/� 4 � 3, that 
is, relative to the value for the standard normal distribution. If E[(X � 
)4]/� 4 � 3, then 
the distribution of � has fatter tails than the normal distribution (a somewhat common 
occurrence, such as with the t distribution to be introduced shortly); if E[(X � 
)4]/� 4 � 3, 
then the distribution has thinner tails than the normal (a rarer situation).

The Chi-Square Distribution

The chi-square distribution is obtained directly from independent, standard normal 
random variables. Let Z

i
, i � 1, 2, …, n, be independent random variables, each dis-

tributed as standard normal. Define a new random variable as the sum of the squares 
of the Z

i
:

 X � ∑ 
i�1

   
n

    Z 2   i  . B.41

Then, X has what is known as a chi-square distribution with n degrees of freedom (or 
df for short). We write this as X ~ 	

n
2. The df in a chi-square distribution corresponds to 

the number of terms in the sum in (B.41). The concept of degrees of freedom will play an 
important role in our statistical and econometric analyses.
 The pdf for chi-square distributions with varying degrees of freedom is given in  
Figure B.9; we will not need the formula for this pdf, and so we do not reproduce it here. 
From equation (B.41), it is clear that a chi-square random variable is always non negative, 
and that, unlike the normal distribution, the chi-square distribution is not symmetric about 
any point. It can be shown that if X ~ 	

n
2, then the expected value of X is n [the number of 

terms in (B.41)], and the variance of X is 2n.

The t Distribution

The t distribution is the workhorse in classical statistics and multiple regression analysis. 
We obtain a t distribution from a standard normal and a chi-square random variable.
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 Let Z have a standard normal distribution and let X have a chi-square distribution with 
n degrees of freedom. Further, assume that Z and X are independent. Then, the random 
variable

 T �   Z _____ 
 �
___

 X/n  
   B.42

has a t distribution with n degrees of freedom. We will denote this by T ~ t
n
. The t distri-

bution gets its degrees of freedom from the chi-square random variable in the denominator 
of (B.42).
 The pdf of the t distribution has a shape similar to that of the standard normal 
distribution, except that it is more spread out and therefore has more area in the tails. 
The expected value of a t distributed random variable is zero (strictly speaking, the 
expected value exists only for n � 1), and the variance is n/(n � 2) for n � 2. (The 
variance does not exist for n 
 2 because the distribution is so spread out.) The pdf 
of the t distribution is plotted in Figure B.10 for various degrees of freedom. As 
the degrees of freedom gets large, the t distribution approaches the standard normal 
distribution.

F I GURE  B . 9

The chi-square distribution with various degrees of freedom.
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The F Distribution

Another important distribution for statistics and econometrics is the F distribution. In 
particular, the F distribution will be used for testing hypotheses in the context of multiple 
regression analysis.
 To define an F random variable, let X

1
 ~ 	2

k1
 and X

2
 ~ 	2

k 2
 and assume that X

1
 and X

2
 are 

independent. Then, the random variable

 F �   
(X

1
/k

1
)
 ______ 

(X
2
/k

2
)
   B.43

has an F distribution with (k
1
,k

2
) degrees of freedom. We denote this as F ~ F

k1, k2
. The pdf 

of the F distribution with different degrees of freedom is given in Figure B.11.
 The order of the degrees of freedom in F

k1,k2
 is critical. The integer k

1
 is called 

the numerator degrees of freedom because it is associated with the chi-square variable 
in the numerator. Likewise, the integer k

2
 is called the denominator degrees of freedom 

because it is associated with the chi-square variable in the denominator. This can be a little 
tricky because (B.43) can also be written as (X

1
k

2
)/(X

2
k

1
), so that k

1
 appears in the denomi-

nator. Just remember that the numerator df is the integer associated with the chi-square 
variable in the numerator of (B.43), and similarly for the denominator df.

F I GURE  B . 10

The t distribution with various degrees of freedom.
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S U M M A R Y

In this appendix, we have reviewed the probability concepts that are needed in 
 econo metrics. Most of the concepts should be familiar from your introductory course in 
prob ability and statistics. Some of the more advanced topics, such as features of condi-
tional expectations, do not need to be mastered now—there is time for that when these 
concepts arise in the context of regression analysis in Part 1.
 In an introductory statistics course, the focus is on calculating means, variances, 
covariances, and so on for particular distributions. In Part 1, we will not need such 
 calculations: we mostly rely on the properties of expectations, variances, and so on that 
have been stated in this appendix.

K E Y  T E R M S

F I GURE  B . 11
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P R O B L E M S

B.1  Suppose that a high school student is preparing to take the SAT exam. Explain why his 
or her eventual SAT score is properly viewed as a random variable.

B.2  Let X be a random variable distributed as Normal(5,4). Find the probabilities of the 
 following events:

 (i) P(X 
 6).
 (ii) P(X � 4).
 (iii) P(�X � 5� � 1).

B.3  Much is made of the fact that certain mutual funds outperform the market year after year 
(that is, the return from holding shares in the mutual fund is higher than the return from 
holding a portfolio such as the S&P 500). For concreteness, consider a 10-year period 
and let the population be the 4,170 mutual funds reported in The Wall Street Journal on 
January 1, 1995. By saying that performance relative to the market is random, we mean 
that each fund has a 50–50 chance of outperforming the market in any year and that 
performance is independent from year to year.

 (i)  If performance relative to the market is truly random, what is the probability that 
any particular fund outperforms the market in all 10 years?

 (ii)  Find the probability that at least one fund out of 4,170 funds outperforms the 
market in all 10 years. What do you make of your answer?

 (iii)  If you have a statistical package that computes binomial probabilities, find the 
probability that at least five funds outperform the market in all 10 years.

B.4  For a randomly selected county in the United States, let X represent the proportion of 
adults over age 65 who are employed, or the elderly employment rate. Then, X is restricted 
to a value between zero and one. Suppose that the cumulative distribution function for X 
is given by F(x) � 3x2 � 2x3 for 0 
 x 
 1. Find the probability that the  elderly employ-
ment rate is at least .6 (60%).

B.5  Just prior to jury selection for O. J. Simpson’s murder trial in 1995, a poll found that 
about 20% of the adult population believed Simpson was innocent (after much of the 
physical evidence in the case had been revealed to the public). Ignore the fact that this 
20% is an estimate based on a subsample from the population; for illustration, take it as 
the true percentage of people who thought Simpson was innocent prior to jury selection. 

Experiment
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Assume that the 12 jurors were selected randomly and independently from the popula-
tion (although this turned out not to be true).

 (i)  Find the probability that the jury had at least one member who believed in 
Simpson’s innocence prior to jury selection. [Hint: Define the Binomial(12,.20) 
random variable X to be the number of jurors believing in Simpson’s innocence.]

 (ii)  Find the probability that the jury had at least two members who believed in 
Simpson’s innocence. [Hint: P(X � 2) � 1 � P(X 
 1), and P(X 
 1) � P(X � 0) � 
P(X � 1).]

B.6  (Requires calculus) Let X denote the prison sentence, in years, for people con-
victed of auto theft in a particular state in the United States. Suppose that the pdf of X 
is given by

f (x) � (1/9)x2, 0 � x � 3.

 Use integration to find the expected prison sentence.

B.7  If a basketball player is a 74% free throw shooter, then, on average, how many free 
throws will he or she make in a game with eight free throw attempts?

B.8  Suppose that a college student is taking three courses: a two-credit course, a three-credit 
course, and a four-credit course. The expected grade in the two-credit course is 3.5, while 
the expected grade in the three- and four-credit courses is 3.0. What is the expected over-
all grade point average for the semester? (Remember that each course grade is weighted 
by its share of the total number of units.)

B.9  Let X denote the annual salary of university professors in the United States, measured in 
thousands of dollars. Suppose that the average salary is 52.3, with a standard deviation 
of 14.6. Find the mean and standard deviation when salary is measured in dollars.

B.10  Suppose that at a large university, college grade point average, GPA, and SAT score, 
SAT, are related by the conditional expectation E(GPA�SAT ) � .70 � .002 SAT.

 (i)  Find the expected GPA when SAT � 800. Find E(GPA�SAT � 1,400). Comment 
on the difference.

 (ii)  If the average SAT in the university is 1,100, what is the average GPA? (Hint: Use 
Property CE.4.)

 (iii)  If a student’s SAT score is 1,100, does this mean he or she will have the GPA 
found in part (ii)? Explain.
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C.1 Populations, Parameters, 
and Random Sampling
Statistical inference involves learning something about a population given the availability 
of a sample from that population. By population, we mean any well-defined group of sub-
jects, which could be individuals, firms, cities, or many other possibilities. By “learning,” 
we can mean several things, which are broadly divided into the categories of estimation
and hypothesis testing.
 A couple of examples may help you understand these terms. In the population of all 
working adults in the United States, labor economists are interested in learning about the 
return to education, as measured by the average percentage increase in earnings given 
another year of education. It would be impractical and costly to obtain information on 
earnings and education for the entire working population in the United States, but we can 
obtain data on a subset of the population. Using the data collected, a labor economist may 
report that his or her best estimate of the return to another year of education is 7.5%. This 
is an example of a point estimate. Or, she or he may report a range, such as “the return to 
education is between 5.6% and 9.4%.” This is an example of an interval estimate.
 An urban economist might want to know whether neighborhood crime watch programs 
are associated with lower crime rates. After comparing crime rates of neighborhoods with 
and without such programs in a sample from the population, he or she can draw one of two 
conclusions: neighborhood watch programs do affect crime, or they do not. This example 
falls under the rubric of hypothesis testing.
 The first step in statistical inference is to identify the population of interest. This 
may seem obvious, but it is important to be very specific. Once we have identified the 
population, we can specify a model for the population relationship of interest. Such 
models involve probability distributions or features of probability distributions, and 
these depend on unknown parameters. Parameters are simply constants that determine 
the directions and strengths of relationships among variables. In the labor econom-
ics example just presented, the parameter of interest is the return to education in the 
 population.

Fundamentals of 
Mathematical Statistics

Appendix C
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Sampling

For reviewing statistical inference, we focus on the simplest possible setting. Let Y be 
a random variable representing a population with a probability density function f (y;�), 
which depends on the single parameter �. The probability density function (pdf) of Y 
is assumed to be known except for the value of �; different values of � imply different 
population distributions, and therefore we are interested in the value of �. If we can obtain 
certain kinds of samples from the population, then we can learn something about �. The 
easiest sampling scheme to deal with is random sampling.

Random Sampling. If Y
1
, Y

2
, …, Y

n
 are independent random variables with a common 

probability density function f (y;�), then {Y
1
, …, Y

n
} is said to be a random sample from 

f (y;�) [or a random sample from the population represented by f (y;�)].

When {Y
1
, …, Y

n
} is a random sample from the density f (y;�), we also say that the Y

i
 are 

independent, identically distributed (or i.i.d.) random variables from f (y;�). In some cases, 
we will not need to entirely specify what the common distribution is.
 The random nature of Y

1
, Y

2
, …, Y

n
 in the definition of random sampling reflects the 

fact that many different outcomes are possible before the sampling is actually carried 
out. For example, if family income is obtained for a sample of n � 100 families in the 
United States, the incomes we observe will usually differ for each different sample of 
100 families. Once a sample is obtained, we have a set of numbers, say, {y

1
, y

2
, …, y

n
}, 

which constitute the data that we work with. Whether or not it is appropriate to assume 
the sample came from a random sampling scheme requires knowledge about the actual 
sampling process.
 Random samples from a Bernoulli distribution are often used to illustrate statistical 
concepts, and they also arise in empirical applications. If Y

1
, Y

2
, …, Y

n
 are independent 

random variables and each is distributed as Bernoulli(�), so that P(Y
i
 � 1) � � and 

P(Y
i
 � 0) � 1 � �, then {Y

1
, Y

2
, …, Y

n
} constitutes a random sample from the Bernoulli(�) 

distribution. As an illustration, consider the airline reservation example carried along in 
Appendix B. Each Y

i
 denotes whether customer i shows up for his or her reservation; 

Y
i
 � 1 if passenger i shows up, and Y

i
 � 0 otherwise. Here, � is the probability that a 

randomly drawn person from the population of all people who make airline reservations 
shows up for his or her reservation.
 For many other applications, random samples can be assumed to be drawn from a 
normal distribution. If {Y

1
, …, Y

n
} is a random sample from the Normal(
,�2) population, 

then the population is characterized by two parameters, the mean 
 and the variance �2. 
Primary interest usually lies in 
, but �2 is of interest in its own right because making 
inferences about 
 often requires learning about �2.

C.2 Finite Sample Properties of Estimators
In this section, we study what are called finite sample properties of estimators. The term 
“finite sample” comes from the fact that the properties hold for a sample of any size, 
no matter how large or small. Sometimes, these are called small sample properties. In 
 Section C.3, we cover “asymptotic properties,” which have to do with the behavior of 
 estimators as the sample size grows without bound.



 Appendix C   Fundamentals of Mathematical Statistics 749

Estimators and Estimates

To study properties of estimators, we must define what we mean by an estimator. Given 
a random sample {Y

1
, Y

2
, …, Y

n
} drawn from a population distribution that depends on an 

unknown parameter �, an estimator of � is a rule that assigns each possible outcome of the 
sample a value of �. The rule is specified before any sampling is carried out; in particular, 
the rule is the same regardless of the data actually obtained.
 As an example of an estimator, let {Y

1
, …, Y

n
} be a random sample from a population 

with mean 
. A natural estimator of 
 is the average of the random sample:

 Ȳ � n�1  ∑ 
i�1

   
n

    Y
i
. C.1

Ȳ is called the sample average but, unlike in Appendix A where we defined the sample 
average of a set of numbers as a descriptive statistic, Ȳ is now viewed as an estimator. 
Given any outcome of the random variables Y

1
, …, Y

n
, we use the same rule to estimate 


: we simply average them. For actual data outcomes {y
1
, …, y

n
}, the estimate is just the 

average in the sample:  - y  � (y
1 
� y

2
 � … � y

n
)/n.

E x a m p l e  C . 1

[City Unemployment Rates]

Suppose we obtain the following sample of unemployment rates for 10 cities in the United States:

City Unemployment Rate

 1 5.1

 2 6.4

 3 9.2

 4 4.1

 5 7.5

 6 8.3

 7 2.6

 8 3.5

 9 5.8

10 7.5

Our estimate of the average city unemployment rate in the United States is  - y  � 6.0. Each sample 
generally results in a different estimate. But the rule for obtaining the estimate is the same, regard-
less of which cities appear in the sample, or how many.
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 More generally, an estimator W of a parameter � can be expressed as an abstract math-
ematical formula:

 W � h(Y
1
, Y

2
, …, Y

n
), C.2

for some known function h of the random variables Y
1
, Y

2
, …, Y

n
. As with the special case 

of the sample average, W is a random variable because it depends on the random sample: 
as we obtain different random samples from the population, the value of W can change. 
When a particular set of numbers, say, {y

1
, y

2
, …, y

n
}, is plugged into the function h, we 

obtain an estimate of �, denoted w � h(y
1
, …, y

n
). Sometimes, W is called a point estimator 

and w a point estimate to distinguish these from interval estimators and estimates, which 
we will come to in Section C.5.
 For evaluating estimation procedures, we study various properties of the probability 
 distribution of the random variable W. The distribution of an estimator is often called 
its sampling distribution, because this distribution describes the likelihood of various 
outcomes of W across different random samples. Because there are unlimited rules for 
combining data to estimate parameters, we need some sensible criteria for choosing among 
estimators, or at least for eliminating some estimators from consideration. Therefore, we 
must leave the realm of descriptive statistics, where we compute things such as sample 
average to simply summarize a body of data. In mathematical statistics, we study the sam-
pling  distributions of estimators.

Unbiasedness

In principle, the entire sampling distribution of W can be obtained given the probability 
distribution of Y

i
 and the function h. It is usually easier to focus on a few features of the 

distribution of W in evaluating it as an estimator of �. The first important property of an 
estimator involves its expected value.

Unbiased Estimator. An estimator, W of �, is an unbiased estimator if

 E(W ) � �, C.3

for all possible values of �.

If an estimator is unbiased, then its probability distribution has an expected value equal to 
the parameter it is supposed to be estimating. Unbiasedness does not mean that the esti-
mate we get with any particular sample is equal to �, or even very close to �. Rather, if we 
could indefinitely draw random samples on Y from the population, compute an estimate 
each time, and then average these estimates over all random samples, we would obtain 
�. This thought experiment is abstract because, in most applications, we just have one 
random sample to work with.
 For an estimator that is not unbiased, we define its bias as follows.

Bias of an Estimator. If W is a biased estimator of �, its bias is defined as

 Bias(W ) � E(W ) � �. C.4

Figure C.1 shows two estimators; the first one is unbiased, and the second one has a 
positive bias.
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 The unbiasedness of an estimator and the size of any possible bias depend on the 
 distribution of Y and on the function h. The distribution of Y is usually beyond our control 
(although we often choose a model for this distribution): it may be determined by nature 
or social forces. But the choice of the rule h is ours, and if we want an unbiased estimator, 
then we must choose h accordingly.
 Some estimators can be shown to be unbiased quite generally. We now show that the 
sample average Ȳ is an unbiased estimator of the population mean 
, regardless of the 
underlying population distribution. We use the properties of expected values (E.1 and E.2) 
that we covered in Section B.3:

 E(Ȳ ) � E  � (1/n)  ∑ 
i�1

   
n

    Y
i
 �  � (1/n)E  �  ∑ 

i�1

   
n

    Y
i
 �  � (1/n)  �  ∑ 

i�1

   
n

    E(Y
i 
) � 

      � (1/n)  �  ∑ 
i�1

   
n

   
    �   � (1/n)(n
) � 
.

 For hypothesis testing, we will need to estimate the variance �2 from a population 
with mean 
. Letting {Y

1
, …, Y

n
} denote the random sample from the population with 

E(Y ) � 
 and Var(Y ) � �2, define the estimator as

 S 2 �   1 ����� 
n �1

    ∑ 
i�1

   
n

    (Y
i
 � Ȳ )2, C.5

wu = E(W1) E(W2)

pdf of W1 pdf of W2

f(w)

F I GURE  C . 1

An unbiased estimator, W
1
, and an estimator with positive bias, W

2
.
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which is usually called the sample variance. It can be shown that S 2 is unbiased for �2: 
E(S 2) � �2. The division by n � 1, rather than n, accounts for the fact that the mean 
 
is estimated rather than known. If 
 were known, an unbiased estimator of �2 would be 
n�1  ∑ 

i�1
  

n
   ( Y

i
 � 
)2, but 
 is rarely known in practice.

 Although unbiasedness has a certain appeal as a property for an estimator—indeed, its 
antonym, “biased,” has decidedly negative connotations—it is not without its problems. 
One weakness of unbiasedness is that some reasonable, and even some very good, estima-
tors are not unbiased. We will see an example shortly.
 Another important weakness of unbiasedness is that unbiased estimators exist that are 
actually quite poor estimators. Consider estimating the mean 
 from a population. Rather 
than using the sample average Ȳ to estimate 
, suppose that, after collecting a sample of 
size n, we discard all of the observations except the first. That is, our estimator of 
 is 
simply W � Y

1
. This estimator is unbiased because E(Y

1
) � 
. Hopefully, you sense that 

ignoring all but the first observation is not a prudent approach to estimation: it throws out 
most of the information in the sample. For example, with n � 100, we obtain 100 out-
comes of the random variable Y, but then we use only the first of these to estimate E(Y ).

The Sampling Variance of Estimators

The example at the end of the previous subsection shows that we need additional criteria 
to evaluate estimators. Unbiasedness only ensures that the sampling distribution of an esti-
mator has a mean value equal to the parameter it is supposed to be estimating. This is fine, 
but we also need to know how spread out the distribution of an estimator is. An estimator 
can be equal to �, on average, but it can also be very far away with large probability. In 
Figure C.2, W

1
 and W

2
 are both unbiased estimators of �. But the distribution of W

1
 is more 

tightly centered about �: the probability that W
1
 is greater than any given distance from � 

is less than the probability that W
2
 is greater than that same distance from �. Using W

1
 as 

our estimator means that it is less likely that we will obtain a random sample that yields 
an estimate very far from �.
 To summarize the situation shown in Figure C.2, we rely on the variance (or standard 
deviation) of an estimator. Recall that this gives a single measure of the dispersion in the 
distribution. The variance of an estimator is often called its sampling variance because it 
is the variance associated with a sampling distribution. Remember, the sampling variance 
is not a random variable; it is a constant, but it might be unknown.
 We now obtain the variance of the sample average for estimating the mean 
 from a 
population:

 Var(Ȳ ) � Var  � (1/n) ∑ 
i�1

   
n

    Y
i
 �  � (1/n2)Var  �  ∑ 

i�1

   
n

    Y
i
 �  � (1/n2)  �  ∑ 

i�1

   
n

    Var(Y
i
) � 

 � (1/n2)  �  ∑ 
i�1

   
n

    �2 �  � (1/n2)(n�2) � �2/n.
 C.6

Notice how we used the properties of variance from Sections B.3 and B.4 (VAR.2 and 
VAR.4), as well as the independence of the Y

i
. To summarize: If {Y

i
: i � 1, 2, …, n} is a 

random sample from a population with mean 
 and variance �2, then Ȳ has the same mean 
as the population, but its sampling variance equals the population variance, �2, divided by 
the sample size.
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 An important implication of Var(Ȳ) � �2/n is that it can be made very close to zero by 
increasing the sample size n. This is a key feature of a reasonable estimator, and we return 
to it in Section C.3.
 As suggested by Figure C.2, among unbiased estimators, we prefer the estimator with 
the smallest variance. This allows us to eliminate certain estimators from consideration. 
For a random sample from a population with mean 
 and variance �2, we know that Ȳ is 
unbiased, and Var(Ȳ ) � �2/n. What about the estimator Y

1
, which is just the first obser-

vation drawn? Because Y
1 

is a random draw from the population, Var(Y
1
) � �2. Thus, 

the difference between Var(Y
1
) and Var(Ȳ ) can be large even for small sample sizes. If 

n � 10, then Var(Y
1
) is 10 times as large as Var(Ȳ ) � �2/10. This gives us a formal way 

of excluding Y
1
 as an estimator of 
.

 To emphasize this point, Table C.1 contains the outcome of a small simulation study. 
Using the statistical package Stata®, 20 random samples of size 10 were generated from a 
normal distribution, with 
 � 2 and �2 � 1; we are interested in estimating 
 here. For each 
of the 20 random samples, we compute two estimates, y

1
 and  - y ; these values are listed in 

Table C.1. As can be seen from the table, the values for y
1
 are much more spread out than 

those for  - y : y
1
 ranges from �0.64 to 4.27, while  - y  ranges only from 1.16 to 2.58. Further, in 

16 out of 20 cases,  - y  is closer than y
1
 to 
 � 2. The average of y

1
 across the simulations is 

about 1.89, while that for  - y  is 1.96. The fact that these averages are close to 2 illustrates the 
unbiasedness of both estimators (and we could get these averages closer to 2 by doing more 
than 20 replications). But comparing just the average outcomes across random draws masks 
the fact that the sample average Ȳ  is far superior to Y

1
 as an estimator of 
.

F I GURE  C . 2

The sampling distributions of two unbiased estimators of �.

wu
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Ef ficiency

Comparing the variances of Ȳ and Y
1
 in the previous subsection is an example of a general 

approach to comparing different unbiased estimators.

TABLE  C . 1

Simulation of Estimators for a Normal(�,1) Distribution with � � 2

Replication y1  - y 

 1 �0.64 1.98

 2 1.06 1.43

 3 4.27 1.65

 4 1.03 1.88

 5 3.16 2.34

 6 2.77 2.58

 7 1.68 1.58

 8 2.98 2.23

 9 2.25 1.96

10 2.04 2.11

11 0.95 2.15

12 1.36 1.93

13 2.62 2.02

14 2.97 2.10

15 1.93 2.18

16 1.14 2.10

17 2.08 1.94

18 1.52 2.21

19 1.33 1.16

20 1.21 1.75
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Relative Efficiency. If W
1
 and W

2
 are two unbiased estimators of �, W

1
 is efficient relative 

to W
2
 when Var(W

1
) 
 Var(W

2
) for all �, with strict inequality for at least one value of �.

Earlier, we showed that, for estimating the population mean 
, Var(Ȳ ) � Var(Y
1
) for 

any value of �2 whenever n � 1. Thus, Ȳ is efficient relative to Y
1
 for estimating 
. We 

cannot always choose between unbiased estimators based on the smallest variance crite-
rion: given two unbiased estimators of �, one can have smaller variance from some values 
of �, while the other can have smaller variance for other values of �.
 If we restrict our attention to a certain class of estimators, we can show that the sample 
average has the smallest variance. Problem C.2 asks you to show that Ȳ has the smallest 
variance among all unbiased estimators that are also linear functions of Y

1
, Y

2
,  …,  Y

n
. 

The assumptions are that the Y
i
 have common mean and variance, and that they are pair-

wise uncorrelated.
 If we do not restrict our attention to unbiased estimators, then comparing variances is 
meaningless. For example, when estimating the population mean 
, we can use a trivial 
estimator that is equal to zero, regardless of the sample that we draw. Naturally, the vari-
ance of this estimator is zero (since it is the same value for every random sample). But the 
bias of this estimator is �
, so it is a very poor estimator when �
� is large.
 One way to compare estimators that are not necessarily unbiased is to compute the 
mean squared error (MSE) of the estimators. If W is an estimator of �, then the MSE 
of W is defined as MSE(W ) � E[(W � �)2]. The MSE measures how far, on average, the 
estimator is away from �. It can be shown that MSE(W ) � Var(W ) � [Bias(W )]2, so that 
MSE(W ) depends on the variance and bias (if any is present). This allows us to compare 
two estimators when one or both are biased.

C.3 Asymptotic or Larger Sample 
Properties of Estimators
In Section C.2, we encountered the estimator Y

1
 for the population mean 
, and we saw that, 

even though it is unbiased, it is a poor estimator because its variance can be much larger 
than that of the sample mean. One notable feature of Y

1
 is that it has the same variance for 

any sample size. It seems reasonable to require any estimation procedure to improve as the 
sample size increases. For estimating a population mean 
, Ȳ improves in the sense that its 
variance gets smaller as n gets larger; Y

1
 does not improve in this sense.

 We can rule out certain silly estimators by studying the asymptotic or large sample 
properties of estimators. In addition, we can say something positive about estimators that 
are not unbiased and whose variances are not easily found.
 Asymptotic analysis involves approximating the features of the sampling distribution of an 
estimator. These approximations depend on the size of the sample. Unfortunately, we are nec-
essarily limited in what we can say about how “large” a sample size is needed for asymptotic 
analysis to be appropriate; this depends on the underlying population distribution. But large 
sample approximations have been known to work well for sample sizes as small as n � 20.

Consistency

The first asymptotic property of estimators concerns how far the estimator is likely to 
be from the parameter it is supposed to be estimating as we let the sample size increase 
indefinitely.
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Consistency. Let W
n
 be an estimator of � based on a sample Y

1
, Y

2
,  …,  Y

n
 of size n. 

Then, W
n
 is a  consistent estimator of � if for every � � 0,

 P(�W
n
 � �� � �) → 0 as n → . C.7

If W
n
 is not consistent for �, then we say it is inconsistent.

When W
n
 is consistent, we also say that � is the probability limit of W

n
, written as 

plim(W
n
) � �.

 Unlike unbiasedness—which is a feature of an estimator for a given sample size—
consistency involves the behavior of the sampling distribution of the estimator as the sample 
size n gets large. To emphasize this, we have indexed the estimator by the sample size in 
stating this definition, and we will continue with this convention throughout this section.
 Equation (C.7) looks technical, and it can be rather difficult to establish based on fun-
damental probability principles. By contrast, interpreting (C.7) is straightforward. It means 
that the distribution of W

n
 becomes more and more concentrated about �, which roughly 

means that for larger sample sizes, W
n
 is less and less likely to be very far from �. This 

tendency is illustrated in Figure C.3.
 If an estimator is not consistent, then it does not help us to learn about �, even with an 
unlimited amount of data. For this reason, consistency is a minimal requirement of an esti-
mator used in statistics or econometrics. We will encounter estimators that are consistent 
under certain assumptions and inconsistent when those assumptions fail. When  estimators 

F I GURE  C . 3

The sampling distributions of a consistent estimator for three sample sizes.
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are inconsistent, we can usually find their probability limits, and it will be important to 
know how far these probability limits are from �.
 As we noted earlier, unbiased estimators are not necessarily consistent, but those 
whose variances shrink to zero as the sample size grows are consistent. This can be 
stated formally: If W

n
 is an unbiased estimator of � and Var(W

n
) → 0 as n → , then 

plim(W
n
) � �. Unbiased estimators that use the entire data sample will usually have a 

 variance that shrinks to zero as the sample size grows, thereby being consistent.
 A good example of a consistent estimator is the average of a random sample drawn from 
a population with 
 and variance �2. We have already shown that the sample  average is 
unbiased for 
. In equation (C.6), we derived Var(Ȳ

n
) � �2/n for any sample size n. 

Therefore, Var(Ȳ
n
) → 0 as n → , so Ȳ

n
 is a consistent estimator of 
 (in addition to 

being unbiased).
 The conclusion that Ȳ

n
 is consistent for 
 holds even if Var(Ȳ

n
) does not exist. This 

classic result is known as the law of large numbers (LLN).

Law of Large Numbers. Let Y
1
, Y

2
, …, Y

n
 be independent, identically distributed 

random variables with mean 
. Then,

 plim(Ȳ
n
) � 
. C.8

The law of large numbers means that, if we are interested in estimating the population 
average 
, we can get arbitrarily close to 
 by choosing a sufficiently large sample. This 
fundamental result can be combined with basic properties of plims to show that fairly 
complicated estimators are consistent.

Property PLIM.1: Let � be a parameter and define a new parameter, � � g(�), for some 
continuous function g(�). Suppose that plim(W

n
) � �. Define an estimator of � by G

n
 � 

g(W
n
). Then,

 plim(G
n
) � �. C.9

This is often stated as

 plim g(W
n
) � g(plim W

n
) C.10

for a continuous function g(�).

The assumption that g(�) is continuous is a technical requirement that has often been 
described nontechnically as “a function that can be graphed without lifting your pencil 
from the paper.” Because all the functions we encounter in this text are continuous, we 
do not provide a formal definition of a continuous function. Examples of continuous 
 functions are g(�) � a � b� for constants a and b, g(�) � �2, g(�) � 1/�, g(�) �  �

__
 �  , 

g(�) � exp(�), and many variants on these. We will not need to mention the continuity 
assumption again.
 As an important example of a consistent but biased estimator, consider estimating 
the standard deviation, �, from a population with mean 
 and variance �2. We already 
claimed that the sample variance S

n
2 � (n � 1)�1 �n

i�1
 (Y

i
 � Ȳ

n
)2 is unbiased for �2. Using 

the law of large numbers and some algebra, S
n
2 can also be shown to be consistent for �2. 
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The natural estimator of � �  �
___

 �2   is S
n
 �  �

__
 S

n
2   (where the square root is always the positive 

square root). S
n
, which is called the sample standard deviation, is not an unbiased esti-

mator because the expected value of the square root is not the square root of the expected 
value (see Section B.3). Nevertheless, by PLIM.1, plim S

n
 �  �

_______
 plim S

n
2   �  �

___
 �2   � �, so S

n
 is 

a consistent estimator of �.
 Here are some other useful properties of the probability limit:

Property PLIM.2: If plim(T
n
) � � and plim(U

n
) � �, then

(i) plim(T
n
 � U

n
) � � � �;

(ii) plim(T
n
U

n
) � ��;

(iii) plim(T
n 
/U

n
) � �/�, provided � 	 0.

These three facts about probability limits allow us to combine consistent estimators in 
a variety of ways to get other consistent estimators. For example, let {Y

1
, …, Y

n
} be a 

random sample of size n on annual earnings from the population of workers with a high 
school education and denote the population mean by 


Y 
. Let {Z

1
, …, Z

n
} be a random 

sample on annual earnings from the population of workers with a college education and 
denote the population mean by 


Z 
. We wish to estimate the percentage difference in 

annual earnings between the two groups, which is � � 100�(

Z
 � 


Y
)/


Y 
. (This is the 

percentage by which average earnings for college graduates differs from average earnings 
for high school graduates.) Because Ȳ

n
 is consistent for 


Y
 and Z̄

n
 is consistent for 


Z
, it 

follows from PLIM.1 and part (iii) of PLIM.2 that

 G
n 
� 100 � ( Z̄

n
 � Ȳ

n 
)/Ȳ

n

is a consistent estimator of �. G
n
 is just the percentage difference between Z̄

n
 and Ȳ

n
 in 

the sample, so it is a natural estimator. G
n
 is not an unbiased estimator of �, but it is still 

a good estimator except possibly when n is small.

Asymptotic Normality

Consistency is a property of point estimators. Although it does tell us that the distribution 
of the estimator is collapsing around the parameter as the sample size gets large, it tells 
us essentially nothing about the shape of that distribution for a given sample size. For 
 constructing interval estimators and testing hypotheses, we need a way to approximate the 
distribution of our estimators. Most econometric estimators have distributions that are well 
approximated by a normal distribution for large samples, which motivates the  following 
definition.

Asymptotic Normality. Let {Z
n
: n � 1, 2, …} be a sequence of random variables, such 

that for all numbers z,

 P(Z
n 

 z) → �(z) as n → , C.11

where �(z) is the standard normal cumulative distribution function. Then, Z
n 
is said to have 

an asymptotic standard normal distribution. In this case, we often write Z
n
 ~ª  Normal(0,1). 

(The “a” above the tilde stands for “asymptotically” or “approximately.”)

 Property (C.11) means that the cumulative distribution function for Z
n 
gets closer and 

closer to the cdf of the standard normal distribution as the sample size n gets large. When 
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asymptotic normality holds, for large n we have the approximation P(Z
n 

 z) � �(z). 

Thus, probabilities concerning Z
n
 can be approximated by standard normal probabilities.

 The central limit theorem (CLT) is one of the most powerful results in probability 
and statistics. It states that the average from a random sample for any population (with 
finite variance), when standardized, has an asymptotic standard normal distribution.

Central Limit Theorem. Let {Y
1
, Y

2
, …, Y

n
} be a random sample with mean 
 and 

variance �2. Then,

 Z
n
 �   

Ȳ
n 
� 

 ������ 

�/ �
__

 n  
   C.12

has an asymptotic standard normal distribution.

 The variable Z
n
 in (C.12) is the standardized version of Ȳ

n
: we have subtracted off 

E(Ȳ
n
) � 
 and divided by sd(Ȳ

n
) � �/ �

__
 n  . Thus, regardless of the population distribution 

of Y, Z
n
 has mean zero and variance one, which coincides with the mean and variance of 

the standard normal distribution. Remarkably, the entire distribution of Z
n
 gets arbitrarily 

close to the standard normal distribution as n gets large.
 We can write the standardized variable in equation (C.12) as  �

__
 n  (Ȳ

n
 � 
)/�, which 

shows that we must multiply the difference between the sample mean and the population 
mean by the square root of the sample size in order to obtain a useful limiting distribu-
tion. Without the multiplication by  �

__
 n  , we would just have (Ȳ

n 
� 
)/�, which converges 

in probability to zero. In other words, the distribution of (Ȳ
n 
� 
)/� simply collapses to a 

single point as n → , which we know cannot be a good approximation to the distribution 
of (Ȳ

n 
� 
)/� for reasonable sample sizes. Multiplying by  �

__
 n   ensures that the variance 

of Z
n
 remains constant. Practically, we often treat Ȳ

n 
 as being approximately normally 

distributed with mean 
 and variance �2/n, and this gives us the correct statistical procedures 
because it leads to the standardized variable in equation (C.12).
 Most estimators encountered in statistics and econometrics can be written as functions 
of sample averages, in which case we can apply the law of large numbers and the central 
limit theorem. When two consistent estimators have asymptotic normal distributions, we 
choose the estimator with the smallest asymptotic variance.
 In addition to the standardized sample average in (C.12), many other statistics that 
depend on sample averages turn out to be asymptotically normal. An important one is 
obtained by replacing � with its consistent estimator S

n 
in equation (C.12):

   
Ȳ

n 
� 

 ������ S

n 
/ �

__
 n      C.13

also has an approximate standard normal distribution for large n. The exact (finite  sample) 
distributions of (C.12) and (C.13) are definitely not the same, but the difference is often 
small enough to be ignored for large n.
 Throughout this section, each estimator has been subscripted by n to emphasize the 
nature of asymptotic or large sample analysis. Continuing this convention clutters the 
notation without providing additional insight, once the fundamentals of asymptotic analy-
sis are understood. Henceforth, we drop the n subscript and rely on you to remember that 
estimators depend on the sample size, and properties such as consistency and asymptotic 
normality refer to the growth of the sample size without bound.
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C.4 General Approaches to 
Parameter Estimation
Until this point, we have used the sample average to illustrate the finite and large sample 
properties of estimators. It is natural to ask: Are there general approaches to estimation 
that produce estimators with good properties, such as unbiasedness, consistency, and 
efficiency?
 The answer is yes. A detailed treatment of various approaches to estimation is beyond 
the scope of this text; here, we provide only an informal discussion. A thorough discussion 
is given in Larsen and Marx (1986, Chapter 5).

Method of Moments

Given a parameter � appearing in a population distribution, there are usually many ways 
to obtain unbiased and consistent estimators of �. Trying all different possibilities and 
comparing them on the basis of the criteria in Sections C.2 and C.3 is not practical. 
Fortunately, some methods have been shown to have good general properties, and, for the 
most part, the logic behind them is intuitively appealing.
 In the previous sections, we have studied the sample average as an unbiased estima-
tor of the population average and the sample variance as an unbiased estimator of the 
population variance. These estimators are examples of method of moments estima-
tors. Generally, method of moments estimation proceeds as follows. The parameter � 
is shown to be related to some expected value in the distribution of Y, usually E(Y ) or 
E(Y 2) (although more exotic choices are sometimes used). Suppose, for example, that the 
parameter of interest, �, is related to the population mean as � � g(
) for some function g. 
Because the sample average Ȳ is an unbiased and consistent estimator of 
, it is natural 
to replace 
 with Ȳ, which gives us the estimator g(Ȳ ) of �. The estimator g(Ȳ ) is con-
sistent for �, and if g(
) is a linear function of 
, then g(Ȳ ) is unbiased as well. What we 
have done is replace the population moment, 
, with its sample counterpart, Ȳ . This is 
where the name “method of moments” comes from.
 We cover two additional method of moments estimators that will be useful for our dis-
cussion of regression analysis. Recall that the covariance between two random variables 
X and Y is defined as �

XY
 � E[(X � 


X
)(Y � 


Y
)]. The method of moments suggests 

 estimating �
XY

 by n�1  ∑ 
i�1

  
n
    (X

i
 � X̄)(Y

i
 � Ȳ ). This is a consistent estimator of �

XY
, but it 

turns out to be biased for essentially the same reason that the sample variance is biased if 
n, rather than n � 1, is used as the divisor. The sample covariance is defined as

 S
XY

 �   1 ����� 
n � 1

    ∑ 
i�1

   
n

    (X
i
 � X̄ )(Y

i
 � Ȳ ). C.14

It can be shown that this is an unbiased estimator of �
XY

. (Replacing n with n � 1 makes 
no difference as the sample size grows indefinitely, so this estimator is still consistent.)
 As we discussed in Section B.4, the covariance between two variables is often difficult 
to interpret. Usually, we are more interested in correlation. Because the population correla-
tion is �

XY
 � �

XY
 /(�

X
 �

Y
), the method of moments suggests estimating �

XY
 as

 R
XY

 �    
S

XY _____ 
S

X
 S

Y

    �   

 ∑ 
i�1

   
n

    (X
i
 � X̄ )(Y

i
 � Ȳ )

   ���������������������������   

 �  ∑ 
i�1

   
n

    (X
i
 � X̄ )2 � 

1/2

 �  ∑ 
i�1

   
n

    (Y
i
 � Ȳ )2 � 

1/2
  , C.15
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which is called the sample correlation coefficient (or sample correlation for short). 
Notice that we have canceled the division by n � 1 in the sample covariance and the 
sample standard deviations. In fact, we could divide each of these by n, and we would 
arrive at the same final formula.
 It can be shown that the sample correlation coefficient is always in the interval [�1,1], 
as it should be. Because S

XY
, S

X
, and S

Y
 are consistent for the corresponding population 

parameter, R
XY

 is a consistent estimator of the population correlation, �
XY

. However, R
XY

 
is a biased estimator for two reasons. First, S

X
 and S

Y
 are biased estimators of �

X
 and �

Y
, 

respectively. Second, R
XY

 is a ratio of estimators, so it would not be unbiased, even if S
X
 and 

S
Y
 were. For our purposes, this is not important, although the fact that no unbiased estimator 

of �
XY

 exists is a classical result in mathematical statistics.

Maximum Likelihood

Another general approach to estimation is the method of maximum likelihood, a topic 
 covered in many introductory statistics courses. A brief summary in the simplest case 
will suffice here. Let {Y

1
, Y

2
, …, Y

n
} be a random sample from the population distribution 

f(y;�). Because of the random sampling assumption, the joint distribution of {Y
1
, Y

2
, …, Y

n
} 

is  simply the product of the densities: f(y
1
;�) f(y

2
;�) ��� f(y

n
;�). In the discrete case, this is 

P(Y
1
 � y

1
, Y

2
 � y

2
, …, Y

n
 � y

n
). Now, define the likelihood function as

 L(�;Y
1
, …, Y

n
) � f(Y

1
;�) f (Y

2
;�) ��� f(Y

n
;�),

which is a random variable because it depends on the outcome of the random sample {Y
1
, 

Y
2
, …, Y

n
}. The maximum likelihood estimator of �, call it W, is the value of � that 

maximizes the likelihood function. (This is why we write L as a function of �, followed 
by the random sample.) Clearly, this value depends on the random sample. The maximum 
likelihood principle says that, out of all the possible values for �, the value that makes the 
likelihood of the observed data largest should be chosen. Intuitively, this is a reasonable 
approach to estimating �.
 Usually, it is more convenient to work with the log-likelihood function, which is 
obtained by taking the natural log of the likelihood function:

 log [L(�; Y
1
, …, Y

n
)] �  ∑ 

i�1

   
n

    log [ f (Y
i
; �)], C.16

where we use the fact that the log of the product is the sum of the logs. Because (C.16) is 
the sum of independent, identically distributed random variables, analyzing estimators that 
come from (C.16) is relatively easy.
 Maximum likelihood estimation (MLE) is usually consistent and sometimes unbiased. 
But so are many other estimators. The widespread appeal of MLE is that it is generally 
the most asymptotically efficient estimator when the population model f (y;�) is correctly 
specified. In addition, the MLE is sometimes the minimum variance unbiased estima-
tor; that is, it has the smallest variance among all unbiased estimators of �. [See Larsen 
and Marx (1986, Chapter 5) for verification of these claims.]
 In Chapter 17, we will need maximum likelihood to estimate the parameters of more 
advanced econometric models. In econometrics, we are almost always interested in the 
distribution of Y conditional on a set of explanatory variables, say, X

1
, X

2
, …, X

k
. Then, 

we replace the density in (C.16) with f (Y
i
�X

i1
, …, X

ik
; �

1
, …, �

p
), where this density is 
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allowed to depend on p parameters, �
1
,  …, �

p
. Fortunately, for successful application of 

maximum likelihood methods, we do not need to delve much into the computational issues 
or the large-sample statistical theory. Wooldridge (2002, Chapter 13) covers the theory of 
 maximum likelihood estimation.

Least Squares

A third kind of estimator, and one that plays a major role throughout the text, is called a 
least squares estimator. We have already seen an example of least squares: the sample 
mean, Ȳ, is a least squares estimator of the population mean, 
. We already know Ȳ 
is a method of moments estimator. What makes it a least squares estimator? It can be 
shown that the value of m that makes the sum of squared deviations

   ∑ 
i�1

   
n

   ( Y
i
 � m)2

as small as possible is m � Ȳ. Showing this is not difficult, but we omit the algebra.
 For some important distributions, including the normal and the Bernoulli, the sample 
average Ȳ is also the maximum likelihood estimator of the population mean 
. Thus, the 
principles of least squares, method of moments, and maximum likelihood often result in 
the same estimator. In other cases, the estimators are similar but not identical.

C.5 Interval Estimation and 
Confi dence Intervals
The Nature of Interval Estimation

A point estimate obtained from a particular sample does not, by itself, provide enough 
information for testing economic theories or for informing policy discussions. A point 
estimate may be the researcher’s best guess at the population value, but, by its nature, it 
provides no information about how close the estimate is “likely” to be to the population 
parameter. As an example, suppose a researcher reports, on the basis of a random sample 
of workers, that job training grants increase hourly wage by 6.4%. How are we to know 
whether or not this is close to the effect in the population of workers who could have been 
trained? Because we do not know the population value, we cannot know how close an esti-
mate is for a particular sample. However, we can make statements involving probabilities, 
and this is where interval estimation comes in.
 We already know one way of assessing the uncertainty in an estimator: find its sam-
pling standard deviation. Reporting the standard deviation of the estimator, along with 
the point estimate, provides some information on the accuracy of our estimate. However, 
even if the problem of the standard deviation’s dependence on unknown population 
parameters is ignored, reporting the standard deviation along with the point estimate 
makes no direct statement about where the population value is likely to lie in relation to 
the estimate. This limitation is overcome by constructing a confidence interval.
 We illustrate the concept of a confidence interval with an example. Suppose the popu-
lation has a Normal(
,1) distribution and let {Y

1
, …, Y

n
} be a random sample from this 

population. (We assume that the variance of the population is known and equal to unity for 
the sake of illustration; we then show what to do in the more realistic case that the variance 
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is unknown.) The sample average, Ȳ, has a normal distribution with mean 
 and variance 
1/n: Ȳ ~ Normal(
,1/n). From this, we can standardize Ȳ, and, because the standardized 
version of Ȳ has a standard normal distribution, we have

 P  � �1.96 �   
Ȳ – 


 ����� 1/ �
__

 n  
   � 1.96 �  � .95.

The event in parentheses is identical to the event Ȳ � 1.96/ �
__

 n   � 
 � Ȳ � 1.96/ �
__

 n  , so

 P(Ȳ � 1.96/ �
__

 n   � 
 � Ȳ � 1.96/ �
__

 n   ) � .95. C.17

Equation (C.17) is interesting because it tells us that the probability that the random 
interval [Ȳ � 1.96/ �

__
 n  ,Ȳ � 1.96/ �

__
 n   ] contains the population mean 
 is .95, or 95%. This 

information allows us to construct an interval estimate of 
, which is obtained by plugging 
in the sample outcome of the average,  - y . Thus,

 [  - y  � 1.96/ �
__

 n  , - y  � 1.96/ �
__

 n  ] C.18

is an example of an interval estimate of 
. It is also called a 95% confidence interval. A 
shorthand notation for this interval is  - y  � 1.96/ �

__
 n  .

 The confidence interval in equation (C.18) is easy to compute, once the sample data 
{y

1
,y

2
, …, y

n
} are observed;  - y  is the only factor that depends on the data. For example, sup-

pose that n � 16 and the average of the 16 data points is 7.3. Then, the 95% confidence 
interval for 
 is 7.3 � 1.96/ �

___
 16   � 7.3 � .49, which we can write in interval form as 

[6.81,7.79]. By construction,  - y  � 7.3 is in the center of this interval.
 Unlike its computation, the meaning of a confidence interval is more difficult to under-
stand. When we say that equation (C.18) is a 95% confidence interval for 
, we mean that 
the random interval

 [Ȳ � 1.96/ �
__

 n  ,Ȳ � 1.96/ �
__

 n  ] C.19

contains 
 with probability .95. In other words, before the random sample is drawn, there 
is a 95% chance that (C.19) contains 
. Equation (C.19) is an example of an in terval esti-
mator. It is a random interval, since the endpoints change with different samples.
 A confidence interval is often interpreted as follows: “The probability that 
 is in the 
interval (C.18) is .95.” This is incorrect. Once the sample has been observed and  - y  has 
been computed, the limits of the confidence interval are simply numbers (6.81 and 7.79 
in the example just given). The population parameter, 
, though unknown, is also just 
some number. Therefore, 
 either is or is not in the interval (C.18) (and we will never 
know with certainty which is the case). Probability plays no role once the confidence 
interval is computed for the particular data at hand. The probabilistic interpretation 
comes from the fact that for 95% of all random samples, the constructed confidence 
interval will  contain 
.
 To emphasize the meaning of a confidence interval, Table C.2 contains calculations for 
20 random samples (or replications) from the Normal(2,1) distribution with sample size n � 
10. For each of the 20 samples,  - y  is obtained, and (C.18) is computed as  - y  � 1.96/ �

___
 10   � 

 - y  � .62 (each rounded to two decimals). As you can see, the interval changes with each 
random sample. Nineteen of the 20 intervals contain the population value of 
. Only for 
replication number 19 is 
 not in the confidence interval. In other words, 95% of the 
samples result in a confidence interval that contains 
. This did not have to be the case 
with only 20 replications, but it worked out that way for this particular simulation.
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TABLE  C . 2

Simulated Confidence Intervals from a Normal(�,1) Distribution with � � 2

Replication  - y 95% Interval Contains �?

 1 1.98 (1.36,2.60) Yes

 2 1.43 (0.81,2.05) Yes

 3 1.65 (1.03,2.27) Yes

 4 1.88 (1.26,2.50) Yes

 5 2.34 (1.72,2.96) Yes

 6 2.58 (1.96,3.20) Yes

 7 1.58 (.96,2.20) Yes

 8 2.23 (1.61,2.85) Yes

 9 1.96 (1.34,2.58) Yes

10 2.11 (1.49,2.73) Yes

11 2.15 (1.53,2.77) Yes

12 1.93 (1.31,2.55) Yes

13 2.02 (1.40,2.64) Yes

14 2.10 (1.48,2.72) Yes

15 2.18 (1.56,2.80) Yes

16 2.10 (1.48,2.72) Yes

17 1.94 (1.32,2.56) Yes

18 2.21 (1.59,2.83) Yes

19 1.16 (.54,1.78) No

20 1.75 (1.13,2.37) Yes

Confidence Intervals for the Mean from 

a Normally Distributed Population

The confidence interval derived in equation (C.18) helps illustrate how to construct and 
interpret confidence intervals. In practice, equation (C.18) is not very useful for the mean 
of a normal population because it assumes that the variance is known to be unity. It is easy 
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to extend (C.18) to the case where the standard deviation � is known to be any value: the 
95% confidence interval is

 [  - y  � 1.96�/ �
__

 n  , - y  � 1.96�/ �
__

 n  ]. C.20

Therefore, provided � is known, a confidence interval for 
 is readily constructed. To 
allow for unknown �, we must use an estimate. Let

 s �  �   1 ����� 
n – 1

    ∑ 
i�1

   
n

   (  y
i
 �  - y )2 � 

1/2

 C.21

denote the sample standard deviation. Then, we obtain a confidence interval that depends 
entirely on the observed data by replacing � in equation (C.20) with its estimate, s. 
Unfortunately, this does not preserve the 95% level of confidence because s depends on 
the particular sample. In other words, the random interval [Ȳ � 1.96(S/ �

__
 n  )] no longer 

contains 
 with probability .95 because the constant � has been replaced with the random 
variable S.
 How should we proceed? Rather than using the standard normal distribution, we must 
rely on the t distribution. The t distribution arises from the fact that

   
Ȳ � 


 ������ S/ �
__

 n  
   ~ t

n�1
, C.22

where Ȳ is the sample average and S is the sample standard deviation of the random 
sample {Y

1
, …, Y

n
}. We will not prove (C.22); a careful proof can be found in a variety of 

places [for example, Larsen and Marx (1986, Chapter 7)].
 To construct a 95% confidence interval, let c denote the 97.5th percentile in the t

n�1
 

distribution. In other words, c is the value such that 95% of the area in the t
n�1

 is between 
�c and c: P(�c � t

n�1
 � c) � .95. (The value of c depends on the degrees of freedom 

n � 1, but we do not make this explicit.) The choice of c is illustrated in Figure C.4. Once 
c has been properly chosen, the random interval [Ȳ � c�S/ �

__
 n  ,Ȳ � c�S/ �

__
 n  ] contains 
 with 

probability .95. For a particular sample, the 95% confidence interval is calculated as

 [  - y  � c�s/ �
__

 n  , - y  � c�s/ �
__

 n  ]. C.23

 The values of c for various degrees of freedom can be obtained from Table G.2 in 
Appendix G. For example, if n � 20, so that the df is n � 1 � 19, then c � 2.093. Thus, 
the 95% confidence interval is [  - y  � 2.093(s/ �

___
 20  )], where  - y  and s are the values obtained 

from the sample. Even if s � � (which is very unlikely), the confidence interval in (C.23) 
is wider than that in (C.20) because c � 1.96. For small degrees of freedom, (C.23) is 
much wider.
 More generally, let c

�
 denote the 100(1 � �) percentile in the t

n�1 
distribution. Then, 

a 100(1 � �)% confidence interval is obtained as

 [  - y  � c
�/2

s/ �
__

 n  , - y  � c
�/2

s/ �
__

 n  ]. C.24

Obtaining c
�/2

 requires choosing � and knowing the degrees of freedom n � 1; then, 
Table G.2 can be used. For the most part, we will concentrate on 95% confidence 
 intervals.
 There is a simple way to remember how to construct a confidence interval for the 
mean of a normal distribution. Recall that sd(Ȳ) � �/ �

__
 n  . Thus, s/ �

__
 n   is the point estimate 

of sd(Ȳ). The associated random variable, S/ �
__

 n  , is sometimes called the standard error 
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of Ȳ. Because what shows up in formulas is the point estimate s/ �
__

 n  , we define the standard 
error of  - y  as se( - y ) � s/ �

__
 n  . Then, (C.24) can be written in shorthand as

 [  - y  � c
�/2

�se( - y )]. C.25

This equation shows why the notion of the standard error of an estimate plays an important 
role in econometrics.

E x a m p l e  C . 2

[Effect of Job Training Grants on Worker Productivity]

Holzer, Block, Cheatham, and Knott (1993) studied the effects of job training grants on worker 
productivity by collecting information on “scrap rates” for a sample of Michigan manufacturing 
firms receiving job training grants in 1988. Table C.3 lists the scrap rates—measured as number of 
items per 100 produced that are not usable and therefore need to be scrapped—for 20 firms. Each 
of these firms received a job training grant in 1988; there were no grants awarded in 1987. We are 
interested in constructing a confidence interval for the change in the scrap rate from 1987 to 1988 
for the population of all manufacturing firms that could have received grants.
 We assume that the change in scrap rates has a normal distribution. Since n � 20, a 95% 
confidence interval for the mean change in scrap rates 
 is [  - y  � 2.093�se(  - y )], where se(  - y ) � s/ �

__
 n  . 

The value 2.093 is the 97.5th percentile in a t
19

 distribution. For the particular sample values, 
 - y  � �1.15 and se(  - y ) � .54 (each rounded to two decimals), so the 95% confidence interval is 
[�2.28,�.02]. The value zero is excluded from this interval, so we conclude that, with 95% confi-
dence, the average change in scrap rates in the population is not zero.

F I GURE  C . 4

The 97.5th percentile, c, in a t distribution.

0�c

area = .025 area = .025

c

area = .95
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 At this point, Example C.2 is mostly illustrative because it has some potentially serious 
flaws as an econometric analysis. Most importantly, it assumes that any systematic reduc-
tion in scrap rates is due to the job training grants. But many things can happen over the 

TABLE  C . 3

Scrap Rates for 20 Michigan Manufacturing Firms

Firm 1987 1988 Change

 1 10 3 –7

 2 1 1 0

 3 6 5 –1

 4 .45 .5 .05

 5 1.25 1.54 .29

 6 1.3 1.5 .2

 7 1.06 .8 –.26

 8 3 2 –1

 9 8.18 .67 –7.51

10 1.67 1.17 –.5

11 .98 .51 –.47

12 1 .5 –.5

13 .45 .61 .16

14 5.03 6.7 1.67

15 8 4 –4

16 9 7 –2

17 18 19 1

18 .28 .2 –.08

19 7 5 –2

20 3.97 3.83 –.14

Average 4.38 3.23 –1.15
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course of the year to change worker productivity. From this analysis, we have no way of 
knowing whether the fall in average scrap rates is attributable to the job training grants or 
if, at least partly, some external force is responsible.

A Simple Rule of Thumb for a 95% Confidence Interval

The confidence interval in (C.25) can be computed for any sample size and any confidence 
level. As we saw in Section B.5, the t distribution approaches the standard normal distribu-
tion as the degrees of freedom gets large. In particular, for � � .05, c

�/2
 → 1.96 as n → , 

although c
�/2

 is always greater than 1.96 for each n. A rule of thumb for an approximate 
95% confidence interval is

 [  - y  � 2�se( - y )]. C.26

In other words, we obtain  - y  and its standard error and then compute  - y  plus and minus twice 
its standard error to obtain the confidence interval. This is slightly too wide for very large n, 
and it is too narrow for small n. As we can see from Example C.2, even for n as small as 
20, (C.26) is in the ballpark for a 95% confidence interval for the mean from a normal 
distribution. This means we can get pretty close to a 95% confidence interval without hav-
ing to refer to t tables.

Asymptotic Confidence Intervals for 

Nonnormal Populations

In some applications, the population is clearly nonnormal. A leading case is the Bernoulli 
distribution, where the random variable takes on only the values zero and one. In other 
cases, the nonnormal population has no standard distribution. This does not matter, pro-
vided the sample size is sufficiently large for the central limit theorem to give a good 
approximation for the distribution of the sample average Ȳ. For large n, an approximate 
95% confidence interval is

 [  - y  � 1.96�se(  - y )], C.27

where the value 1.96 is the 97.5th percentile in the standard normal distribution. 
Mechanically, computing an approximate confidence interval does not differ from the 
normal case. A slight difference is that the number multiplying the standard error comes 
from the standard normal distribution, rather than the t distribution, because we are 
using asymptotics. Because the t distribution approaches the standard normal as the df 
increases, equation (C.25) is also perfectly legitimate as an approximate 95% interval; 
some prefer this to (C.27) because the former is exact for normal populations.

E x a m p l e  C . 3

[Race Discrimination in Hiring]

The Urban Institute conducted a study in 1988 in Washington, D.C., to examine the extent of race 
discrimination in hiring. Five pairs of people interviewed for several jobs. In each pair, one person 
was black and the other person was white. They were given résumés  indicating that they were virtu-
ally the same in terms of experience, education, and other factors that determine job qualification. 
The idea was to make individuals as similar as  possible with the exception of race. Each person in a 
pair interviewed for the same job, and the researchers recorded which applicant received a job offer. 
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This is an example of a matched pairs analysis, where each trial consists of data on two people (or 
two firms, two-cities, and-so on) that are thought to be similar in many respects but different in one 
important characteristic.
 Let �

B
 denote the probability that the black person is offered a job and let �

W
 be the probability 

that the white person is offered a job. We are primarily interested in the difference, �
B
 � �

W
. Let B

j
 

denote a Bernoulli variable equal to one if the black person gets a job offer from employer i, and zero 
otherwise. Similarly, W

i
 � 1 if the white person gets a job offer from employer i, and zero otherwise. 

Pooling across the five pairs of people, there were a total of n � 241 trials (pairs of interviews with 
employers). Unbiased estimators of �

B
 and �

W
 are  

-
 B  and  

-
 W , the fractions of interviews for which 

blacks and whites were offered jobs, respectively.
 To put this into the framework of computing a confidence interval for a population mean, define 
a new variable Y

i
 � B

i
 � W

i
. Now, Y

i
 can take on three values: �1 if the black person did not get 

the job but the white person did, 0 if both people either did or did not get the job, and 1 if the black 
person got the job and the white person did not. Then, 
 � E(Y

i
) � E(B

i
) � E(W

i
) � �

B
 � �

W
.

 The distribution of Y
i
 is certainly not normal—it is discrete and takes on only three values. 

Nevertheless, an approximate confidence interval for �
B
 � �

W
 can be obtained by using large sample 

methods.
 Using the 241 observed data points,  

-
 b  � .224 and  - w  � .357, so  - y  � .224 �.357 � �.133. Thus, 

22.4% of black applicants were offered jobs, while 35.7% of white applicants were offered jobs. This 
is prima facie evidence of discrimination against blacks, but we can learn much more by comput-
ing a confidence interval for 
. To compute an approximate 95% confidence interval, we need the 
sample standard deviation. This turns out to be s � .482 [using equation (C.21)]. Using (C.27), we 
obtain a 95% CI for 
 � �

B
 � �

W
 as �.133 � 1.96(.482/ �

____
 241  ) � �.133 � .031 � [�.164,�.102]. 

The approximate 99% CI is �.133 � 2.58(.482/ �
____

 241  ) � [�.213,�.053]. Naturally, this contains a 
wider range of values than the 95% CI. But even the 99% CI does not contain the value zero. Thus, 
we are very confident that the population difference �

B
 � �

W
 is not zero.

 

 Before we turn to hypothesis testing, it is useful to review the various population and 
sample quantities that measure the spreads in the population distributions and the sampling 
distributions of the estimators. These quantities appear often in statistical analysis, and exten-
sions of them are important for the regression analysis in the main text. The quantity � is the 
(unknown) population standard deviation; it is a measure of the spread in the distribution of Y. 
When we divide � by  �

__
 n  , we obtain the sampling standard deviation of Ȳ (the sample aver-

age). While � is a fixed feature of the population, sd(Ȳ ) � �/ �
__

 n   shrinks to zero as n → : our 
estimator of 
 gets more and more precise as the sample size grows.
 The estimate of � for a particular sample, s, is called the sample standard deviation 
because it is obtained from the sample. (We also call the underlying random variable, S, 
which changes across different samples, the sample standard deviation.) Like  - y  as an esti-
mate of 
, s is our “best guess” at � given the sample at hand. The quantity s/ �

__
 n   is what 

we call the standard error of  - y , and it is our best estimate of �/ �
__

 n  . Confidence intervals for 
the population parameter 
 depend directly on se(  - y ) � s/ �

__
 n  . Because this standard error 

shrinks to zero as the sample size grows, a larger sample size generally means a smaller 
confidence interval. Thus, we see clearly that one benefit of more data is that they result 
in narrower confidence intervals. The notion of the standard error of an estimate, which 
in the vast majority of cases shrinks to zero at the rate 1/ �

__
 n  , plays a fundamental role in 

hypothesis testing (as we will see in the next section) and for confidence intervals and 
testing in the context of multiple regression (as discussed in Chapter 4). 
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C.6 Hypothesis Testing
So far, we have reviewed how to evaluate point estimators, and we have seen—in the case 
of a population mean—how to construct and interpret confidence intervals. But some-
times the question we are interested in has a definite yes or no answer. Here are some 
examples: (1) Does a job training program effectively increase average worker productiv-
ity? (see Example C.2); (2) Are blacks discriminated against in hiring? (see Example C.3); 
(3) Do stiffer state drunk driving laws reduce the number of drunk driving arrests? 
Devising methods for answering such questions, using a sample of data, is known as 
hypothesis testing.

Fundamentals of Hypothesis Testing

To illustrate the issues involved with hypothesis testing, consider an election example. 
Suppose there are two candidates in an election, Candidates A and B. Candidate A is 
reported to have received 42% of the popular vote, while Candidate B received 58%. These 
are supposed to represent the true percentages in the voting population, and we treat them 
as such.
 Candidate A is convinced that more people must have voted for him, so he would like to 
investigate whether the election was rigged. Knowing something about statistics, Candidate 
A hires a consulting agency to randomly sample 100 voters to record whether or not each per-
son voted for him. Suppose that, for the sample collected, 53 people voted for Candidate A. 
This sample estimate of 53% clearly exceeds the reported population value of 42%. Should 
Candidate A conclude that the election was indeed a fraud?
 While it appears that the votes for Candidate A were undercounted, we cannot be 
certain. Even if only 42% of the population voted for Candidate A, it is possible that, in a 
sample of 100, we observe 53 people who did vote for Candidate A. The question is: How 
strong is the sample evidence against the officially reported percentage of 42%?
 One way to proceed is to set up a hypothesis test. Let � denote the true proportion of 
the population voting for Candidate A. The hypothesis that the reported results are accu-
rate can be stated as

 H
0
: � � .42. C.28

This is an example of a null hypothesis. We always denote the null hypothesis by H
0
. In 

hypothesis testing, the null hypothesis plays a role similar to that of a defendant on trial in 
many judicial systems: just as a defendant is presumed to be innocent until proven guilty, 
the null hypothesis is presumed to be true until the data strongly suggest otherwise. In the 
current example, Candidate A must present fairly strong evidence against (C.28) in order 
to win a recount.
 The alternative hypothesis in the election example is that the true proportion voting 
for Candidate A in the election is greater than .42:

 H
1
: � � .42. C.29

In order to conclude that H
0
 is false and that H

1
 is true, we must have evidence “beyond rea-

sonable doubt” against H
0
. How many votes out of 100 would be needed before we feel the 

evidence is strongly against H
0
? Most would agree that observing 43 votes out of a sample 

of 100 is not enough to overturn the original election results; such an outcome is well within 
the expected sampling variation. On the other hand, we do not need to observe 100 votes 
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for Candidate A to cast doubt on H
0
. Whether 53 out of 100 is enough to reject H

0
 is much 

less clear. The answer depends on how we quantify “beyond reasonable doubt.”
 Before we turn to the issue of quantifying uncertainty in hypothesis testing, we 
should head off some possible confusion. You may have noticed that the hypotheses 
in equations (C.28) and (C.29) do not exhaust all possibilities: it could be that � is less 
than .42. For the application at hand, we are not particularly interested in that possibility; it 
has nothing to do with overturning the results of the election. Therefore, we can just state 
at the outset that we are ignoring alternatives � with � � .42. Nevertheless, some authors 
prefer to state null and alternative hypotheses so that they are exhaustive, in which case our 
null hypothesis should be H

0
: � 
 .42. Stated in this way, the null hypothesis is a composite 

null hypothesis because it allows for more than one value under H
0
. [By contrast, equation 

(C.28) is an example of a simple null hypothesis.] For these kinds of examples, it does not 
matter whether we state the null as in (C.28) or as a composite null: the most difficult value 
to reject if � 
 .42 is � � .42. (That is, if we reject the value � � .42, against � � .42, then 
logically we must reject any value less than .42.) Therefore, our testing procedure based on 
(C.28) leads to the same test as if H

0
: � 
 .42. In this text, we always state a null hypothesis 

as a simple null hypothesis.
 In hypothesis testing, we can make two kinds of mistakes. First, we can reject the null 
hypothesis when it is in fact true. This is called a Type I error. In the election example, 
a Type I error occurs if we reject H

0 
when the true proportion of people voting for 

Candidate A is in fact .42. The second kind of error is failing to reject H
0
 when it is actu-

ally false. This is called a Type II error. In the election example, a Type II error occurs if 
� � .42 but we fail to reject H

0
.

 After we have made the decision of whether or not to reject the null hypothesis, we 
have either decided correctly or we have committed an error. We will never know with 
certainty whether an error was committed. However, we can compute the probability 
of making either a Type I or a Type II error. Hypothesis testing rules are constructed to 
make the probability of committing a Type I error fairly small. Generally, we define the 
signi ficance level (or simply the level ) of a test as the probability of a Type I error; it is 
 typically denoted by �. Symbolically, we have

 � � P(Reject H
0
�H

0
). C.30

The right-hand side is read as: “The probability of rejecting H
0
 given that H

0
 is true.”

 Classical hypothesis testing requires that we initially specify a significance level for 
a test. When we specify a value for �, we are essentially quantifying our tolerance for a 
Type I error. Common values for � are .10, .05, and .01. If � � .05, then the researcher is 
willing to falsely reject H

0
 5% of the time, in order to detect deviations from H

0
.

 Once we have chosen the significance level, we would then like to minimize the prob-
ability of a Type II error. Alternatively, we would like to maximize the power of a test 
against all relevant alternatives. The power of a test is just one minus the probability of a 
Type II error. Mathematically,

 �(�) � P(Reject H
0
��) � 1 � P(Type II��),

where � denotes the actual value of the parameter. Naturally, we would like the power to 
equal unity whenever the null hypothesis is false. But this is impossible to achieve while 
keeping the significance level small. Instead, we choose our tests to maximize the power 
for a given significance level.
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Testing Hypotheses about the Mean 

in a Normal Population

In order to test a null hypothesis against an alternative, we need to choose a test statistic 
(or statistic, for short) and a critical value. The choices for the statistic and critical value 
are based on convenience and on the desire to maximize power given a significance level 
for the test. In this subsection, we review how to test hypotheses for the mean of a normal 
population.
 A test statistic, denoted T, is some function of the random sample. When we compute 
the statistic for a particular outcome, we obtain an outcome of the test statistic, which we 
will denote t.
 Given a test statistic, we can define a rejection rule that determines when H

0
 is rejected 

in favor of H
1
. In this text, all rejection rules are based on comparing the value of a test 

statistic, t, to a critical value, c. The values of t that result in rejection of the null hypothesis 
are collectively known as the rejection region. To determine the critical value, we must 
first decide on a significance level of the test. Then, given �, the critical value associated 
with � is determined by the distribution of T, assuming that H

0
 is true. We will write this 

critical value as c, suppressing the fact that it depends on �.
 Testing hypotheses about the mean 
 from a Normal(
,�2) population is straightfor-
ward. The null hypothesis is stated as

 H
0
: 
 � 


0
, C.31

where 

0
 is a value that we specify. In the majority of applications, 


0
 � 0, but the general 

case is no more difficult.
 The rejection rule we choose depends on the nature of the alternative hypothesis. The 
three alternatives of interest are

 H
1
: 
 � 


0
, C.32

 H
1
: 
 � 


0
, C.33

and

 H
1
: 
 	 


0
. C.34

Equation (C.32) gives a one-sided alternative, as does (C.33). When the alternative 
hypothesis is (C.32), the null is effectively H

0
: 
 
 


0
, since we reject H

0
 only when 


 � 

0
. This is appropriate when we are interested in the value of 
 only when 
 is at 

least as large as 

0
. Equation (C.34) is a two-sided alternative. This is appropriate when 

we are interested in any departure from the null hypothesis.
 Consider first the alternative in (C.32). Intuitively, we should reject H

0
 in favor of H

1
 

when the value of the sample average,  - y , is “sufficiently” greater than 

0
. But how should 

we determine when  - y  is large enough for H
0
 to be rejected at the chosen significance level? 

This requires knowing the probability of rejecting the null hypothesis when it is true. 
Rather than working directly with  - y , we use its standardized version, where � is replaced 
with the sample standard deviation, s:

 t �  �
__

 n  (  - y  � 

0
)/s � ( - y  � 


0
)/se(  - y ), C.35
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where se(  - y ) � s/ �
__

 n   is the standard error of  - y . Given the sample of data, it is easy to obtain t. 
We work with t because, under the null hypothesis, the random variable

 T �  �
__

 n  (Ȳ � 

0
)/S

has a t
n�1

 distribution. Now, suppose we have settled on a 5% significance level. Then, 
the critical value c is chosen so that P(T � c�H

0
) � .05; that is, the probability of a Type I 

error is 5%. Once we have found c, the rejection rule is

 t � c, C.36

where c is the 100(1 � �) percentile in a t
n�1

 distribution; as a percent, the significance 
level is 100��%. This is an example of a one-tailed test because the rejection region is 
in one tail of the t distribution. For a 5% significance level, c is the 95th percentile in the 
t
n�1

 distribution; this is illustrated in Figure C.5. A different significance level leads to a 
different critical value.
 The statistic in equation (C.35) is often called the t statistic for testing H

0
: 
 � 


0
. The 

t statistic measures the distance from  - y  to 

0 
relative to the standard error of  - y , se( - y ).

E x a m p l e  C . 4

[Effect of Enterprise Zones on Business Investments]

In the population of cities granted enterprise zones in a particular state [see Papke (1994) for Indiana], 
let Y denote the percentage change in investment from the year before to the year after a city became 

F I GURE  C . 5

Rejection region for a 5% significance level test against the 
one-sided alternative � � �

0
.

0

c rejection

area = .05

area = .95
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an enterprise zone. Assume that Y has a Normal(
,�2) distribution. The null hypothesis that enterprise 
zones have no effect on business investment is H

0
: 
 � 0; the alternative that they have a positive 

effect is H
1
: 
 � 0. (We assume that they do not have a negative effect.) Suppose that we wish to test 

H
0
 at the 5% level. The test statistic in this case is

 t �   
 - y  
 ���� s� �
__

 n     �   
 - y 
 ����� se( - y )

  . C.37

Suppose that we have a sample of 36 cities that are granted enterprise zones. Then, the critical value 
is c � 1.69 (see Table G.2), and we reject H

0
 in favor of H

1
 if t � 1.69. Suppose that the sample 

yields  - y  � 8.2 and s � 23.9. Then, t � 2.06, and H
0
 is therefore rejected at the 5% level. Thus, we 

conclude that, at the 5% significance level, enterprise zones have an effect on average investment. 
The 1% critical value is 2.44, so H

0
 is not rejected at the 1% level. The same caveat holds here as 

in Example C.2: we have not controlled for other factors that might affect investment in cities over 
time, so we cannot claim that the effect is causal.

 
 The rejection rule is similar for the one-sided alternative (C.33). A test with a signifi-
cance level of 100��% rejects H

0
 against (C.33) whenever

 t � �c; C.38

in other words, we are looking for negative values of the t statistic—which implies 
 - y  � 


0
—that are sufficiently far from zero to reject H

0
.

 For two-sided alternatives, we must be careful to choose the critical value so that the 
significance level of the test is still �. If H

1
 is given by H

1
: 
 	 


0
, then we reject H

0
 if  - y  is 

far from 

0
 in absolute value: a  - y  much larger or much smaller than 


0
 provides  evidence 

against H
0
 in favor of H

1
. A 100��% level test is obtained from the rejection rule

 �t� � c, C.39

where �t� is the absolute value of the t statistic in (C.35). This gives a two-tailed test. We 
must now be careful in choosing the critical value: c is the 100(1 � �/2) percentile in the 
t
n�1

 distribution. For example, if � � .05, then the critical value is the 97.5th percentile in 
the t

n�1
 distribution. This ensures that H

0
 is rejected only 5% of the time when it is true (see 

Figure C.6). For example, if n � 22, then the critical value is c � 2.08, the 97.5th percentile 
in a t

21
 distribution (see Table G.2). The absolute value of the t statistic must exceed 2.08 

in order to reject H
0
 against H

1
 at the 5% level.

 It is important to know the proper language of hypothesis testing. Sometimes, the 
appropriate phrase “we fail to reject H

0
 in favor of H

1
 at the 5% significance level” is 

replaced with “we accept H
0
 at the 5% significance level.” The latter wording is incorrect. 

With the same set of data, there are usually many hypotheses that cannot be rejected. In 
the earlier election example, it would be logically inconsistent to say that H

0
: � � .42 and 

H
0
: � � .43 are both “accepted,” since only one of these can be true. But it is entirely pos-

sible that neither of these hypotheses is rejected. For this reason, we always say “fail to 
reject H

0
” rather than “accept H

0
.”

Asymptotic Tests for Nonnormal Populations

If the sample size is large enough to invoke the central limit theorem (see Section C.3), 
the mechanics of hypothesis testing for population means are the same whether or not the 
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population distribution is normal. The theoretical justification comes from the fact that, 
under the null hypothesis,

 T �  �
__

 n  (Ȳ � 

0
)/S ~ª  Normal (0,1).

Therefore, with large n, we can compare the t statistic in (C.35) with the critical values from 
a standard normal distribution. Because the t

n�1 
distribution converges to the standard normal 

distribution as n gets large, the t and standard normal critical values will be very close for 
extremely large n. Because asymptotic theory is based on n increasing without bound, it can-
not tell us whether the standard normal or t critical values are better. For moderate values of 
n, say, between 30 and 60, it is traditional to use the t distribution because we know this is 
correct for normal populations. For n � 120, the choice between the t and standard normal 
distributions is largely irrelevant because the critical values are practically the same.
 Because the critical values chosen using either the standard normal or t distribution are 
only approximately valid for nonnormal populations, our chosen significance levels are 
also only approximate; thus, for nonnormal populations, our significance levels are really 
asymptotic significance levels. Thus, if we choose a 5% significance level, but our popula-
tion is nonnormal, then the actual significance level will be larger or smaller than 5% (and 
we cannot know which is the case). When the sample size is large, the actual  significance 
level will be very close to 5%. Practically speaking, the distinction is not important, so we 
will now drop the qualifier “asymptotic.”

F I GURE  C . 6

Rejection region for a 5% significance level test against the 
two-sided alternative H

1
: � � �

0
.

0

–c

area = .025 area = .025

c

area = .95

rejection
region

rejection
region
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E x a m p l e  C . 5

[Race Discrimination in Hiring]

In the Urban Institute study of discrimination in hiring (see Example C.3), we are primarily interested 
in testing H

0
: 
 � 0 against H

1
: 
 � 0, where 
 � �

B
 � �

W
 is the difference in probabilities that blacks 

and whites receive job offers. Recall that 
 is the population mean of the variable Y � B � W, where 
B and W are binary indicators. Using the n � 241 paired comparisons, we obtained  - y  � �.133 and 
se( - y ) � .482/ �

____
 241   � .031. The t statistic for testing H

0
: 
 � 0 is t � �.133/.031 � �4.29. You will 

remember from Appendix B that the standard normal distribution is, for practical purposes, indistin-
guishable from the t distribution with 240 degrees of freedom. The value �4.29 is so far out in the left 
tail of the distribution that we reject H

0
 at any reasonable significance level. In fact, the .005 (one-half 

of a percent) critical value (for the one-sided test) is about �2.58. A t value of �4.29 is very strong 
evidence against H

0
 in favor of H

1
. Hence, we conclude that there is discrimination in hiring.

 

Computing and Using p-Values

The traditional requirement of choosing a significance level ahead of time means that dif-
ferent researchers, using the same data and same procedure to test the same hypothesis, 
could wind up with different conclusions. Reporting the significance level at which we 
are carrying out the test solves this problem to some degree, but it does not completely 
remove the problem.
 To provide more information, we can ask the following question: What is the largest 
significance level at which we could carry out the test and still fail to reject the null 
hypoth esis? This value is known as the p-value of a test (sometimes called the prob-
value).  Compared with choosing a significance level ahead of time and obtaining a critical 
value, computing a p-value is somewhat more difficult. But with the advent of quick and 
 inexpensive computing, p-values are now fairly easy to obtain.
 As an illustration, consider the problem of testing H

0
: 
 � 0 in a Normal(
,�2) popu-

lation. Our test statistic in this case is T �  �
__

 n  �Ȳ/S, and we assume that n is large enough 
to treat T as having a standard normal distribution under H

0
. Suppose that the observed 

value of T for our sample is t � 1.52. (Note how we have skipped the step of choosing a 
significance level.) Now that we have seen the value t, we can find the largest significance 
level at which we would fail to reject H

0
. This is the significance level associated with 

using t as our critical value. Because our test statistic T has a standard normal distribution 
under H

0
, we have

 p-value � P(T � 1.52�H
0
) � 1 � �(1.52) � .065, C.40

where �(�) denotes the standard normal cdf. In other words, the p-value in this example 
is simply the area to the right of 1.52, the observed value of the test statistic, in a standard 
normal distribution. See Figure C.7 for illustration.
 Because p-value � .065, the largest significance level at which we can carry out this 
test and fail to reject is 6.5%. If we carry out the test at a level below 6.5% (such as at 5%), 
we fail to reject H

0
. If we carry out the test at a level larger than 6.5% (such as 10%), we 

reject H
0
. With the p-value at hand, we can carry out the test at any level.
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 The p-value in this example has another useful interpretation: it is the probability 
that we observe a value of T as large as 1.52 when the null hypothesis is true. If the null 
 hypothesis is actually true, we would observe a value of T as large as 1.52 due to chance 
only 6.5% of the time. Whether this is small enough to reject H

0
 depends on our toler-

ance for a Type I error. The p-value has a similar interpretation in all other cases, as we 
will see.
 Generally, small p-values are evidence against H

0
, since they indicate that the

outcome of the data occurs with small probability if H
0
 is true. In the previous example, if 

t had been a larger value, say, t � 2.85, then the p-value would be 1 � �(2.85) � .002. 
This means that, if the null hypothesis were true, we would observe a value of T as large 
as 2.85 with probability .002. How do we interpret this? Either we obtained a very unusual 
sample or the null hypothesis is false. Unless we have a very small tolerance for Type I 
error, we would reject the null hypothesis. On the other hand, a large p-value is weak evi-
dence against H

0
. If we had gotten t � .47 in the previous example, then p-value � 1 � 

�(.47) � .32. Observing a value of T larger than .47 happens with probability .32, even 
when H

0
 is true; this is large enough so that there is insufficient doubt about H

0
, unless we 

have a very high tolerance for Type I error.
 For hypothesis testing about a population mean using the t distribution, we need 
detailed tables in order to compute p-values. Table G.2 only allows us to put bounds on 
p-values. Fortunately, many statistics and econometrics packages now compute p-values 
routinely, and they also provide calculation of cdfs for the t and other distributions used 
for computing p-values.

F I GURE  C . 7

The p-value when t � 1.52 for the one-sided alternative � � �
0
.

0 1.52

area = .065
= p-value
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E x a m p l e  C . 6

[Effect of Job Training Grants on Worker Productivity]

Consider again the Holzer et al. (1993) data in Example C.2. From a policy perspective, there are 
two questions of interest. First, what is our best estimate of the mean change in scrap rates, 
? We 
have already obtained this for the sample of 20 firms listed in Table C.3: the sample average of the 
change in scrap rates is �1.15. Relative to the initial average scrap rate in 1987, this represents a fall 
in the scrap rate of about 26.3% (�1.15/4.38 � �.263), which is a nontrivial effect.
 We would also like to know whether the sample provides strong evidence for an effect in the 
population of manufacturing firms that could have received grants. The null hypothesis is H

0
: 
 � 0, 

and we test this against H
1
: 
 � 0, where 
 is the average change in scrap rates. Under the null, the 

job training grants have no effect on average scrap rates. The alternative states that there is an effect. 
We do not care about the alternative 
 � 0, so the null hypothesis is effectively H

0
: 
 � 0.

 Since  - y  � �1.15 and se( - y ) � .54, t � �1.15/.54 � �2.13. This is below the 5% critical value 
of �1.73 (from a t

19
 distribution) but above the 1% critical value, �2.54. The p-value in this case is 

computed as

 p-value � P(T
19

 � �2.13), C.41

where T
19

 represents a t distributed random variable with 19 degrees of freedom. The inequality is 
reversed from (C.40) because the alternative has the form in (C.33). The probability in (C.41) is the 
area to the left of �2.13 in a t

19
 distribution (see Fig ure C.8).

 Using Table G.2, the most we can say is that the p-value is between .025 and .01, but it is closer 
to .025 (since the 97.5th percentile is about 2.09). Using a statistical package, such as Stata, we can 

F I GURE  C . 8

The p-value when t � �2.13 with 19 degrees of freedom 
for the one-sided alternative � � 0.

0

area = p-value = .023

–2.13
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compute the exact p-value. It turns out to be about .023, which is reasonable evidence against H
0
. 

This is certainly enough evidence to reject the null hypothesis that the training grants had no effect 
at the 2.5% significance level (and therefore at the 5% level).

 Computing a p-value for a two-sided test is similar, but we must account for the two-sided 
nature of the rejection rule. For t testing about population means, the p-value is computed as

 P(�T
n�1

� � �t�) � 2P(T
n�1

 � �t�), C.42

where t is the value of the test statistic and T
n�1

 is a t random variable. (For large n, replace 
T

n�1
 with a standard normal random variable.) Thus, compute the absolute value of the 

t statistic, find the area to the right of this value in a t
n�1

 distribution, and multiply the area 
by two.
 For nonnormal populations, the exact p-value can be difficult to obtain. Nevertheless, 
we can find asymptotic p-values by using the same calculations. These p-values are valid 
for large sample sizes. For n larger than, say, 120, we might as well use the standard nor-
mal distribution. Table G.1 is detailed enough to get accurate p-values, but we can also 
use a statistics or econometrics program.

E x a m p l e  C . 7

[Race Discrimination in Hiring]

Using the matched pair data from the Urban Institute (n � 241), we obtained t � �4.29. If Z is a 
standard normal random variable, P(Z � �4.29) is, for practical purposes, zero. In other words, the 
(asymptotic) p-value for this example is essentially zero. This is very strong evidence against H

0
.

Summary of How to Use p-Values:

 (i) Choose a test statistic T and decide on the nature of the alternative. This determines 
whether the rejection rule is t � c, t � �c, or �t� � c.
 (ii) Use the observed value of the t statistic as the critical value and compute the cor-
responding significance level of the test. This is the p-value. If the rejection rule is of the 
form t � c, then p-value � P(T � t). If the rejection rule is t � �c, then p-value � P(T � t); 
if the rejection rule is �t� � c, then p-value � P(�T � � �t�).
 (iii) If a significance level � has been chosen, then we reject H

0
 at the 100��% level if 

p-value � �. If p-value � �, then we fail to reject H
0 
at the 100��% level. Therefore, it is 

a small p-value that leads to rejection.

The Relationship between Confidence Intervals 

and Hypothesis Testing

Because contructing confidence intervals and hypothesis tests both involve probability state-
ments, it is natural to think that they are somehow linked. It turns out that they are. After a 
confidence interval has been constructed, we can carry out a variety of hypothesis tests.
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 The confidence intervals we have discussed are all two-sided by nature. (In this text, 
we will have no need to construct one-sided confidence intervals.) Thus, confidence inter-
vals can be used to test against two-sided alternatives. In the case of a population mean, 
the null is given by (C.31), and the alternative is (C.34). Suppose we have constructed a 
95% confidence interval for 
. Then, if the hypothesized value of 
 under H

0
, 


0
, is not in 

the confidence interval, then H
0
: 
 � 


0
 is rejected against H

1
: 
 	 


0
 at the 5% level. If 



0
 lies in this interval, then we fail to reject H

0
 at the 5% level. Notice how any value for 



0
 can be tested once a confidence interval is constructed, and since a confidence interval 

contains more than one value, there are many null hypotheses that will not be rejected.

E x a m p l e  C . 8

[Training Grants and Worker Productivity]

In the Holzer et al. example, we constructed a 95% confidence interval for the mean change in 
scrap rate 
 as [�2.28,�.02]. Since zero is excluded from this interval, we reject H

0
: 
 � 0 against 

H
1
: 
 	 0 at the 5% level. This 95% confidence interval also means that we fail to reject H

0
: 

 
 � �2 at the 5% level. In fact, there is a continuum of null hypotheses that are not rejected given 
this confidence interval.

Practical versus Statistical Significance

In the examples covered so far, we have produced three kinds of evidence concerning 
population parameters: point estimates, confidence intervals, and hypothesis tests. These 
tools for learning about population parameters are equally important. There is an under-
standable tendency for students to focus on confidence intervals and hypothesis tests 
because these are things to which we can attach confidence or significance levels. But 
in any study, we must also interpret the magnitudes of point estimates.
 The sign and magnitude of  - y  determine its practical significance and allow us to 
discuss the direction of an intervention or policy effect, and whether the estimated effect 
is “large” or “small.” On the other hand, statistical significance of  - y  depends on the mag-
nitude of its t statistic. For testing H

0
: 
 � 0, the t statistic is simply t �  - y /se( - y ). In other 

words, statistical significance depends on the ratio of  - y  to its standard error. Consequently, 
a t statistic can be large because  - y  is large or se( - y ) is small. In applications, it is important 
to discuss both practical and statistical significance, being aware that an estimate can be 
statistically significant without being especially large in a practical sense. Whether an 
estimate is practically important depends on the context as well as on one’s judgment, so 
there are no set rules for determining practical significance.

E x a m p l e  C . 9

[Effect of Freeway Width on Commute Time]

Let Y denote the change in commute time, measured in minutes, for commuters in a metro-
politan area from before a freeway was widened to after the freeway was widened. Assume that 
Y ~ Normal(
,�2). The null hypothesis that the widening did not reduce average commute time is 
H

0
: 
 � 0; the alternative that it reduced average commute time is H

1
: 
 � 0. Suppose a random 
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sample of commuters of size n � 900 is obtained to determine the  effectiveness of the freeway 
project. The average change in commute time is computed to be  - y  � �3.6, and the sample standard 
deviation is s � 32.7; thus, se( - y ) � 32.7/ �

____
 900   � 1.09. The t statistic is t � �3.6/1.09 � �3.30, 

which is very statistically significant; the p-value is about .0005. Thus, we conclude that the freeway 
widening had a statistically significant effect on average commute time.
 If the outcome of the hypothesis test is all that were reported from the study, it would be mis-
leading. Reporting only statistical significance masks the fact that the estimated reduction in average 
commute time, 3.6 minutes, is pretty meager. To be up front, we should report the point estimate of 
�3.6, along with the significance test.

 Finding point estimates that are statistically significant without being practically sig-
nificant can occur when we are working with large samples. To discuss why this happens, 
it is useful to have the following definition.

Test Consistency. A consistent test rejects H
0
 with probability approaching one as the 

sample size grows whenever H
1
 is true.

Another way to say that a test is consistent is that, as the sample size tends to infinity, the 
power of the test gets closer and closer to unity whenever H

1
 is true. All of the tests we 

cover in this text have this property. In the case of testing hypotheses about a  population 
mean, test consistency follows because the variance of Ȳ converges to zero as the sample 
size gets large. The t statistic for testing H

0
: 
 � 0 is T � Ȳ/(S/ �

__
 n  ). Since plim(Ȳ) � 
 

and plim(S ) � �, it follows that if, say, 
 � 0, then T gets larger and larger (with high 
probability) as n → . In other words, no matter how close 
 is to zero, we can be almost 
certain to reject H

0
: 
 � 0 given a large enough sample size. This says  nothing about 

whether 
 is large in a practical sense.

C.7 Remarks on Notation
In our review of probability and statistics here and in Appendix B, we have been careful 
to use standard conventions to denote random variables, estimators, and test statistics. 
For example, we have used W to indicate an estimator (random variable) and w to denote 
a particular estimate (outcome of the random variable W ). Distinguishing between an 
estimator and an estimate is important for understanding various concepts in estimation 
and hypothesis testing. However, making this distinction quickly becomes a burden in 
econometric analysis because the models are more complicated: many random variables 
and parameters will be involved, and being true to the usual conventions from probability 
and statistics requires many extra symbols.
 In the main text, we use a simpler convention that is widely used in econometrics. If 
� is a population parameter, the notation  ̂  �  (“theta hat”) will be used to denote both an 
estimator and an estimate of �. This notation is useful in that it provides a simple way of 
attaching an estimator to the population parameter it is supposed to be estimating. Thus, if 
the population parameter is �, then  ̂  �  denotes an estimator or estimate of �; if the param-
eter is �2,  ̂  � 2 is an estimator or estimate of �2; and so on. Sometimes, we will discuss two 
estimators of the same parameter, in which case we will need a different notation, such as  
˜ �  (“theta tilde”).
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 Although dropping the conventions from probability and statistics to indicate estima-
tors, random variables, and test statistics puts additional responsibility on you, it is not a 
big deal once the difference between an estimator and an estimate is understood. If we 
are discussing statistical properties of  ̂  � —such as deriving whether or not it is unbiased or 
consistent—then we are necessarily viewing  ̂  �  as an estimator. On the other hand, if we 
write something like  ̂  �  � 1.73, then we are clearly denoting a point estimate from a given 
sample of data. The confusion that can arise by using  ̂  �  to denote both should be minimal 
once you have a good understanding of probability and statistics.

S U M M A R Y

We have discussed topics from mathematical statistics that are heavily relied upon in 
econometric analysis. The notion of an estimator, which is simply a rule for combining 
data to estimate a population parameter, is fundamental. We have covered various proper-
ties of estimators. The most important small sample properties are unbiasedness and effi-
ciency, the latter of which depends on comparing variances when estimators are unbiased. 
Large sample properties concern the sequence of estimators obtained as the sample size 
grows, and they are also depended upon in econometrics. Any useful estimator is consis-
tent. The central limit theorem implies that, in large samples, the sampling distribution of 
most estimators is approximately normal.
 The sampling distribution of an estimator can be used to construct confidence intervals. 
We saw this for estimating the mean from a normal distribution and for computing approxi-
mate confidence intervals in nonnormal cases. Classical hypothesis testing, which requires 
specifying a null hypothesis, an alternative hypothesis, and a significance level, is carried 
out by comparing a test  statistic to a critical value. Alternatively, a p-value can be computed 
that allows us to carry out a test at any significance level.

K E Y  T E R M S

Alternative Hypothesis
Asymptotic Normality
Bias
Biased Estimator
Central Limit Theorem 

(CLT)
Confidence Interval
Consistent Estimator
Consistent Test
Critical Value
Estimate
Estimator
Hypothesis Test
Inconsistent
Interval Estimator
Law of Large Numbers (LLN)
Least Squares Estimator

Maximum Likelihood 
Estimator

Mean Squared Error (MSE)
Method of Moments
Minimum Variance Unbiased 

Estimator
Null Hypothesis
One-Sided Alternative
One-Tailed Test
Population
Power of a Test
Practical Significance
Probability Limit
p-Value
Random Sample
Rejection Region
Sample Average

Sample Correlation Coefficient
Sample Covariance
Sample Standard Deviation
Sample Variance
Sampling Distribution
Sampling Standard Deviation
Sampling Variance
Significance Level
Standard Error
Statistical Significance
t Statistic
Test Statistic
Two-Sided Alternative
Two-Tailed Test
Type I Error
Type II Error
Unbiased Estimator
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P R O B L E M S

C.1  Let Y
1
, Y

2
, Y

3
, and Y

4
 be independent, identically distributed random variables from a 

population with mean 
 and variance �2. Let Ȳ �   1 �� 4
  
 
(Y

1
 � Y

2
 � Y

3
 � Y

4
) denote the 

average of these four random variables.
 (i) What are the expected value and variance of Ȳ in terms of 
 and �2?
 (ii) Now, consider a different estimator of 
:

W �   1 �� 8
  Y

1
 �   1 �� 8

  Y
2
 �   1 �� 4

  Y
3
 �   1 �� 2

  Y
4
.

   This is an example of a weighted average of the Y
i
. Show that W is also an unbiased 

estimator of 
. Find the variance of W.
 (iii)  Based on your answers to parts (i) and (ii), which estimator of 
 do you prefer, 

Ȳ or W?

C.2 This is a more general version of Problem C.1. Let Y
1
, Y

2
, …, Y

n
 be n pairwise uncor-

related  random variables with common mean 
 and common variance �2. Let Ȳ denote 
the sample average.

 (i) Define the class of linear estimators of 
 by

W
a
 � a

1
Y

1
 � a

2
Y

2
 � … � a

n
Y

n
,

   where the a
i
 are constants. What restriction on the a

i
 is needed for W

a 
to be an 

unbiased estimator of 
?
 (ii) Find Var(W

a
).

 (iii)  For any numbers a
1
, a

2
, …, a

n
, the following inequality holds: (a

1
 � a

2
 � … � 

a
n
)2/n 
 a

1
2 � a

2
2 � … � a

n
2. Use this, along with parts (i) and (ii), to show 

that Var(W
a
) � Var(Ȳ) whenever W

a
 is unbiased, so that Ȳ is the best linear unbi-

ased estimator. [Hint: What does the inequality become when the a
i
 satisfy the 

restriction from part (i)?]

C.3 Let Ȳ denote the sample average from a random sample with mean 
 and variance �2. 
Consider two alternative estimators of 
: W

1
 � [(n � 1)/n]Ȳ and W

2
 �Ȳ/2.

 (i)  Show that W
1
 and W

2
 are both biased estimators of 
 and find the biases. What 

happens to the biases as n → ? Comment on any important differences in bias 
for the two estimators as the sample size gets large.

 (ii)  Find the probability limits of W
1
 and W

2
. {Hint: Use Properties PLIM.1 and 

PLIM.2; for W
1
, note that plim [(n � 1)/n] � 1.} Which estimator is consistent?

 (iii)  Find Var(W
1
) and Var(W

2
).

 (iv)  Argue that W
1
 is a better estimator than Ȳ if 
 is “close” to zero.  (Consider both 

bias and variance.)

C.4 For positive random variables X and Y, suppose the expected value of Y given X is 
E(Y �X) � �X. The unknown parameter � shows how the expected value of Y changes 
with X.

 (i)  Define the random variable Z � Y/X. Show that E(Z ) � �. [Hint: Use Property 
CE.2 along with the law of iterated expectations, Property CE.4. In particular, 
first show that E(Z�X ) � � and then use CE.4.]

 (ii)  Use part (i) to prove that the estimator W
1
 � n�1 �n

i�1
 (Y

i 
/X

i
) is unbiased for �, 

where {(X
i
,Y

i
): i � 1, 2, …, n} is a random sample.



784 Appendixes

 (iii)  Explain why the estimator W
2
 � Ȳ/X̄, where the overbars denote sample averages, 

is not the same as W
1
. Nevertheless, show that W

2
 is also unbiased for �.

 (iv)  The following table contains data on corn yields for several counties in Iowa. The 
USDA predicts the number of hectares of corn in each county based on satellite 
photos. Researchers count the number of “pixels” of corn in the satellite picture 
(as opposed to, for example, the number of pixels of soybeans or of uncultivated 
land) and use these to predict the actual number of hectares. To develop a predic-
tion equation to be used for counties in general, the USDA surveyed farmers in 
selected counties to obtain corn yields in hectares. Let Y

i
 � corn yield in county i 

and let X
i
 � number of corn pixels in the satellite picture for county i. There are 

n � 17 observations for eight counties. Use this sample to compute the estimates 
of � devised in parts (ii) and (iii). Are the estimates similar?

Plot Corn Yield Corn Pixels

 1 165.76 374

 2 96.32 209

 3 76.08 253

 4 185.35 432

 5 116.43 367

 6 162.08 361

 7 152.04 288

 8 161.75 369

 9 92.88 206

10 149.94 316

11 64.75 145

12 127.07 355

13 133.55 295

14 77.70 223

15 206.39 459

16 108.33 290

17 118.17 307

C.5 Let Y denote a Bernoulli(�) random variable with 0 � � � 1. Suppose we are interested 
in estimating the odds ratio, � � �/(1 � �), which is the probability of success over the 
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probability of failure. Given a random sample {Y
1
, …, Y

n
}, we know that an unbiased 

and consistent estimator of � is Ȳ, the proportion of successes in n trials. A natural 
estimator of � is G � Ȳ/(1 � Ȳ), the proportion of successes over the proportion of 
failures in the sample.

 (i) Why is G not an unbiased estimator of �?
 (ii) Use PLIM.2(iii) to show that G is a consistent estimator of �.

C.6 You are hired by the governor to study whether a tax on liquor has decreased average 
liquor consumption in your state. You are able to obtain, for a sample of individuals 
selected at random, the difference in liquor consumption (in ounces) for the years before 
and after the tax. For person i who is sampled randomly from the population, Y

i
 denotes 

the change in liquor consumption. Treat these as a random sample from a Normal(
,�2) 
distribution.

 (i)  The null hypothesis is that there was no change in average liquor consumption. 
State this formally in terms of 
.

 (ii)  The alternative is that there was a decline in liquor consumption; state the alterna-
tive in terms of 
.

 (iii)  Now, suppose your sample size is n � 900 and you obtain the estimates 
 - y  � �32.8 and s � 466.4. Calculate the t statistic for testing H

0 
against H

1
; obtain 

the p-value for the test. (Because of the large sample size, just use the standard 
normal distribution tabulated in Table G.1.) Do you reject H

0
 at the 5% level? At 

the 1% level?
 (iv)  Would you say that the estimated fall in consumption is large in  magnitude? 

Comment on the practical versus statistical significance of this estimate.
 (v)  What has been implicitly assumed in your analysis about other determinants of 

liquor consumption over the two-year period in order to infer causality from the 
tax change to liquor consumption?

C.7 The new management at a bakery claims that workers are now more productive than 
they were under old management, which is why wages have “generally increased.” Let 
W

i
b be Worker i’s wage under the old management and let W

i
a be Worker i’s wage after 

the change. The difference is D
i 
� W

i
a � W

i
b. Assume that the D

i
 are a random sample 

from a Normal(
,�2) distribution.
 (i)  Using the following data on 15 workers, construct an exact 95% confidence inter-

val for 
.
 (ii)  Formally state the null hypothesis that there has been no change in  average wages. 

In particular, what is E(D
i
) under H

0
? If you are hired to examine the validity of 

the new management’s claim, what is the relevant alternative hypothesis in terms of 

 � E(D

i
)?

 (iii)  Test the null hypothesis from part (ii) against the stated alternative at the 5% and 
1% levels.

 (iv) Obtain the p-value for the test in part (iii).

Worker Wage Before Wage After

 1  8.30  9.25

 2  9.40  9.00

(continued)
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Worker Wage Before Wage After

 3  9.00  9.25

 4 10.50 10.00

 5 11.40 12.00

 6  8.75  9.50

 7 10.00 10.25

 8  9.50  9.50

 9 10.80 11.50

10 12.55 13.10

11 12.00 11.50

12  8.65  9.00

13  7.75  7.75

14 11.25 11.50

15 12.65 13.00

C.8 The New York Times (2/5/90) reported three-point shooting performance for the top 
10 three-point shooters in the NBA. The following table summarizes these data:

Player FGA-FGM

Mark Price 429-188

Trent Tucker 833-345

Dale Ellis 1,149-472

Craig Hodges 1,016-396

Danny Ainge 1,051-406

Byron Scott 676-260

Reggie Miller 416-159

Larry Bird 1,206-455

Jon Sundvold 440-166

Brian Taylor 417-157

Note: FGA � field goals attempted and FGM � field goals made.



 Appendix C   Fundamentals of Mathematical Statistics 787

 For a given player, the outcome of a particular shot can be modeled as a Bernoulli (zero-
one) variable: if Y

i
 is the outcome of shot i, then Y

i
 � 1 if the shot is made, and Y

i
 � 0 if the 

shot is missed. Let � denote the probability of making any particular three-point shot 
attempt. The natural estimator of � is Ȳ � FGM/FGA.

 (i) Estimate � for Mark Price.
 (ii)  Find the standard deviation of the estimator Ȳ in terms of � and the number of shot 

attempts, n.
 (iii)  The asymptotic distribution of (Ȳ � �)/se(Ȳ) is standard normal, where se(Ȳ) �  

�
__________

 Ȳ(1 � Ȳ)/n  . Use this fact to test H
0
: � � .5 against H

1
: � � .5 for Mark Price. 

Use a 1% significance level.

C.9 Suppose that a military dictator in an unnamed country holds a plebiscite (a yes/no vote 
of confidence) and claims that he was supported by 65% of the voters. A human rights 
group suspects foul play and hires you to test the validity of the dictator’s claim. You 
have a budget that allows you to randomly sample 200 voters from the country.

 (i)  Let X be the number of yes votes obtained from a random sample of 200 out of 
the entire voting population. What is the expected value of X if, in fact, 65% of all 
voters supported the dictator?

 (ii)  What is the standard deviation of X, again assuming that the true fraction voting 
yes in the plebiscite is .65?

 (iii)  Now, you collect your sample of 200, and you find that 115 people actually voted 
yes. Use the CLT to approximate the probability that you would find 115 or fewer 
yes votes from a random sample of 200 if, in fact, 65% of the entire population 
voted yes.

 (iv)  How would you explain the relevance of the number in part (iii) to someone who 
does not have training in statistics?

C.10 Before a strike prematurely ended the 1994 major league baseball season, Tony Gwynn 
of the San Diego Padres had 165 hits in 419 at bats, for a .394 batting average. There 
was discussion about whether Gwynn was a potential .400 hitter that year. This issue 
can be couched in terms of Gwynn’s probability of getting a hit on a particular at bat, 
call it �. Let Y

i
 be the Bernoulli(�) indicator equal to unity if Gwynn gets a hit during his 

ith at bat, and zero otherwise. Then, Y
1
,  Y

2
,  …, Y

n
 is a random sample from a Bernoulli(�) 

distribution, where � is the probability of success, and n � 419.
   Our best point estimate of � is Gwynn’s batting average, which is just the proportion 

of successes:  - y  � .394. Using the fact that se( - y ) �  �
_________

 ȳ(1 � ȳ )/n  , construct an approxi-
mate 95% confidence interval for �, using the standard normal distribution. Would you 
say there is strong evidence against Gwynn’s being a potential .400 hitter? Explain.
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Appendix D

This appendix summarizes the matrix algebra concepts, including the algebra of prob-
ability, needed for the study of multiple linear regression models using matrices in 
Appendix E. None of this material is used in the main text.

D.1 Basic Defi nitions
Definition D.1 (Matrix). A matrix is a rectangular array of numbers. More precisely, an 
m � n matrix has m rows and n columns. The positive integer m is called the row dimen-
sion, and n is called the  column dimension.

 We use uppercase boldface letters to denote matrices. We can write an m � n matrix 
generically as

A � [a
ij
] �

 


 a

11
 a

12
 a

13
 . . . a

1n

 a
21

 a
22

 a
23

 . . . a
2n

 .
 .
 .
 a

m1
 a

m2
 a

m3
 . . . a

mn

�,

where a
ij
 represents the element in the i th row and the j th column. For example, a

25
 stands 

for the number in the second row and the fifth column of A. A specific example of a 
2 � 3 matrix is

 A �  2 �1 7
 �4 5 0�, D.1

where a
13

 � 7. The shorthand A � [a
ij
] is often used to define matrix operations.

Definition D.2 (Square Matrix). A square matrix has the same number of rows and 
columns. The dimension of a square matrix is its number of rows and columns.

Summary of Matrix Algebra
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Definition D.3 (Vectors)
 (i) A 1 � m matrix is called a row vector (of dimension m) and can be written as x �
(x

1
,  x

2
, …, x

m
).

 (ii) An n � 1 matrix is called a column vector and can be written as

 y � 
 y

1

 y
2

 .
 .
 .
 y

n

�.

Definition D.4 (Diagonal Matrix). A square matrix A is a diagonal matrix when all 
of its off-diagonal elements are zero, that is, a

ij
 � 0 for all i 	 j. We can always write a 

diagonal matrix as

 A �

 


 a

11
 0 0 . . . 0

 0 a
22

 0 . . . 0
 .
 .
 .
 0 0 0 . . . a

nn

�.

Definition D.5 (Identity and Zero Matrices)
 (i) The n � n identity matrix, denoted I, or sometimes I

n
 to emphasize its dimension, is 

the diagonal matrix with unity (one) in each diagonal position, and zero elsewhere:

 I
 
� I

n
 � 

 1 0 0 . . . 0
 0 1 0 . . . 0
 .
 .
 .
 0 0 0 . . . 1

�.

 (ii) The m � n zero matrix, denoted 0, is the m � n matrix with zero for all entries. 
This need not be a square matrix.

D.2 Matrix Operations
Matrix Addition
Two matrices A and B, each having dimension m � n, can be added element by element: 
A � B � [a

ij
 � b

ij
]. More precisely,

 A � B � 
 a

11 
� b

11
 a

12 
� b

12
 . . . a

1n 
� b

1n

 a
21 

� b
21

 a
22 

� b
22

 . . . a
2n 

� b
2n

 .
 .
 .
 a

m1 
� b

m1
 a

m2 
� b

m2
 . . . a

mn 
� b

mn

�.
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For example,

 2 �1 7
 �4 5 0� �  1 0 �4

 4 2 3� �  3 �1 3
 0 7 3�.

Matrices of different dimensions cannot be added.

Scalar Multiplication
Given any real number � (often called a scalar), scalar multiplication is defined as
�A � [�a

ij
], or

 �A � 
 �a

11
 �a

12
 . . . �a

1n

 �a
21

 �a
22

 . . . �a
2n

 .
 .
 .
 �a

m1
 �a

m2
 . . . �a

mn

�.

For example, if � � 2 and A is the matrix in equation (D.1), then

 �A �  4 �2 14
 �8 10 0 �.

Matrix Multiplication
To multiply matrix A by matrix B to form the product AB, the column dimension of A 
must equal the row dimension of B. Therefore, let A be an m � n matrix and let B be an 
n � p matrix. Then, matrix multiplication is defined as

 AB �  ∑ 
k�1

   
n

   a
ik
b

kj�.

In other words, the (i, j)th element of the new matrix AB is obtained by multiplying each 
element in the i th row of A by the corresponding element in the j th column of B and adding 
these n products together. A schematic may help make this process more transparent:

 

i th row →

 


A

a
i1 

a
i2 

a
i3
 . . . a

in�
B

b
1j

b
2j

b
3j

.

.

.
b

nj

j th column

��
AB

 ∑ 
k�1

   
n

    a
ik
b

kj

(i, j)th element

�,

where, by the definition of the summation operator in Appendix A,

  ∑ 
k�1

   
n

    a
ik
b

kj
 � a

i1
b

1j
 � a

i2
b

2 j
 � … � a

in
b

nj
.
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For example,

 2 �1 0
 �4 1 0�   0 1 6 0

 �1 2 0 1
 3 0 0 0 � 

�
  1 0 12 �1

 �1 �2 �24 1�.

 We can also multiply a matrix and a vector. If A is an n � m matrix and y is an m � 1 
vector, then Ay is an n � 1 vector. If x is a 1 � n vector, then xA is a 1 � m vector.
 Matrix addition, scalar multiplication, and matrix multiplication can be combined 
in various ways, and these operations satisfy several rules that are familiar from basic 
 operations on numbers. In the following list of properties, A, B, and C are matrices with 
appropriate dimensions for applying each operation, and � and � are real numbers. Most 
of these properties are easy to illustrate from the definitions.

Properties of Matrix Multiplication. (1) (� � �)A � �A � �A; (2) �(A � B) � 
�A � �B; (3) (��)A � �(�A); (4) �(AB) � (�A)B; (5) A � B � B � A; (6) (A � B) � 
C � A � (B � C); (7) (AB)C � A(BC); (8) A(B � C) � AB � AC; (9) (A � B)C � AC � 
BC; (10) IA � AI � A; (11) A � 0 � 0 � A � A; (12) A � A � 0; (13) A0 � 0A � 0; 
and (14) AB 	 BA, even when both products are defined.

The last property deserves further comment. If A is n � m and B is m � p, then AB is 
defined, but BA is defined only if n � p (the row dimension of A equals the column 
dimension of B). If A is m � n and B is n � m, then AB and BA are both defined, but 
they are not usually the same; in fact, they have different dimensions, unless A and B 
are both square matrices. Even when A and B are both square, AB 	 BA, except under 
special circumstances.

Transpose
Definition D.6 (Transpose). Let A � [a

ij
] be an m � n matrix. The transpose of A, 

denoted A� (called A prime), is the n � m matrix obtained by interchanging the rows and 
columns of A. We can write this as A� � [a

ji
].

For example,

 A �  2 �1 7
 �4 5 0�,    A� �  2 �4

 �1 5
 7 0 �.

Properties of Transpose. (1) (A�)� � A; (2) (�A)� � �A� for any scalar �; (3) (A � B)� � 
A�� B�; (4) (AB)� � B�A�, where A is m � n and B is n � k; (5) x�x � ∑ 

i�1
  

n
    x

i
2, where x 

is an n � 1 vector; and (6) If A is an n � k matrix with rows given by the 1 � k vectors 

a
1
, a

2
, …, a

n
, so that we can write 

 

A � 
 a

1

 a
2

 .
 .
 .
 a

n

�,

then A� � (a
1
� a

2
� . . . a

n
�).
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Definition D.7 (Symmetric Matrix). A square matrix A is a symmetric matrix if, and 
only if, A� � A.

If X is any n � k matrix, then X�X is always defined and is a symmetric matrix, as can be 
seen by applying the first and fourth transpose properties (see Problem D.3).

Partitioned Matrix Multiplication
Let A be an n � k matrix with rows given by the 1 � k vectors a

1
, a

2
, …, a

n
, and let B be 

an n � m matrix with rows given by 1 � m vectors b
1
, b

2
, …, b

n
:

 A � 
 a

1

 a
2

 .
 .
 .
 a

n

�, B � 
 b

1

 b
2

 .
 .
 .
 b

n

�.

Then,

 A�B �   ∑ 
i�1

   
n

    a
i
�b

i
,

where for each i, a
i
�b

i
 is a k � m matrix. Therefore, A�B can be written as the sum of n 

matrices, each of which is k � m. As a special case, we have

 A�A �   ∑ 
i�1

   
n

    a
i
�a

i
,

where a
i
�a

i
 is a k � k matrix for all i.

Trace
The trace of a matrix is a very simple operation defined only for square matrices.

Definition D.8 (Trace). For any n � n matrix A, the trace of a matrix A, denoted tr(A), 
is the sum of its diagonal elements. Mathematically,

 tr(A) �  ∑ 
i�1

   
n

    a
ii
.

Properties of Trace. (1) tr(I
n
) � n; (2) tr(A�) � tr(A); (3) tr(A � B) � tr(A) � tr(B); 

(4) tr(�A) � �tr(A), for any scalar �; and (5) tr(AB) � tr(BA), where A is m � n and B 
is n � m. 

Inverse
The notion of a matrix inverse is very important for square matrices. 

Definition D.9 (Inverse). An n � n matrix A has an inverse, denoted A�1, provided that 
A�1A � I

n
 and AA�1 � I

n
. In this case, A is said to be invertible or nonsingular.  Otherwise, 

it is said to be  noninvertible or singular.
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Properties of Inverse. (1) If an inverse exists, it is unique; (2) (�A)�1 � (1/�)A�1, if 
� 	 0 and A is invertible; (3) (AB)�1 � B�1A�1, if A and B are both n � n and invertible; 
and (4) (A�)�1 � (A�1)�.

We will not be concerned with the mechanics of calculating the inverse of a matrix. Any 
matrix algebra text contains detailed examples of such calculations. 

D.3 Linear Independence and 
Rank of a Matrix
For a set of vectors having the same dimension, it is important to know whether one  vector 
can be expressed as a linear combination of the remaining vectors.

Definition D.10 (Linear Independence). Let {x
1
,  x

2
, …,  x

r
} be a set of n � 1 vectors. 

These are linearly independent vectors if, and only if,

 �
1
x

1
 � �

2
x

2
 � … � �

r
x

r
 � 0 D.2

implies that �
1
 � �

2
 � … � �

r
 � 0. If (D.2) holds for a set of scalars that are not all zero, 

then {x
1
, x

2
, …, x

r
} is linearly dependent.

The statement that {x
1
, x

2
, …, x

r
} is linearly dependent is equivalent to saying that at least 

one vector in this set can be written as a linear combination of the others.

Definition D.11 (Rank)
 (i) Let A be an n � m matrix. The rank of a matrix A, denoted rank(A), is the maxi-
mum number of linearly independent columns of A.
 (ii) If A is n � m and rank(A) � m, then A has full column rank.

If A is n � m, its rank can be at most m. A matrix has full column rank if its columns form 
a linearly independent set. For example, the 3 � 2 matrix

 
 1 3

 2 6
 0 0�

can have at most rank two. In fact, its rank is only one because the second column is three 
times the first column.

Properties of Rank. (1) rank(A�) � rank(A); (2) If A is n � k, then rank(A) 
 min(n,k); 
and (3) If A is k � k and rank(A) � k, then A is invertible.

D.4 Quadratic Forms and 
Positive Defi nite Matrices
Definition D.12 (Quadratic Form). Let A be an n � n symmetric matrix. The qua-
dratic form associated with the matrix A is the real-valued function defined for 
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all n � 1 vectors x:

 f(x) � x�Ax �  ∑ 
i�1

   
n

    a
ii
x2

i
  � 2  ∑ 

i�1

   
n

     ∑ 
j �1

        a
ij  
x

i  
x

j
.

Definition D.13 (Positive Definite and Positive Semi-Definite)
 (i) A symmetric matrix A is said to be positive definite (p.d.) if

 x�Ax � 0 for all n � 1 vectors x except x � 0.

 (ii) A symmetric matrix A is positive semi-definite (p.s.d.) if

 x�Ax � 0 for all n � 1 vectors.

If a matrix is positive definite or positive semi-definite, it is automatically assumed to be 
symmetric.

Properties of Positive Definite and Positive Semi-Definite Matrices. (1) A 
 positive definite matrix has diagonal elements that are strictly positive, while a p.s.d.  matrix 
has nonnegative diagonal elements; (2) If A is p.d., then A�1 exists and is p.d.; (3) If X is 
n � k, then X�X and XX� are p.s.d.; and (4) If X is n � k and rank(X) � k, then X�X is p.d. 
(and therefore nonsingular).

D.5 Idempotent Matrices
Definition D.14 (Idempotent Matrix). Let A be an n � n symmetric matrix. Then A is 
said to be an idempotent matrix if, and only if, AA � A.

For example,

 
 1 0 0

0 0 0
0 0 1 �

is an idempotent matrix, as direct multiplication verifies.

Properties of Idempotent Matrices. Let A be an n � n idempotent matrix. (1) rank(A) � 
tr(A), and (2) A is positive semi-definite.

We can construct idempotent matrices very generally. Let X be an n � k matrix with 
rank(X) � k. Define

P � X(X�X)�1X�

M � I
n
 � X(X�X)�1X� � I

n
 � P.

Then P and M are symmetric, idempotent matrices with rank(P) � k and rank(M) �
n � k. The ranks are most easily obtained by using Property 1: tr(P) � tr[(X�X)�1X�X] 
(from Property 5 for trace) � tr(I

k
) � k (by Property 1 for trace). It easily follows that 

tr(M) � tr(I
n
) � tr(P) � n � k.
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D.6 Differentiation of Linear and
Quadratic Forms
For a given n � 1 vector a, consider the linear function defined by

 f (x) � a�x,

for all n � 1 vectors x. The derivative of f with respect to x is the 1 � n vector of partial 
derivatives, which is simply

 ∂f (x)/∂x � a�.

 For an n � n symmetric matrix A, define the quadratic form

 g(x) � x�Ax.

Then,

 ∂g(x)/∂x � 2x�A,

which is a 1 � n vector.

D.7 Moments and Distributions 
of Random Vectors
In order to derive the expected value and variance of the OLS estimators using matrices, 
we need to define the expected value and variance of a random vector. As its name sug-
gests, a random vector is simply a vector of random variables. We also need to define the 
multivariate normal distribution. These concepts are simply extensions of those covered 
in Appendix B.

Expected Value
Definition D.15 (Expected Value)
 (i) If y is an n � 1 random vector, the expected value of y, denoted E( y), is the vector 
of expected values: E( y) � [E(y

1
),  E(y

2
),  …,  E(y

n
)]�.

 (ii) If Z is an n � m random matrix, E(Z) is the n � m matrix of expected values: 
E(Z) � [E(z

ij
)].

Properties of Expected Value. (1) If A is an m � n matrix and b is an n � 1 vector, 
where both are nonrandom, then E(Ay � b) � AE( y) � b; and (2) If A is p � n and B is 
m � k, where both are nonrandom, then E(AZB) � AE(Z)B.

Variance-Covariance Matrix
Definition D.16 (Variance-Covariance Matrix). If y is an n � 1 random vector, its 
variance-covariance matrix, denoted Var( y), is defined as



796 Appendixes

 Var( y) � 
 �

1
2 �

12
 . . . �

1n

 �
21

 �
2
2 . . . �

2n

 .
 .
 .
 �

n1
 �

n2
 . . . �

n
2
�,

where �
j
2 � Var(y

j
) and �

ij
 � Cov(y

i
,y

j
). In other words, the variance-covariance matrix 

has the variances of each element of y down its diagonal, with covariance terms in the 
off diagonals. Because Cov(y

i
,y

j
) � Cov(y

j
,y

i
), it immediately follows that a variance-

 covariance matrix is symmetric.

Properties of Variance. (1) If a is an n � 1 nonrandom vector, then Var(a�y) � 
a�[Var(y)]a � 0; (2) If Var(a�y) � 0 for all a 	 0, Var(y) is positive definite; (3) Var( y) � 
E[( y � �)(y � �)�], where � � E( y); (4) If the elements of y are uncorrelated, Var(y) 
is a diagonal matrix. If, in addition, Var(y

j
) � � 2 for j � 1, 2,  …,  n, then Var(y) � � 2I

n
; 

and (5) If A is an m � n nonrandom matrix and b is an n � 1 nonrandom vector, then 
Var(Ay � b) � A[Var(y)]A�.

Multivariate Normal Distribution
The normal distribution for a random variable was discussed at some length in Appendix B. 
We need to extend the normal distribution to random vectors. We will not provide an 
expression for the probability distribution function, as we do not need it. It is important to 
know that a multivariate normal random vector is completely characterized by its mean 
and its variance-covariance matrix. Therefore, if y is an n � 1 multivariate normal random 
vector with mean � and variance-covariance matrix 	, we write y ~ Normal(�,	). We 
now state several useful properties of the multivariate normal distribution.

Properties of the Multivariate Normal Distribution. (1) If y ~ Normal(�,	), then 
each element of y is normally distributed; (2) If y ~ Normal(�,	), then y

i
 and y

j
, any 

two elements of y, are independent if, and only if, they are uncorrelated, that is, �
ij
 � 0; 

(3) If y ~ Normal(�,	), then Ay � b ~ Normal(A� � b,A	A�), where A and b are non-
random; (4) If y ~ Normal(0,	), then, for nonrandom matrices A and B, Ay and By are 
independent if, and only if, A	B� � 0. In particular, if 	 � � 2I

n
, then AB� � 0 is neces-

sary and sufficient for independence of Ay and By; (5) If y ~ Normal(0,� 2I
n
), A is a k � n 

nonrandom matrix, and B is an n � n symmetric, idempotent matrix, then Ay and y�By 
are independent if, and only if, AB � 0; and (6) If y ~ Normal(0,� 2I

n
) and A and B are 

nonrandom symmetric, idempotent matrices, then y�Ay and y�By are independent if, and 
only if, AB � 0.

Chi-Square Distribution
In Appendix B, we defined a chi-square random variable as the sum of squared inde-
pendent standard normal random variables. In vector notation, if u ~ Normal(0,I

n
), then 

u�u ~ 	
n
2.

Properties of the Chi-Square Distribution. (1) If u ~ Normal(0,I
n
) and A is an n � n 

symmetric, idempotent matrix with rank(A) � q, then u�Au ~ 	
q
2; (2) If u ~ Normal(0,I

n
) 
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and A and B are n � n symmetric, idempotent matrices such that AB � 0, then u�Au and 
u�Bu are independent, chi-square random variables; and (3) If z ~ Normal(0,C) where C is 
an m � m nonsingular matrix, then z�C�1z ~ 	

m
2 .

t Distribution
We also defined the t distribution in Appendix B. Now we add an important property.

Property of the t Distribution. If u ~ Normal(0,I
n
), c is an n � 1 nonrandom vector, 

A is a nonrandom n � n symmetric, idempotent matrix with rank q, and Ac � 0, then 
{c�u/(c�c)1/2}/(u�Au)1/ 2 ~ t

q
.

F Distribution
Recall that an F random variable is obtained by taking two independent chi-square ran-
dom variables and finding the ratio of each, standardized by degrees of freedom.

Property of the F Distribution. If u ~ Normal(0,I
n
) and A and B are n � n nonrandom 

symmetric, idempotent matrices with rank(A) � k
1
, rank(B) � k

2
, and AB � 0, then (u�Au/

k
1
)/(u�Bu/k

2
) ~ F

k1,k2
.

S U M M A R Y

This appendix contains a condensed form of the background information needed to study 
the classical linear model using matrices. Although the material here is self-contained, it is 
primarily intended as a review for readers who are familiar with matrix algebra and multi-
variate statistics, and it will be used extensively in Appendix E. 

K E Y  T E R M S

Chi-Square Random Variable
Column Vector
Diagonal Matrix
Expected Value
F Random Variable
Idempotent Matrix
Identity Matrix
Inverse
Linearly Independent Vectors

Matrix
Matrix Multiplication
Multivariate Normal Distribution
Positive Definite (p.d.)
Positive Semi-Definite (p.s.d.)
Quadratic Form
Random Vector
Rank of a Matrix
Row Vector

Scalar Multiplication
Square Matrix
Symmetric Matrix
t Distribution
Trace of a Matrix
Transpose
Variance-Covariance 

Matrix
Zero Matrix
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P R O B L E M S

D.1 i(i)  Find the product AB using

 A �  2 �1 7
 �4 5 0 �, B �  0 1 6

 1 8 0
 3 0 0 �.

(ii)  Does BA exist?

D.2 If A and B are n � n diagonal matrices, show that AB � BA.

D.3 Let X be any n � k matrix. Show that X�X is a symmetric matrix.

D.4 (i)i   Use the properties of trace to argue that tr(A�A) � tr(AA�) for any n � m ma trix A.

 (ii) For A �  2 0 �1
 0 3 0�, verify that tr(A�A) � tr(AA�).

D.5 (i)i   Use the definition of inverse to prove the following: if A and B are n � n nonsingu-
lar matrices, then (AB)�1 � B�1A�1.

(ii)   If A, B, and C are all n � n nonsingular matrices, find (ABC)�1 in terms of 
A�1, B�1, and C�1.

D.6 (i)i   Show that if A is an n � n symmetric, positive definite matrix, then A must have 
strictly positive diagonal elements.

(ii)  Write down a 2 � 2 symmetric matrix with strictly positive diagonal elements 
that is not positive definite.

D.7  Let A be an n � n symmetric, positive definite matrix. Show that if P is any n � n non-
singular matrix, then P�AP is positive definite.

D.8 Prove Property 5 of variances for vectors, using Property 3.
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This appendix derives various results for ordinary least squares estimation of the multiple 
linear regression model using matrix notation and matrix algebra (see Appendix D for a 
summary). The material presented here is much more ad vanced than that in the text.

E.1 The Model and Ordinary 
Least Squares Estimation
Throughout this appendix, we use the t subscript to index observations and an n to denote 
the sample size. It is useful to write the multiple linear regression model with k parameters 
as follows:

 y
t
 � �

0
 � �

1
x

t1
 � �

2
x

t2
 � … � �

k
 x

tk
 � u

t
, t � 1, 2, …, n, E.1

where y
t
 is the dependent variable for observation t, and x

tj
, j � 1, 2, …, k, are the indepen-

dent variables. As usual, �
0
 is the intercept and �

1
, …, �

k
 denote the slope  parameters. 

 For each t, define a 1 � (k � 1) vector, x
t
 � (1, x

t1
, …, x

tk
), and let � � (�

0
, �

1
, …, 

�
k
)� be the (k � 1) � 1 vector of all parameters. Then, we can write (E.1) as

 y
t
 � x

t
 � � u

t
, t � 1, 2, …, n. E.2

[Some authors prefer to define x
t
 as a column vector, in which case x

t
 is replaced 

with x
t
� in (E.2). Mathematically, it makes more sense to define it as a row vector.] 

We can write (E.2) in full matrix notation by appropriately defining data vectors and 
matrices. Let y denote the n � 1 vector of observations on y: the t th element of y is y

t
.

Let X be the n � (k � 1) vector of observations on the explanatory variables. In other 
words, the t th row of X consists of the vector x

t
. Written out in detail,

X
n � (k � 1)

 � 
 x

1

 x
2

 .
 .
 .
 x

n

� � 
 1 x

11
 x

12
 . . . x

1k

 1 x
21

 x
22

 . . . x
2k

 .
 .
 .
 1 x

n1
 x

n2
 . . . x

nk

�.

The Linear Regression 
Model in Matrix Form

Appendix E
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Finally, let u be the n � 1 vector of unobservable errors or disturbances. Then, we can 
write (E.2) for all n observations in matrix notation:

 y � X� � u. E.3

Remember, because X is n � (k � 1) and � is (k � 1) � 1, X� is n � 1.
 Estimation of � proceeds by minimizing the sum of squared residuals, as in Section 3.2. 
Define the sum of squared residuals function for any possible (k � 1) � 1 parameter 
 vector b as

 SSR(b) �  ∑ 
t�1

   
n

    ( y
t
 � x

t
b)2.

The (k � 1) � 1 vector of ordinary least squares estimates,  ̂  �  � ( ̂  � 
0
,  ̂  � 

1
, …,  ̂  � 

k
)�, minimizes 

SSR(b) over all possible (k � 1) � 1 vectors b. This is a problem in multivariable calculus. 
For  ̂  �  to minimize the sum of squared residuals, it must solve the first order condition

 ∂SSR(  ̂  � )/∂b � 0. E.4

Using the fact that the derivative of ( y
t
 � x

t
b)2 with respect to b is the 1 � (k � 1)  

vector �2( y
t
 � x

t
b)x

t
, (E.4) is equivalent to

  ∑ 
t�1

   
n

    x
t
�( y

t
 � x

t
  ̂  � ) � 0. E.5

(We have divided by �2 and taken the transpose.) We can write this first order condition as

  ∑ 
t�1

   
n

    ( y
t
 �  ̂  � 

0
 �  ̂  � 

1
x

t1
 � … �  ̂  � 

k
 x

tk
) � 0

  ∑ 
t�1

   
n

    x
t1
( y

t
 �  ̂  � 

0
 �  ̂  � 

1
x

t1
 � … �  ̂  � 

k
 x

tk
) � 0

.

.

.

  ∑ 
t�1

   
n

    x
tk
( y

t
 �  ̂  � 

0
 �  ̂  � 

1
x

t1
 � … �  ̂  � 

k
 x

tk
) � 0,

which is identical to the first order conditions in equation (3.13). We want to write these 
in matrix form to make them easier to manipulate. Using the formula for partitioned 
 multiplication in Appendix D, we see that (E.5) is equivalent to

 X�(y � X ̂  � ) � 0 E.6

or

 (X�X) ̂  �  � X�y. E.7

It can be shown that (E.7) always has at least one solution. Multiple solutions do not help 
us, as we are looking for a unique set of OLS estimates given our data set. Assuming that 
the (k � 1) � (k � 1) symmetric matrix X�X is nonsingular, we can premultiply both sides 
of (E.7) by (X�X)�1 to solve for the OLS estimator  ̂  � :

  ̂  �  � (X�X)�1X�y. E.8
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This is the critical formula for matrix analysis of the multiple linear regression model. 
The assumption that X�X is invertible is equivalent to the assumption that rank(X) � 
(k � 1), which means that the columns of X must be linearly independent. This is the 
matrix  version of MLR.3 in Chapter 3.
 Before we continue, (E.8) warrants a word of warning. It is tempting to simplify the 
formula for  ̂  �  as follows:

  ̂  �  � (X�X)�1X�y � X�1(X�)�1X�y � X�1y.

The flaw in this reasoning is that X is usually not a square matrix, so it cannot be inverted. 
In other words, we cannot write (X�X)�1 � X�1(X�)�1 unless n � (k � 1), a case that virtu-
ally never arises in practice.
 The n � 1 vectors of OLS fitted values and residuals are given by

  ̂  y  � X  ̂  � ,  ̂  u  � y �  ̂  y  � y � X  ̂  � , respectively.

From (E.6) and the definition of  ̂  u , we can see that the first order condition for  ̂  �  is the 
same as

 X� ̂  u  � 0. E.9

Because the first column of X consists entirely of ones, (E.9) implies that the OLS 
residuals always sum to zero when an intercept is included in the equation and that the 
 sample covariance between each independent variable and the OLS residuals is zero. (We 
 discussed both of these properties in Chapter 3.)
 The sum of squared residuals can be written as

 SSR �  ∑ 
t�1

   
n

     ̂  u 
t
2 �  ̂  u � ̂  u  � (y � X  ̂  � )�(y � X  ̂  � ). E.10

All of the algebraic properties from Chapter 3 can be derived using matrix algebra. 
For example, we can show that the total sum of squares is equal to the explained sum 
of squares plus the sum of squared residuals [see (3.27)]. The use of matrices does 
not provide a simpler proof than summation notation, so we do not provide another 
derivation.
 The matrix approach to multiple regression can be used as the basis for a geometri-
cal interpretation of regression. This involves mathematical concepts that are even more 
advanced than those we covered in Appendix D. [See Goldberger (1991) or Greene 
(1997).]

E.2 Finite Sample Properties of OLS
Deriving the expected value and variance of the OLS estimator  ̂  �  is facilitated by matrix 
algebra, but we must show some care in stating the assumptions.

Assumption E.1  (Linear in Parameters)

The model can be written as in (E.3), where y is an observed n � 1 vector, X is an n � (k � 1) 
observed matrix, and u is an n � 1 vector of unobserved errors or disturbances.
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Assumption E.2  (No Perfect Collinearity)

The matrix X has rank (k � 1).

This is a careful statement of the assumption that rules out linear dependencies among the 
explanatory variables. Under Assumption E.2, X�X is nonsingular, so  ̂  �  is unique and can 
be written as in (E.8).

Assumption E.3  (Zero Conditional Mean)

Conditional on the entire matrix X, each error ut has zero mean: E(ut�X) � 0, t � 1, 2, …, n. 

In vector form, Assumption E.3 can be written as

 E(u�X) � 0. E.11

This assumption is implied by MLR.4 under the random sampling assumption, MLR.2. 
In time series applications, Assumption E.3 imposes strict exogeneity on the explanatory 
variables, something discussed at length in Chapter 10. This rules out explanatory vari-
ables whose future values are correlated with u

t
; in particular, it eliminates lagged depen-

dent variables. Under Assumption E.3, we can condition on the x
tj
 when we compute the 

expected value of  ̂  � .

Theorem E.1  (Unbiasedness of OLS)

Under Assumptions E.1, E.2, and E.3, the OLS estimator  ̂  �  is unbiased for �.

PROOF: Use Assumptions E.1 and E.2 and simple algebra to write

  ̂  �  � (X�X)�1X�y � (X�X)�1X�(X� � u)

 � (X�X)�1(X�X)� � (X�X)�1X�u � � � (X�X)�1X�u,
 E.12

where we use the fact that (X�X)�1(X�X) � Ik � 1. Taking the expectation conditional on X 
gives

 E(  ̂  � �X) � � � (X�X)�1X�E(u�X)

 � � � (X�X)�1X�0 � �,

because E(u�X) � 0 under Assumption E.3. This argument clearly does not depend on the value 
of �, so we have shown that  ̂  �  is unbiased.

 To obtain the simplest form of the variance-covariance matrix of  ̂  � , we impose the 
assumptions of homoskedasticity and no serial correlation.
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Assumption E.4  (Homoskedasticity and No Serial Correlation)

(i) Var(ut�X) � �2, t � 1, 2, …, n. (ii) Cov(ut,us�X) � 0, for all t 	 s. In matrix form, we can write 
these two assumptions as

 Var(u�X) � �2I
n
, E.13

where In is the n � n identity matrix.

Part (i) of Assumption E.4 is the homoskedasticity assumption: the variance of u
t
 cannot 

depend on any element of X, and the variance must be constant across observations, t. Part 
(ii) is the no serial correlation assumption: the errors cannot be correlated across observa-
tions. Under random sampling, and in any other cross-sectional sampling schemes with 
independent observations, part (ii) of Assumption E.4 automatically holds. For time series 
applications, part (ii) rules out correlation in the errors over time (both conditional on X 
and unconditionally).
 Because of (E.13), we often say that u has a scalar variance-covariance matrix when 
Assumption E.4 holds. We can now derive the variance-covariance matrix of the OLS 
estimator.

Theorem E.2  (Variance-Covariance Matrix of the OLS Estimator)

Under Assumptions E.1 through E.4,

 Var(  ̂  � �X) � �2(X�X)�1. E.14

PROOF: From the last formula in equation (E.12), we have

 Var(  ̂  � �X) � Var[(X�X)�1X�u�X] � (X�X)�1X�[Var(u�X)]X(X�X)�1.

Now, we use Assumption E.4 to get

 Var(  ̂  � �X) � (X�X)�1X�(�2I
n
)X(X�X)�1

 � �2(X�X)�1X�X(X�X)�1 � �2(X�X)�1. 

Formula (E.14) means that the variance of  ̂  � 
j
 (conditional on X) is obtained by multi-

plying � 2 by the j th diagonal element of (X�X)�1. For the slope coefficients, we gave an 
interpretable formula in equation (3.51). Equation (E.14) also tells us how to obtain the 
covariance between any two OLS estimates: multiply �2 by the appropriate off-diagonal 
element of (X�X)�1. In Chapter 4, we showed how to avoid explicitly finding covari-
ances for obtaining confidence intervals and hypothesis tests by appropriately rewriting 
the model.
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 The Gauss-Markov Theorem, in its full generality, can be proven.

Theorem E.3  (Gauss-Markov Theorem)

Under Assumptions E.1 through E.4,  ̂  �  is the best linear unbiased estimator.

PROOF: Any other linear estimator of � can be written as

 �̃ � A�y, E.15

where A is an n � (k � 1) matrix. In order for  ̃  �  to be unbiased conditional on X, A can consist 
of nonrandom numbers and functions of X. (For example, A cannot be a function of y.) To see 
what further restrictions on A are needed, write

 �̃ � A�(X � � u) � (A�X)� � A�u. E.16

Then,

 E(�̃�X) � A�X� � E(A�u�X)

 � A�X� � A�E(u�X) because A is a function of X

 � A�X� because E(u�X) � 0.

For  ̃  �  to be an unbiased estimator of �, it must be true that E(�̃�X) � � for all (k � 1) � 1 
vectors �, that is,

 A�X� � � for all (k � 1) � 1 vectors �. E.17

Because A�X is a (k � 1) � (k � 1) matrix, (E.17) holds if, and only if, A�X � Ik � 1. Equations 
(E.15) and (E.17) characterize the class of linear, unbiased estimators for �.
 Next, from (E.16), we have

 Var( �̃�X) � A�[Var(u�X)]A � �2A�A,

by Assumption E.4. Therefore,

 Var( �̃�X) � Var(  ̂  � �X) � �2[A�A � (X�X)�1]

 � �2[A�A � A�X(X�X)�1X�A] because A�X � I
k � 1

 � �2A�[I
n
 � X(X�X)�1X�]A

 � �2A�MA,

where M � In � X(X�X)�1X�. Because M is symmetric and idempotent, A�MA is positive 
semi-definite for any n � (k � 1) matrix A. This establishes that the OLS estimator  ̂  �  is BLUE. 
Why is this important? Let c be any (k � 1) � 1 vector and consider the linear combination
c�� � c0 �0 � c1�1 � … � ck �k, which is a scalar. The unbiased estimators of c�� are c� ̂  �  and 
c� ̃  � . But

 Var(c� ̃  � �X) � Var(c� ̂  � �X) � c�[Var(�̃�X) � Var( ̂  � �X)]c � 0,

because [Var( �̃�X) � Var(  ̂  � �X)] is p.s.d. Therefore, when it is used for estimating any linear 
combination of �, OLS yields the smallest variance. In particular, Var(  ̂  � j�X) 
 Var( �̃j�X) for any 
other linear, unbiased estimator of �j.



 Appendix E   The Linear Regression Model in Matrix Form 805

 The unbiased estimator of the error variance �2 can be written as

  ̂  � 2 �  ̂  u � ̂  u /(n � k � 1),

which is the same as equation (3.56).

Theorem E.4  (Unbiasedness of  ̂  � 2)

Under Assumptions E.1 through E.4,  ̂  �  2 is unbiased for � 2: E( ̂  �  2�X) � � 2 for all � 2 � 0.

PROOF: Write  ̂  u  � y � X ̂  �  � y � X(X�X)�1X�y � My � Mu, where M � In � X(X�X)�1X�, and 
the last equality follows because MX � 0. Because M is symmetric and idempotent,

 ̂  u � ̂  u  � u�M�Mu � u�Mu.

Because u�Mu is a scalar, it equals its trace. Therefore,

 E(u�Mu�X) � E[tr(u�Mu)�X] � E[tr(Muu�)�X]

 � tr[E(Muu�|X)] � tr[ME(uu�|X)]

 � tr(M�2I
n
) � �2tr(M) � �2(n � k � 1).

The last equality follows from tr(M) � tr(In) � tr[X(X�X)�1X�] � n � tr[(X�X)�1X�X] � n � 
tr (Ik � 1) � n � (k � 1)� n � k � 1. Therefore,

 E( ̂  � 2�X) � E(u�Mu�X)/(n � k � 1) � �2.

E.3 Statistical Inference
When we add the final classical linear model assumption,  ̂  �  has a multivariate normal 
distribution, which leads to the t and F distributions for the standard test statistics covered 
in Chapter 4.

Assumption E.5  (Normality of Errors)

Conditional on X, the ut are independent and identically distributed as Normal(0, �2). 
Equivalently, u given X is distributed as multivariate normal with mean zero and variance-
covariance matrix �2In: u ~ Normal(0,�2In).

Under Assumption E.5, each u
t
 is independent of the explanatory variables for all t. In a 

time series setting, this is essentially the strict exogeneity assumption.
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Theorem E.5  (Normality of  ̂  � )

Under the classical linear model Assumptions E.1 through E.5,  ̂  �  conditional on X is distributed 
as multivariate normal with mean � and variance-covariance matrix �2(X�X)�1.

Theorem E.5 is the basis for statistical inference involving �. In fact, along with the prop-
erties of the chi-square, t, and F distributions that we summarized in Appendix D, we can 
use Theorem E.5 to establish that t statistics have a t distribution under Assumptions E.1 
through E.5 (under the null hypothesis) and likewise for F statistics. We illustrate with a 
proof for the t statistics.

Theorem E.6

Under Assumptions E.1 through E.5,

(  ̂  � 
j
 � �

j
)/se(  ̂  � 

j
) ~ t

n � k � 1
, j � 0, 1, …, k.

PROOF: The proof requires several steps; the following statements are initially conditional on 
X. First, by Theorem E.5, (  ̂  � j � �j)/sd(  ̂  � 

j
) ~ Normal(0,1), where sd(  ̂  � j) � � �

__
 cjj  , and cjj is the jth 

diagonal element of (X�X)�1. Next, under Assumptions E.1 through E.5, conditional on X,

 (n � k � 1)  ̂  � 2/�2 ~ 	2
n � k � 1

. E.18

This follows because (n � k � 1)  ̂  �  2/� 2 � (u/�)�M(u/�), where M is the n � n symmetric, 
idempotent matrix defined in Theorem E.4. But u/� ~ Normal(0,In) by Assumption E.5. It fol-
lows from Property 1 for the chi-square distribution in Appendix D that (u/�)�M(u/�) ~ 	2

n�k�1 
(because M has rank n � k � 1).
 We also need to show that  ̂  �  and  ̂  �  2 are independent. But  ̂  �  � � � (X�X)�1X�u, and  ̂  �  2 � 
u�Mu/(n � k � 1). Now, [(X�X)�1X�]M � 0 because X�M � 0. It follows, from Property 5 
of the multivariate normal distribution in Appendix D, that  ̂  �  and Mu are independent. 
Because  ̂  �  2 is a function of Mu,  ̂  �  and  ̂  �  2 are also independent.

 (  ̂  � 
j
 � �

j
)/se(  ̂  � 

j
) � [(  ̂  � 

j
 � �

j
)/sd( ̂  � 

j
)]/( ̂  �  2/�2)1/2,

which is the ratio of a standard normal random variable and the square root of a 	2
n � k � 1 

/ 
(n � k � 1) random variable. We just showed that these are independent, so, by def inition of 
a t random variable, (   ̂  � j � �j)/se(   ̂  � j) has the tn � k � 1 distribution. Because this distri bution does 
not depend on X, it is the unconditional distribution of (  ̂  � j � �j)/se(  ̂  � j) as well.

From this theorem, we can plug in any hypothesized value for �
j
 and use the t statistic for 

testing hypotheses, as usual.
 Under Assumptions E.1 through E.5, we can compute what is known as the Cramer-
Rao lower bound for the variance-covariance matrix of unbiased estimators of � (again 
conditional on X) [see Greene (1997, Chapter 4)]. This can be shown to be �2(X�X)�1, 
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which is exactly the variance-covariance matrix of the OLS estimator. This implies that  
ˆ �  is the  minimum variance unbiased estimator of � (conditional on X): Var( �̃�X) � 
Var(  ̂  � �X) is positive semi-definite for any other unbiased estimator �̃; we no longer have 
to restrict our attention to estimators linear in y.
 It is easy to show that the OLS estimator is in fact the maximum likelihood estimator 
of � under Assumption E.5. For each t, the distribution of y

t
 given X is Normal(x

t   
�,� 2). 

Because the y
t
 are independent conditional on X, the likelihood function for the sample is 

obtained from the product of the densities:

�
n

t�1
 (2�� 2)�1/2exp[�(y

t
 � x

t 
 �)2/(2�2)],

where � denotes product. Maximizing this function with respect to � and �2 is the same 
as maximizing its natural logarithm:

 ∑ 
t�1

   
n

    [�(1/2)log(2��2) � (y
t
 � x

t
 �)2/(2�2)].

For obtaining  ̂  � , this is the same as minimizing  ∑ 
t�1

  
n
    (yt

 � x
t
 �)2—the division by 2�2

does not affect the optimization—which is just the problem that OLS solves. The estimator 
of �2 that we have used, SSR/(n � k), turns out not to be the MLE of �2; the MLE is SSR/n, 
which is a biased estimator. Because the unbiased estimator of �2 results in t and F statistics 
with exact t and F distributions under the null, it is always used instead of the MLE.

E.4 Some Asymptotic Analysis
The matrix approach to the multiple regression model can also make derivations of 
 asymptotic properties more concise. In fact, we can give general proofs of the claims in 
Chapter 11.

We begin by proving the consistency result of Theorem 11.1. Recall that these assump-
tions contain, as a special case, the assumptions for cross-sectional analysis under random 
sampling.

Proof of Theorem 11.1. As in Problem E.1 and using Assumption TS.1�, we write the 
OLS estimator as

  ̂  �  �  �  ∑ 
t�1

   
n

    x
t
�x

t
 � �1

   �  ∑ 
t�1

   
n

    x
t
�y

t
 �  �  �  ∑ 

t�1

   
n

    x
t
�x

t
 � �1

  �  ∑ 
t�1

   
n

    x
t
�(x

t 
� � u

t
) � 

 � � �  �  ∑ 
t�1

   
n

    x
t
�x

t
 � �1

   �  ∑ 
t�1

   
n

    x
t
�u

t
 �  E.19

 � � �  � n�1 ∑ 
t�1

   
n

    x
t
�x

t
  � �1

 � n�1 ∑ 
t�1

   
n

    x
t
�u

t
 � .

Now, by the law of large numbers,

 n�1 ∑ 
t�1

   
n

    x
t
�x

t
    p    →   
 and n�1 ∑ 

t�1

   
n

    x
t
�u

t
    p    →  

  0, E.20
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where A � E(x
t
�x

t
) is a (k � 1) � (k � 1) nonsingular matrix under Assumption TS.2� 

and we have used the fact that E(x
t
�u

t
) � 0 under Assumption TS.3�. Now, we must use a 

matrix version of Property PLIM.1 in Appendix C. Namely, because A is nonsingular,

  � n�1 ∑ 
t�1

   
n

     x
t
�x

t
 � 
�1 

   p     →  
 
 A�1. E.21

[Wooldridge (2002, Chapter 3) contains a discussion of these kinds of convergence 
results.] It now follows from (E.19), (E.20), and (E.21) that

 plim(  ̂  � ) � � � A�1 � 0 � �.

This completes the proof.

Next, we sketch a proof of the asymptotic normality result in Theorem 11.2.

Proof of Theorem 11.2. From equation (E.19), we can write

  �
__

 n   (  ̂  �  � �) �  � n�1 ∑ 
t�1

   
n

    x
t
�x

t � �1
  � n�1/2 ∑ 

t�1

   
n

    xt
�u

t � 
 � A�1  � n�1/2 ∑ 

t�1

   
n

    x
t
�u

t
 �  � o

p
(1),

 E.22

where the term “o
p
(1)” is a remainder term that converges in probability to zero. This 

term is equal to  � n�1  ∑ 
t�1

  
n
    x

t
�x

t
 � �1

 � A�1�  � n�1/2 ∑ 
t�1

  
n
    x

t
�u

t
 � . The term in brackets con-

verges in probability to zero (by the same argument used in the proof of Theorem 11.1), 
while  � n�1/2 ∑ 

t�1
  

n
    x

t
�u

t
 �  is bounded in probability because it converges to a multivariate 

normal distribution by the central limit theorem. A well-known result in asymptotic theory 
is that the product of such terms converges in probability to zero. Further,  �

__
 n   ( ̂  �  � �) 

inherits its asymptotic distribution from A�1  � n�1/2 ∑ 
t�1

  
n
    x

t
�u

t
 � . See Wooldridge (2002, 

Chapter 3) for more details on the convergence results used in this proof. 
 By the central limit theorem, n�1/2  ∑ 

t�1
  

n
    x

t
�u

t
 has an asymptotic normal distribution with 

mean zero and, say, (k � 1) � (k � 1) variance-covariance matrix B. Then,  �
__

 n  (  ̂  �  � �)
has an asymptotic multivariate normal distribution with mean zero and variance-
 covariance matrix A�1BA�1. We now show that, under Assumptions TS.4� and TS.5�, 
B � �2A. (The general expression is useful because it underlies heteroskedasticity-
robust and serial-correlation robust standard errors for OLS, of the kind discussed in 
Chapter 12.) First, under Assumption TS.5�, x

t
�u

t
 and x

s
�u

s 
are uncorrelated for t � s. Why? 

Suppose s � t for concreteness. Then, by the law of iterated expectations, E(x
t
�u

t
u

s
x

s
) � 

E[E(u
t
u

s
x

t
�x

s
)�x

t
�x

s
] � E[E(u

t
u

s
�x

t
�x

s
)x

t
�x

s
] � E[0 � x

t
�x

s
] � 0. The zero covariances imply 

that the variance of the sum is the sum of the variances. But Var(x
t
�u

t
) � E(x

t
�u

t
u

t
x

t
) � 

E(u2
t  
x

t
�x

t
). By the law of iterated expectations, E(u2

t  
x

t
�x

t
) � E[E(u2

t  
x

t
�x

t
�x

t
)] � E[E(u2

t  
�x

t
)x

t
�x

t
] � 

E(�2x
t
�x

t
) � �2E(x

t
�x

t
) � �2A, where we use E(u2

t 
�x

t
) � �2 under Assumptions TS.3� and 

TS.4�. This shows that B � �2A, and so, under Assumptions TS.1� to TS.5�, we have

  �
__

 n   (  ̂  �  � �) a~ Normal (0,�2A�1). E.23

This completes the proof.
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From equation (E.23), we treat  ̂  �  as if it is approximately normally distributed with 
mean � and variance-covariance matrix �2A�1/n. The division by the sample size, n, is 
expected here: the approximation to the variance-covariance matrix of  ̂  �  shrinks to zero 
at the rate 1/n. When we replace �2 with its consistent estimator,  ̂  �  2 � SSR/(n � k � 1), 
and replace A with its consistent estimator, n�1 ∑ 

t�1
  

n
    x

t
�x

t
 � X�X/n, we obtain an estimator 

for the asymptotic variance of  ̂  � �

 2Avar( ̂  � ) �  ̂  �  2(X�X)�1. E.24

Notice how the two divisions by n cancel, and the right-hand side of (E.24) is just the 
usual way we estimate the variance matrix of the OLS estimator under the Gauss-Markov 
assumptions. To summarize, we have shown that, under Assumptions TS.1� to TS.5�—
which contain MLR.1 to MLR.5 as special cases—the usual standard errors and t statistics 
are asymptotically valid. It is perfectly legitimate to use the usual t distribution to obtain 
critical values and p-values for testing a single hypothesis. Interestingly, in the general 
setup of Chapter 11, assuming normality of the errors—say, u

t
 given x

t
, u

t�1
, x

t�1
, ..., u

1
, 

x
1
 is  distributed as Normal(0,�2)—does not necessarily help, as the t statistics would not 

generally have exact t statistics under this kind of normality assumption. When we do not 
assume strict exogeneity of the explanatory variables, exact distributional results are dif-
ficult, if not impossible, to obtain.

If we modify the argument above, we can derive a heteroskedasticity-robust, variance-
covariance matrix. The key is that we must estimate E(u2

t 
x

t
�x

t
) separately because this matrix 

no longer equals �2E(x
t
�x

t
). But, if the  ̂  u 

t
 are the OLS residuals, a consistent estimator is

 (n � k � 1)�1 ∑ 
t�1

   
n

     ̂  u 2
t 
x

t
�x

t
, E.25

where the division by n � k � 1 rather than n is a degrees of freedom adjustment that 
typically helps the finite sample properties of the estimator. When we use the expression 
in equation (E.25), we obtain

 2Avar( ̂  � ) � [n/(n � k)](X�X)�1  �  ∑ 
t�1

   
n

     ̂  u 2
t
 x

t
�x

t
 �  (X�X)�1. E.26

The square roots of the diagonal elements of this matrix are the same heteroskedasticity-
robust standard errors we obtained in Section 8.2 for the pure cross-sectional case. A 
matrix extension of the serial correlation- (and heteroskedasticity-) robust standard errors 
we obtained in Section 12.5 is also available, but the matrix that must replace (E.25) 
is complicated because of the serial correlation. See, for example, Hamilton (1994, 
Section 10.5).

Wald Statistics for Testing Multiple Hypotheses
Similar arguments can be used to obtain the asymptotic distribution of the Wald statistic 
for testing multiple hypotheses. Let R be a q � (k � 1) matrix, with q 
 (k � 1). Assume 
that the q restrictions on the (k � 1) � 1 vector of parameters, �, can be expressed as 
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H
0
�R� � r, where r is a q � 1 vector of known constants. Under Assumptions TS.1� to 

TS.5�, it can be shown that, under H
0
, 

 [ �
__

 n  (R  ̂  �  � r)]�(�2RA�1R�)�1[ �
__

 n  (R  ̂  �  � r)] a~  �2
q
, E.27

where A � E(x
t
�x

t
), as in the proofs of Theorems 11.1 and 11.2. The intuition behind 

equation (E.25) is simple. Because  �
__

 n  (  ̂  �  � �) is roughly distributed as Normal(0,�2A�1), 
R[ �

__
 n  ( ̂  �  � �)] �  �

__
 n   R(  ̂  �  � �) is approximately Normal(0,�2RA�1R�) by Property 3 

of the multivariate normal distribution in Appendix D. Under H
0
, R � � r, so 

 �
__

 n  (R  ̂  �  � r) ~ Normal(0,�2RA�1R�) under H
0
. By Property 3 of the chi-square distribu-

tion, z�(�2RA�1R�)�1z ~ �2
q
 if z ~ Normal(0,�2RA�1R�). To obtain the final result formally, 

we need to use an asymptotic version of this property, which can be found in Wooldridge 
(2002, Chapter 3).

Given the result in (E.25), we obtain a computable statistic by replacing A and �2 
with their consistent estimators; doing so does not change the asymptotic distribution. The 
result is the so-called Wald statistic, which, after cancelling the sample sizes and doing a 
little algebra, can be written as

 W � (R  ̂  �  � r)�[R(X�X)�1R�]�1(R  ̂  �  � r)� ̂  � 2. E.28

Under H
0
,W a~ �2

q
, where we recall that q is the number of restrictions being tested. If 

 ̂  � 2 � SSR/(n � k � 1), it can be shown that W/q is exactly the F statistic we obtained in
Chapter 4 for testing multiple linear restrictions. [See, for example, Greene (1997, Chap-
ter 7).] Therefore, under the classical linear model assumptions TS.1 to TS.6 in Chapter 10, 
W/q has an exact F

q,n � k � 1
 distribution. Under Assumptions TS.1� to TS.5�, we only have 

the asymptotic result in (E.26). Nevertheless, it is appropriate, and common, to treat the 
usual F statistic as having an approximate F

q,n � k � 1
 distribution.

A Wald statistic that is robust to heteroskedasticity of unknown form is obtained by 
using the matrix in (E.26) in place of  ̂  � 2(X�X)�1, and similarly for a test statistic robust 
to both heteroskedasticity and serial correlation. The robust versions of the test statistics 
cannot be computed via sums of squared residuals or R-squareds from the restricted and 
unrestricted regressions. 

S U M M A R Y

This appendix has provided a brief treatment of the linear regression model using matrix 
notation. This material is included for more advanced classes that use matrix algebra, but 
it is not needed to read the text. In effect, this appendix proves some of the results that 
we either stated without proof, proved only in special cases, or proved through a more 
cumbersome method of proof. Other topics—such as asymptotic properties, instrumental 
variables estimation, and panel data models—can be given concise treatments using matri-
ces. Advanced texts in econometrics, including Davidson and MacKinnon (1993), Greene 
(1997), and Wooldridge (2002), can be consulted for details.
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K E Y  T E R M S

First Order Condition
Matrix Notation
Minimum Variance 

Unbiased Estimator

Scalar Variance-Covariance 
Matrix

Variance-Covariance Matrix 
of the OLS Estimator

Wald Statistic

P R O B L E M S

E.1  Let x
t
 be the 1 � (k � 1) vector of explanatory variables for observation t. Show that the 

OLS estimator  ̂  �  can be written as

  ̂  �  �  �  ∑ 
t�1

   
n

    x
t
�x

t
 � 
�1

   �  ∑ 
t�1

   
n

    x
t
�y

t
 � .

 Dividing each summation by n shows that  ̂  �  is a function of sample averages.

E.2 Let  ̂  �  be the (k � 1) � 1 vector of OLS estimates.
 (i) Show that for any (k � 1) � 1 vector b, we can write the sum of squared residuals as

 SSR(b) �  ̂  u � ̂  u  � (  ̂  �  � b)�X�X(  ̂  �  � b).

{Hint: Write (y � Xb)�(y � Xb) � [ ̂  u  � X(  ̂  �  � b)]�[ ̂  u  � X(  ̂  �  � b)] and 
use the fact that X� ̂  u  � 0.}

 (ii)  Explain how the expression for SSR(b) in part (i) proves that  ̂  �  uniquely minimizes 
SSR(b) over all possible values of b, assuming X has rank k � 1.

E.3  Let  ̂  �  be the OLS estimate from the regression of y on X. Let A be a (k � 1) � 

(k � 1) nonsingular matrix and define z
t 
� x

t
A, t � 1, …, n. Therefore, z

t
 is 1 � (k � 1) 

and is a nonsingular linear combination of x
t
. Let Z be the n � (k � 1) matrix with rows 

z
t
. Let �̃ denote the OLS estimate from a regression of y on Z.

 (i) Show that �̃ � A�1 ̂  � .
 (ii)  Let  ̂  y 

t
 be the fitted values from the original regression and let  ̃  y 

t
 be the fitted values 

from regressing y on Z. Show that  ̃  y 
t
 �  ̂  y 

t
, for all t � 1, 2, …, n. How do the residuals 

from the two regressions compare?
 (iii)  Show that the estimated variance matrix for �̃ is  ̂  � 2A�1(X�X)�1A�1�, where  ̂  � 2 is the 

usual variance estimate from regressing y on X.
 (iv)  Let the  ̂  � 

j
 be the OLS estimates from regressing y

t
 on 1, x

t1
, …, x

tk
,
 
and let the �̃

j
 

be the OLS estimates from the regression of y
t
 on 1, a

1
x

t1
, …, a

k 
x

tk
, where a

j 
	 0,

j � 1, …, k. Use the results from part (i) to find the relationship between the �̃
j
 

and the  ̂  � 
j
.

 (v) Assuming the setup of part (iv), use part (iii) to show that se(�̃
j
) � se( ̂  � 

j
)/�a

j
�.

 (vi)  Assuming the setup of part (iv), show that the absolute values of the t statistics for 
�̃

j
 and  ̂  � 

j
 are identical.

E.4  Assume that the model y � X� � u satisfies the Gauss-Markov assumptions, let G be 
a (k � 1) � (k � 1) nonsingular, nonrandom matrix, and define � � G�, so that � is 
also a (k � 1) � 1 vector. Let  ̂  �  be the (k � 1) � 1 vector of OLS estimators and define  
ˆ �  � G  ̂  �  as the OLS estimator of �.
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 (i) Show that E( ̂  � �X) � �.
 (ii) Find Var( ̂  � �X) in terms of �2, X, and G.
 (iii)  Use Problem E.3 to verify that  ̂  �  and the appropriate estimate of Var( ̂  � �X) are 

obtained from the regression of y on XG�1.
 (iv)  Now, let c be a (k � 1) � 1 vector with at least one nonzero entry. For concreteness, 

assume that c
k 
	 0. Define � � c��, so that � is a scalar. Define �

j 
� �

j
, j � 0, 1, ..., 

k � 1 and �
k 
� �. Show how to define a (k � 1) � (k � 1) nonsingular matrix G so 

that � � G�. (Hint: Each of the first k rows of G should contain k zeros and a one. 
What is the last row?)

 (v) Show that for the choice of G in part (iv),

G�1 � 
 1 0 0 . . . 0
 0 1 0 . . . 0
 .
 .
 .
 0 0 . . . 1 0
 �c

0
/c

k 
�c

1
/c

k 
. . . �c

k�1
/c

k 
1/c

k

� .

  Use this expression for G�1 and part (iii) to conclude that  ̂  �  and its  standard error are 
obtained as the coefficient on x

tk 
/c

k
 in the regression of

y
t
 on [1 � (c

0
/c

k
)x

tk
], [x

t1 
� (c

1
/c

k
)x

tk
], ..., [x

t,k�1 
� (c

k�1
/c

k
)x

tk
], x

tk
/c

k
, t

 
� 1, ..., n.

  This regression is exactly the one obtained by writing �
k
 in terms of � and �

0
, �

1
, ..., �

k�1
, 

plugging the result into the original model, and rearranging. Therefore, we can formally 
justify the trick we use throughout the text for obtaining the standard error of a linear 
combination of parameters.

E.5  Assume that the model y � X� � u satisfies the Gauss-Markov assumptions and let  ̂  �  
be the OLS estimator of �. Let Z � G(X) be an n � (k � 1) matrix function of X and 
assume that Z�X [a (k � 1) � (k � 1) matrix] is nonsingular. Define a new estimator of 
� by  ̃  �  � (Z�X)�1Z�y.

 (i) Show that E(�̃�X) � �, so that �̃ is also unbiased conditional on X.
 (ii)  Find Var(�̃�X). Make sure this is a symmetric, (k � 1) � (k � 1) matrix that 

depends on Z, X, and � 2.
 (iii) Which estimator do you prefer,  ̂  �  or �̃? Explain.
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Chapter 2
Question 2.1: When student ability, motivation, age, and other factors in u are not 
related to attendance, (2.6) would hold. This seems unlikely to be the case.

Question 2.2: About $11.05. To see this, from the average wages measured in 1976 and 
2003 dollars, we can get the CPI deflator as 19.06/5.90 � 3.23. When we multiply 3.42 
by 3.23, we obtain about 11.05.

Question 2.3: 54.65, as can be seen by plugging shareA � 60 into equation (2.28). This 
is not unreasonable: if Candidate A spends 60% of the total money spent, he or she is 
predicted to receive almost 55% of the vote.

Question 2.4: The equation will be 2salaryhun � 9,631.91 � 185.01 roe, as is easily seen 
by multiplying equation (2.39) by 10.

Question 2.5: Equation (2.58) can be written as Var( ̂  � 
0
) � (� 2n�1)  �  ∑ 

i�1
  

n
    x

i
2 ��

�  ∑ 
i�1

  
n
    (x

i
 �  - x  )2 � , where the term multiplying � 2n�1 is greater than or equal to one, but it is 

equal to one if, and only if,  - x  � 0. In this case, the variance is as small as it can possibly 
be: Var( ̂  � 

0
) � �2/n.

Chapter 3
Question 3.1: Just a few factors include age and gender distribution, size of the police 
force (or, more generally, resources devoted to crime fighting), population, and general 
historical factors. These factors certainly might be correlated with prbconv and avgsen, 
which means (3.5) would not hold. For example, size of the police force is possibly cor-
related with both  prbcon and avgsen, as some cities put more effort into crime prevention 
and law enforcement. We should try to bring as many of these factors into the equation 
as possible.

Question 3.2: We use the third property of OLS concerning predicted values and 
resi duals: when we plug the average values of all independent variables into the OLS 

Answers to Chapter 
Questions

Appendix F
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 regression line, we obtain the average value of the dependent variable. So colGPA � 1.29 � 
.453 hsGPA � .0094 ACT  � 1.29 � .453(3.4) � .0094(24.2) � 3.06. You can check the 
average of  colGPA in GPA1.RAW to verify this to the second decimal place.

Question 3.3: No. The variable shareA is not an exact linear function of expendA 
and expendB, even though it is an exact nonlinear function: shareA � 100�[expendA/
(expendA � expendB)]. Therefore, it is legitimate to have expendA, expendB, and shareA as 
explanatory variables.

Question 3.4: As we discussed in Section 3.4, if we are interested in the effect of x
1
 on y, 

correlation among the other explanatory variables (x
2
, x

3
, and so on) does not affect Var( ̂  � 

1
). 

These variables are included as controls, and we do not have to worry about collinearity 
among the control variables. Of course, we are controlling for them primarily because we 
think they are correlated with attendance, but this is necessary to perform a ceteris paribus 
analysis.

Chapter 4
Question 4.1: Under these assumptions, the Gauss-Markov assumptions are satisfied: 
u is independent of the explanatory variables, so E(u�x

1
, …, x

k
) � E(u), and Var(u�x

1
, 

…, x
k
) � Var(u). Further, it is easily seen that E(u) � 0. Therefore, MLR.4 and MLR.5 

hold. The classical linear model assumptions are not satisfied because u is not normally 
distributed (which is a violation of MLR.6).

Question 4.2: H
0
: �

1
 � 0, H

1
: �

1
 � 0.

Question 4.3: Because  ̂  � 
1
 � .56 � 0 and we are testing against H

1
: �

1
 � 0, the one-sided 

p-value is one-half of the two-sided p-value, or .043.

Question 4.4: H
0
: �

5
 � �

6
 � �

7
 � �

8
 � 0. k � 8 and q � 4. The restricted version of 

the model is

score � �
0
 � �

1
classize � �

2
expend � �

3
tchcomp � �

4
enroll � u.

Question 4.5: The F statistic for testing exclusion of ACT is [(.291 � .183)/
(1 � .291)](680 � 3) � 103.13. Therefore, the absolute value of the t statistic is about 
10.16. The t statistic on ACT is negative, because  ̂  � 

ACT
 is negative, so t

ACT
 � �10.16.

Question 4.6: Not by much. The F test for joint significance of droprate and gradrate is 
easily computed from the R-squareds in the table: F � [(.361 � .353)/(1 � .361)](402/2) � 
2.52. The 10% critical value is obtained from Table G.3a as 2.30, while the 5% critical 
value from Table G.3b is 3. The p-value is about .082. Thus, droprate and gradrate are 
jointly significant at the 10% level, but not at the 5% level. In any case, controlling for 
these variables has a minor effect on the b/s coefficient.

Chapter 5
Question 5.1: This requires some assumptions. It seems reasonable to assume that �

2
 � 0 

(score depends positively on priGPA) and Cov(skipped,priGPA) � 0 (skipped and priGPA 
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are  negatively correlated). This means that �
2
�

1
 � 0, which means that plim �̃

1
 � �

1
. 

Because �
1
 is thought to be negative (or at least nonpositive), a simple regression is likely 

to over estimate the importance of skipping classes.

Question 5.2:  ̂  � 
j 
� 1.96se( ̂  � 

j
) is the asymptotic 95% confidence interval. Or, we can 

replace 1.96 with 2.

Chapter 6
Question 6.1: Because fincdol � 1,000�faminc, the coefficient on fincdol will be the 
coefficient on faminc divided by 1,000, or .0927/1,000 � .0000927. The standard error also 
drops by a factor of 1,000, so the t statistic does not change, nor do any of the other OLS 
statistics. For readability, it is better to measure family income in thousands of dollars.

Question 6.2: We can do this generally. The equation is

log(y) � �
0
 � �

1
log(x

1
) � �

2
x

2
 � …,

where x
2
 is a proportion rather than a percentage. Then, ceteris paribus, �log(y) � �

2
� x

2
, 

100��log(y) � �
2
(100�� x

2
), or %� y � �

2
(100�� x

2
). Now, because � x

2
 is the change in 

the proportion, 100�� x
2
 is a percentage point change. In particular, if � x

2
 � .01, then 

100�� x
2
 � 1, which corresponds to a one percentage point change. But then �

2
 is the 

 percentage change in y when 100�� x
2
 � 1.

Question 6.3: The new model would be stndfnl � �
0
 � �

1
atndrte � �

2
 priGPA � �

3 
ACT � 

�
4
 priGPA2 � �

5
 ACT 2 � �

6
 priGPA�atndrte � �

7
 ACT�atndrte � u. Therefore, the partial 

effect of atndrte on stndfnl is �
1
 � �

6
 priGPA � �

7
 ACT. This is what we multiply by 

�atndrte to obtain the ceteris paribus change in stndfnl.

Question 6.4: From equation (6.21),  
-

 R 2 � 1 �  ̂  � 2/[SST/(n � 1)]. For a given sample and 
a given dependent variable, SST/(n � 1) is fixed. When we use different sets of explana-
tory variables, only  ̂  �  2 changes. As  ̂  � 2 decreases,  

-
 R 2 increases. If we make  ̂  � , and therefore  

ˆ � 2, as small as possible, we are making  
-

 R 2 as large as possible.

Question 6.5: One possibility is to collect data on annual earnings for a sample of actors, 
along with profitability of the movies in which they each appeared. In a simple regres-
sion analysis, we could relate earnings to profitability. But we should probably control for 
other factors that may affect salary, such as age, gender, and the kinds of movies in which 
the actors performed. Methods for including qualitative factors in regression models are 
considered in Chapter 7.

Chapter 7
Question 7.1: No, because it would not be clear when party is one and when it is zero. 
A better name would be something like Dem, which is one for Democratic candidates and 
zero for Republicans. Or, Rep, which is one for Republicans and zero for Democrats.

Question 7.2: With outfield as the base group, we would include the dummy variables 
frstbase, scndbase, thrdbase, shrtstop, and catcher.
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Question 7.3: The null in this case is H
0
: �

1
 � �

2
 � �

3
 � �

4
 � 0, so that there are four 

restrictions. As usual, we would use an F test (where q � 4 and k depends on the number 
of other explanatory variables).

Question 7.4: Because tenure appears as a quadratic, we should allow separate quadrat-
ics for men and women. That is, we would add the explanatory variables female�tenure 
and female�tenure2.

Question 7.5: We plug pcnv � 0, avgsen � 0, tottime � 0, ptime86 � 0, qemp86 � 4, 
black � 1, and hispan � 0 into (7.31): 1arr86 � .380 � .038(4) � .170 � .398, or almost .4. 
It is hard to know whether this is “reasonable.” For someone with no prior convictions who 
was employed throughout the year, this estimate might seem high, but remember that the 
 population consists of men who were already arrested at least once prior to 1986.

Chapter 8
Question 8.1: This statement is clearly false. For example, in equation (8.7), the usual 
standard error for black is .147, while the heteroskedasticity-robust standard error is .118.

Question 8.2: The F test would be obtained by regressing  ̂  u 2 on marrmale, marrfem, and 
singfem (singmale is the base group). With n � 526 and three independent variables in this 
regression, the df are 3 and 522.

Question 8.3: Certainly the outcome of the statistical test suggests some cause for con-
cern. A t statistic of 2.96 is very significant, and it implies that there is heteroskedasticity 
in the wealth equation. As a practical matter, we know that the WLS standard error, .063, 
is substantially below the heteroskedasticity-robust standard error for OLS, .104, and so 
the heteroskedasticity seems to be practically important. (Plus, the nonrobust OLS stan-
dard error is .061, which is too optimistic. Therefore, even if we simply adjust the OLS 
standard error for heteroskedasticity of unknown form, there are nontrivial implications.)

Question 8.4: The 1% critical value in the F distribution with (2, ) df is 4.61. An F 
statistic of 11.15 is well above the 1% critical value, and so we strongly reject the null 
hypothesis that the transformed errors, u

i 
/ �

__
 h

i
  , are homoskedastic. (In fact, the p-value is 

less than .00002, which is obtained from the F
2,804

 distribution.) This means that our model 
for Var(u�x) is inadequate for fully eliminating the heteroskedasticity in u.

Chapter 9
Question 9.1: These are binary variables, and squaring them has no effect: black2 � black, 
and hispan2 � hispan.

Question 9.2: When educ�IQ is in the equation, the coefficient on educ, say, �
1
, mea-

sures the effect of educ on log(wage) when IQ � 0. (The partial effect of education is
�

1
 � �

9
IQ.) There is no one in the population of interest with an IQ close to zero. At the 

average population IQ, which is 100, the estimated return to education from column (3) 
is .018 � .00034(100) � .052, which is almost what we obtain as the coefficient on educ 
in column (2).
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Question 9.3: No. If educ* is an integer—which means someone has no education past 
the previous grade completed—the measurement error is zero. If educ* is not an integer, 
educ � educ*, so the measurement error is negative. At a minimum, e

1
 cannot have zero 

mean, and e
1
 and educ* are probably correlated.

Question 9.4: An incumbent’s decision not to run may be systematically related to 
how he or she expects to do in the election. Therefore, we may only have a sample 
of incumbents who are stronger, on average, than all possible incumbents who could 
run. This results in a sample selection problem if the population of interest includes all 
incumbents. If we are only interested in the effects of campaign expenditures on election 
outcomes for incumbents who seek reelection, there is no sample selection problem.

Chapter 10
Question 10.1: The impact propensity is .48, while the long-run propensity is .48 � .15 � 
.32 � .65.

Question 10.2: The explanatory variables are x
t1
 � z

t
 and x

t2
 � z

t�1
. The absence of per-

fect collinearity means that these cannot be constant, and there cannot be an exact linear 
relationship between them in the sample. This rules out the possibility that all the z

1
, …, z

n
 

take on the same value or that the z
0
, z

1
, …, z

n�1 
take on the same value. But it eliminates 

other patterns as well. For example, if z
t
 � a � bt for constants a and b, then z

t�1
 � a �

b(t � 1) � (a � bt) � b � z
t
� b, which is a perfect linear function of z

t
.

Question 10.3: If {z
t
} is slowly moving over time—as is the case for the levels or logs 

of many economic time series—then z
t
 and z

t�1
 can be highly correlated. For example, the 

correlation between unem
t
 and unem

t�1
 in PHILLIPS.RAW is .75.

Question 10.4: No, because a linear time trend with �
1
 � 0 becomes more and more 

negative as t gets large. Since gfr cannot be negative, a linear time trend with a negative 
trend coefficient cannot represent gfr in all future time periods.

Question 10.5: The intercept for March is �
0
 � �

2
. Seasonal dummy variables are strictly 

exogenous because they follow a deterministic pattern. For example, the months do not change 
based upon whether either the explanatory variables or the dependent variable change.

Chapter 11
Question 11.1: (i) No, because E(y

t
) � �

0
 � �

1
t depends on t. (ii) Yes, because y

t
 � 

E(y
t
) � e

t
 is an i.i.d. sequence.

Question 11.2: We plug inf
t
e � (1/2)inf

t�1
 � (1/2)inf

t�2
 into inf

t
 � inf

t
e � �

1
(unem

t
 � 


0
) � 

e
t
 and rearrange: inf

t
 � (1/2)(inf

t�1
 � inf

t�2
) � �

0
 � �

1
unem

t
 � e

t
, where �

0
 � ��

1



0
, as 

before. Therefore, we would regress y
t
 on unem

t
, where y

t
 � inf

t
 � (1/2)(inf

t�1
 � inf

t�2
). 

Note that we lose the first two observations in constructing y
t
.

Question 11.3: No, because u
t
 and u

t�1
 are correlated. In particular, Cov(u

t
,u

t�1
) � E[(e

t
 � 

�
1
e

t�1
)(e

t�1
 � �

1
e

t�2
)] � �

1
E(e

t
2
�1

) � �
1
�

e
2 	 0 if �

1 
	 0. If the errors are serially cor-

related, the model cannot be dynamically complete.
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Chapter 12
Question 12.1: We use equation (12.4). Now, only adjacent terms are correlated. In par-
ticular, the covariance between x

t
u

t
 and x

t�1
u

t�1
 is x

t
 x

t�1
Cov(u

t
,u

t�1
) � x

t
 x

t�1
��

e
2. Therefore, 

the formula is

Var( ̂  � 
1
) � SSTx

�2  �   ∑ 
t�1

   
n

    x
t
2Var(u

t
) � 2  ∑ 

t�1

   
n�1

    x
t   
x

t�1
E(u

t
u

t�1
) � 

 � �2/SSTx � (2/SSTx
2)  ∑ 

t�1

   
n�1

    ��
e
2x

t
 x

t�1

 � �2/SSTx � ��
e
2(2/SST

x
2)  ∑ 

t�1

   
n�1

    x
t
x

t�1
,

where �2 � Var(u
t
) � �

e
2 � �

1
2
 
�

e
2 � �

e
2(1 � �

1
2). Unless x

t
 and x

t�1
 are uncorrelated in the 

sample, the second term is nonzero whenever � 	 0. Notice that if x
t
 and x

t�1
 are  positively 

correlated and � � 0, the true variance is actually smaller than the usual  variance. When 
the equation is in levels (as opposed to being differenced), the typical case is � � 0, with 
positive correlation between x

t
 and x

t�1
.

Question 12.2:  ̂  �  � 1.96se(  ̂  � ), where se(  ̂  � ) is the standard error reported in the regres-
sion. Or, we could use the heteroskedasticity-robust standard error. Showing that this is 
asymptotically valid is complicated because the OLS residuals depend on  ̂  � 

j
, but it can 

be done.

Question 12.3: The model we have in mind is u
t
 � �

1
u

t�1
 � �

4
u

t�4
 � e

t
, and we want to 

test H
0
: �

1
 � 0, �

4
 � 0 against the alternative that H

0
 is false. We would run the regression 

of  ̂  u 
t
 on  ̂  u 

t�1
 and  ̂  u 

t�4
 to obtain the usual F statistic for joint significance of the two lags. 

(We are testing two restrictions.)

Question 12.4: We would probably estimate the equation using first differences, as  ̂  �  � .92 
is close enough to 1 to raise questions about the levels regression. See Chapter 18 for more 
 discussion.

Question 12.5: Because there is only one explanatory variable, the White test is easy to 
compute. Simply regress  ̂  u 

t
2 on return

t�1
 and return 2   

t�1
  (with an intercept, as always) and 

compute the F test for joint significance of return
t�1

 and return 2   
t�1

 . If these are jointly sig-
nificant at a small enough significance level, we reject the null of homoskedasticity.

Chapter 13
Question 13.1: Yes, assuming that we have controlled for all relevant factors. The coef-
ficient on black is 1.076, and, with a standard error of .174, it is not statistically different 
from 1. The 95% confidence interval is from about .735 to 1.417.

Question 13.2: The coefficient on highearn shows that, in the absence of any change in 
the earnings cap, high earners spend much more time—on the order of 29.2% on average 
[because exp(.256) � 1 � .292]—on workers’ compensation.

Question 13.3: First, E(v
i1
) � E(a

i
 � u

i1
) � E(a

i
) � E(v

i1
) � 0. Similarly, E(v

i 2
) � 0. 

Therefore, the covariance between v
i1
 and v

i2
 is simply E(v

i1
v

i2
) � E[(a

i
 � u

i1
)(a

i
 � u

i2
)] � 

E(a
i
2) � E(a

i
u

i1
) � E(a

i
u

i2
) � E(u

i1
u

i2
) � E(a

i
2), because all of the covariance terms are 
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zero by assumption. But E(a
i
2) � Var(a

i
), because E(a

i
) � 0. This causes positive serial 

correlation across time in the errors within each i, which biases the usual OLS standard 
errors in a pooled OLS regression.

Question 13.4: Because �admn � admn
90

 � admn
85

 is the difference in binary indica-
tors, it can be �1 if, and only if, admn

90
 � 0 and admn

85
 � 1. In other words, Washington 

state had an administrative per se law in 1985 but it was repealed by 1990.

Question 13.5: No, just as it does not cause bias and inconsistency in a time series 
regression with strictly exogenous explanatory variables. There are two reasons it is a con-
cern. First, serial correlation in the errors in any equation generally biases the usual OLS 
standard errors and test statistics. Second, it means that pooled OLS is not as efficient as 
estimators that account for the serial correlation (as in Chapter 12).

Chapter 14
Question 14.1: Whether we use first differencing or the within transformation, we will 
have trouble estimating the coefficient on kids

it
. For example, using the within transfor-

mation, if kids
it
 does not vary for family i, then kïds

it
 � kids

it
 �  

�
 kids

i
  � 0 for t � 1,2,3. 

As long as some families have variation in kids
it
, then we can compute the fixed effects 

estimator, but the kids coefficient could be very imprecisely estimated. This is a form of 
multicollinearity in fixed effects estimation (or first-differencing estimation).

Question 14.2: If a firm did not receive a grant in the first year, it may or may not receive 
a grant in the second year. But if a firm did receive a grant in the first year, it could not get 
a grant in the second year. That is, if grant

�1
 � 1, then grant � 0. This induces a negative 

correlation between grant and grant
�1

. We can verify this by computing a regression of 
grant on grant

�1
, using the data in JTRAIN.RAW for 1989. Using all firms in the sample, 

we get

1grant � .248 � .248 grant
�1

 (.035) (.072)

 n � 157, R2 � .070.

The coefficient on grant
�1

 must be the negative of the intercept because   1grant � 0 when 
grant

�1
 � 1.

Question 14.3: It suggests that the unobserved effect a
i
 is positively correlated with 

union
it
. Remember, pooled OLS leaves a

i
 in the error term, while fixed effects removes 

a
i
. By definition, a

i
 has a positive effect on log(wage). By the standard omitted variables 

analysis (see  Chapter 3), OLS has an upward bias when the explanatory variable (union) 
is positively correlated with the omitted variable (a

i
). Thus, belonging to a union appears 

to be  positively related to time-constant, unobserved factors that affect wage.

Question 14.4: Not if all sisters within a family have the same mother and father. Then, 
because the parents’ race variables would not change by sister, they would be differenced 
away in (14.13).
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Chapter 15
Question 15.1: Probably not. In the simple equation (15.18), years of education is part 
of the error term. If some men who were assigned low draft lottery numbers obtained 
additional schooling, then lottery number and education are negatively correlated, which 
violates the first requirement for an instrumental variable in equation (15.4).

Question 15.2: (i) For (15.27), we require that high school peer group effects carry over 
to college. Namely, for a given SAT score, a student who went to a high school where 
smoking marijuana was more popular would smoke more marijuana in college. Even if the 
identification condition (15.27) holds, the link might be weak.
 (ii) We have to assume that percentage of students using marijuana at a student’s high 
school is not correlated with unobserved factors that affect college grade point average. 
Although we are somewhat controlling for high school quality by including SAT in the 
equation, this might not be enough. Perhaps high schools that did a better job of preparing 
students for college also had fewer students smoking marijuana. Or marijuana usage could 
be correlated with average income levels. These are, of course, empirical questions that we 
may or may not be able to answer.

Question 15.3: Although prevalence of the NRA and subscribers to gun magazines are 
probably correlated with the presence of gun control legislation, it is not obvious that they 
are uncorrelated with unobserved factors that affect the violent crime rate. In fact, we might 
argue that a population interested in guns is a reflection of high crime rates, and controlling 
for economic and demographic variables is not sufficient to capture this. It would be hard 
to argue persuasively that these are truly exogenous in the violent crime equation.

Question 15.4: As usual, there are two requirements. First, it should be the case that 
growth in government spending is systematically related to the party of the president, after 
netting out the investment rate and growth in the labor force. In other words, the instrument 
must be partially correlated with the endogenous explanatory variable. While we might 
think that government spending grows more slowly under Republican presidents, this 
certainly has not always been true in the United States and would have to be tested using 
the t statistic on REP

t�1
 in the reduced form gGOV

t
 � �

0
 � �

1
REP

t�1
 � �

2
INVRAT

t
 � 

�
3
gLAB

t
 � v

t
. We must assume that the party of the president has no separate effect on 

gGDP. This would be violated if, for example, monetary policy differs systematically by 
presidential party and has a separate effect on GDP growth.

Chapter 16
Question 16.1: Probably not. It is because firms choose price and advertising expendi-
tures jointly that we are not interested in the experiment where, say, advertising changes 
exogenously and we want to know the effect on price. Instead, we would model price and 
advertising each as a function of demand and cost variables. This is what falls out of the 
economic theory.

Question 16.2: We must assume two things. First, money supply growth should appear 
in equation (16.22), so that it is partially correlated with inf. Second, we must assume that 
money  supply growth does not appear in equation (16.23). If we think we must include 
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money supply growth in equation (16.23), then we are still short an instrument for inf. Of 
course, the assumption that money supply growth is exogenous can also be questioned.

Question 16.3: Use the Hausman test from Chapter 15. In particular, let  ̂  v 
2 
be the OLS 

residuals from the reduced form regression of open on log(pcinc) and log(land). Then, use 
an OLS  regression of inf on open, log(pcinc), and  ̂  v 

2
 and compute the t statistic for signifi-

cance of  ̂  v 
2
. If  ̂  v 

2
 is significant, the 2SLS and OLS estimates are statistically different.

Question 16.4: The demand equation looks like

log(fish
t
) � �

0
 � �

1
log(prcfish

t
) � �

2
log(inc

t
)

� �
3
log(prcchick

t
) � �

4
log(prcbeef

t
) � u

t1
,

where logarithms are used so that all elasticities are constant. By assumption, the demand 
function contains no seasonality, so the equation does not contain monthly dummy vari-
ables (say, feb

t
, mar

t
, …, dec

t
, with January as the base month). Also, by assumption, 

the supply of fish is seasonal, which means that the supply function does depend on at 
least some of the monthly dummy variables. Even without solving the reduced form for 
log(prcfish), we conclude that it depends on the monthly dummy variables. Since these 
are exogenous, they can be used as instruments for log(prcfish) in the demand equation. 
Therefore, we can estimate the demand-for-fish equation using monthly dummies as the 
IVs for log(prcfish). Identification requires that at least one monthly dummy variable 
appears with a nonzero coefficient in the reduced form for log(prcfish).

Chapter 17
Question 17.1: H

0
: �

4
 � �

5
 � �

6
 � 0, so that there are three restrictions and therefore 

three df in the LR or Wald test.

Question 17.2: We need the partial derivative of �( ̂  � 
0
 �  ̂  � 

1
nwifeinc �  ̂  � 

2
educ � 

 ̂  � 
3
exper �  ̂  � 

4
exper2 � …) with respect to exper, which is �(�)( ̂  � 

3
 � 2 ̂  � 

4
exper), where �(�) 

is evaluated at the given values and the initial level of experience. Therefore, we need to 
evaluate the standard normal probability density at .270 � .012(20.13) � .131(12.3) � 
.123(10) � .0019(102) � .053(42.5) � .868(0) � .036(1) � .463, where we plug in the 
initial level of experience (10). But �(.463) � (2�)�1/2 exp[�(.4632)/2] � .358. Next, 
we multiply this by  ̂  � 

3
 � 2 ̂  � 

4
exper, which is evaluated at exper � 10. The partial effect 

using the calculus approximation is .358[.123 � 2(.0019)(10)] � .030. In other words, at 
the given values of the explanatory variables and starting at exper � 10, the next year of 
experience increases the probability of labor force participation by about .03.

Question 17.3: No. The number of extramarital affairs is a nonnegative integer, which 
presumably takes on zero or small numbers for a substantial fraction of the population. It is 
not realistic to use a Tobit model, which, while allowing a pileup at zero, treats y as being 
continuously distributed over positive values. Formally, assuming that y � max(0,y*), 
where y* is normally distributed, is at odds with the discreteness of the number of extra-
marital affairs when y � 0.

Question 17.4: The adjusted standard errors are the usual Poisson MLE standard errors 
multiplied by  ̂  �  �  �

__
 2   � 1.41, so the adjusted standard errors will be about 41% higher. 
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The quasi-LR statistic is the usual LR statistic divided by  ̂  �  2, so it will be one-half of the 
usual LR statistic.

Question 17.5: By assumption, mvp
i
 � �

0
 � x

i 
� � u

i
, where, as usual, x

i 
� denotes a 

linear function of the exogenous variables. Now, observed wage is the largest of the mini-
mum wage and the marginal value product, so wage

i
 � max(minwage

i
,mvp

i
), which is very 

similar to equation (17.34), except that the max operator has replaced the min operator.

Chapter 18
Question 18.1: We can plug these values directly into equation (18.1) and take expecta-
tions. First, because z

s
 � 0, for all s � 0, y

�1
 � � � u

�1
. Then, z

0 
� 1, so y

0
 � � � �

0
 � 

u
0
. For h � 1, y

h
 � � � �

h�1
 � �

h
 � u

h
. Because the errors have zero expected values, 

E(y
�1

) � �, E(y
0
) � � � �

0
, and E(y

h
) � � � �

h�1
 � �, for all h � 1. As h → , �

h
 → 0. 

It follows that E(y
h
) → � as h → , that is, the expected value of y

h
 returns to the expected 

value before the increase in z, at time zero. This makes sense: although the increase in z 
lasted for two periods, it is still a temporary increase.

Question 18.2: Under the described setup, �y
t
 and �x

t
 are i.i.d. sequences that are inde-

pendent of one another. In particular, �y
t
 and �x

t
 are uncorrelated. If  ̂  � 

1
 is the slope coeffi-

cient from regressing �y
t
 on �x

t
, t � 1, 2, …, n, then plim  ̂  � 

1
 � 0. This is as it should be, as 

we are regressing one I(0) process on another I(0) process, and they are uncorrelated. We 
write the equation �y

t
 � �

0
 � �

1
�x

t
 � e

t
, where �

0 
� �

1
 � 0. Because {e

t
} is independent 

of {�x
t
}, the strict exogeneity assumption holds. Moreover, {e

t
} is serially uncorrelated 

and homoskedastic. By Theorem 11.2 in Chapter 11, the t statistic for  ̂  � 
1
 has an approxi-

mate standard normal distribution. If e
t
 is normally distributed, the classical linear model 

assumptions hold, and the t statistic has an exact t distribution.

Question 18.3: Write x
t
 � x

t�1
 � a

t
, where {a

t
} is I(0). By assumption, there is a linear 

combination, say, s
t
 � y

t
 � �x

t
, which is I(0). Now, y

t
 � �x

t�1
 � y

t
 � �(x

t
 � a

t
) � s

t
 � 

�a
t
. Because s

t
 and a

t
 are I(0) by assumption, so is s

t
 � �a

t
.

Question 18.4: Just use the sum of squared residuals form of the F test and assume homo-
skedasticity. The restricted SSR is obtained by regressing �hy6

t
 � �hy3

t�1
 � (hy6

t�1
 � 

hy3
t�2

) on a constant. Notice that �
0
 is the only parameter to estimate in �hy6

t
 � �

0
 � 

�
0
�hy3

t�1
 � �(hy6

t�1
 � hy3

t�2
) when the restrictions are imposed. The unrestricted sum 

of squared residuals is obtained from equation (18.39).

Question 18.5: We are fitting two equations:  ̂  y 
t
 �  ̂  �  �  ̂  � t and  ̂  y 

t
 �  ̂  �  �  ̂  � year

t
. We can 

obtain the  relationship between the parameters by noting that year
t
 � t � 49. Plugging 

this into the second equation gives  ̂  y 
t
 �  ̂  �  �  ̂  � (t � 49) � (  ̂  �  � 49 ̂  � ) �  ̂  � t. Matching 

the slope and intercept with the first equation gives  ̂  �  �  ̂  � —so that the slopes on t and year
t
 

are identical—and  ̂  �  �  ̂  �  � 49 ̂  � . Generally, when we use year rather than t, the intercept 
will change, but the slope will not. (You can verify this by using one of the time series 
data sets, such as HSEINV.RAW or INVEN.RAW.) Whether we use t or some measure 
of year does not change fitted values, and, naturally, it does not change forecasts of future 
values. The intercept simply adjusts appropriately to different ways of including a trend 
in the regression.
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Statistical Tables

Appendix G

TABLE  G . 1

Cumulative Areas under the Standard Normal Distribution

z 0 1 2 3 4 5 6 7 8 9

�3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
�2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

(continued )
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TABLE  G . 1  ( C o n t i n u e d )

z 0 1 2 3 4 5 6 7 8 9

�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
  0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
  0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
  0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
  0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
  0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
  0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
  0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
  0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
  0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
  0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
  1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
  1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
  1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
  1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
  1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
  1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
  1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
  1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
  1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
  1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
  2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
  2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
  2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
  2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
  2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
  2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
  2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
  2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
  2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
  2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
  3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Examples: If Z ~ Normal(0,1), then P(Z 
 �1.32) � .0934 and P(Z 
 1.84) � .9671.
Source: This table was generated using the Stata® function normprob.
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1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
90 1.291 1.662 1.987 2.368 2.632

120 1.289 1.658 1.980 2.358 2.617
 1.282 1.645 1.960 2.326 2.576
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TABLE  G . 2

Critical Values of the t Distribution

 Significance Level

1-Tailed: .10 .05 .025 .01 .005
2-Tailed: .20 .10 .05 .02 .01

Examples: The 1% critical value for a one-tailed test with 25 df is 2.485. The 5% critical value for a two-tailed 
test with large (� 120) df is 1.96.
Source: This table was generated using the Stata® function invttail.
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 10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
 11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
 12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
 13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
 14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10

 15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
 16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
 17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
 18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
 19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96

 20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
 21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
 22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
 23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
 24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88

 25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
 26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
 27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
 28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
 29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83

 30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
 40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
 60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
 90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67
 120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65

  2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60
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TABLE  G . 3 a

10% Critical Values of the F Distribution

Numerator Degrees of Freedom

  1 2 3 4 5 6 7 8 9 10

Example: The 10% critical value for numerator df � 2 and denominator df � 40 is 2.44.
Source: This table was generated using the Stata® function invFtail.
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 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
 16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
 17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
 18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
 19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
 21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

 25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
 26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
 27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
 28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
 29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
 90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94
 120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91

  3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
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Example: The 5% critical value for numerator df � 4 and large denominator df () is 2.37.
Source: This table was generated using the Stata® function invFtail.

TABLE  G . 3b

5% Critical Values of the F Distribution

Numerator Degrees of Freedom

  1 2 3 4 5 6 7 8 9 10
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TABLE  G . 3 c

1% Critical Values of the F Distribution

Numerator Degrees of Freedom

  1 2 3 4 5 6 7 8 9 10

 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
 13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
 14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94

 15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80
 16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
 17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
 18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
 19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

 20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
 21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
 22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
 23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
 24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

 25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
 26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
 27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
 28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
 29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00

 30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98
 40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
 60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63
 90 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 2.61 2.52
 120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47

  6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32
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Example: The 1% critical value for numerator df � 3 and denominator df � 60 is 4.13.
Source: This table was generated using the Stata® function invFtail.
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TABLE  G . 4

 1 2.71 3.84 6.63
 2 4.61 5.99 9.21
 3 6.25 7.81 11.34
 4 7.78 9.49 13.28
 5  9.24 11.07 15.09

 6 10.64 12.59 16.81
 7 12.02 14.07 18.48
 8 13.36 15.51 20.09
 9 14.68 16.92 21.67
 10 15.99 18.31 23.21

 11 17.28 19.68 24.72
 12 18.55 21.03 26.22
 13 19.81 22.36 27.69
 14 21.06 23.68 29.14
 15 22.31 25.00 30.58

 16 23.54 26.30 32.00
 17 24.77 27.59 33.41
 18 25.99 28.87 34.81
 19 27.20 30.14 36.19
 20 28.41 31.41 37.57

 21 29.62 32.67 38.93
 22 30.81 33.92 40.29
 23 32.01 35.17 41.64
 24 33.20 36.42 42.98
 25 34.38 37.65 44.31

 26 35.56 38.89 45.64
 27 36.74 40.11 46.96
 28 37.92 41.34 48.28
 29 39.09 42.56 49.59
 30 40.26 43.77 50.89
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Example: The 5% critical value with df � 8 is 15.51.
Source: This table was generated using the Stata® function 
invchi2tail.

Critical Values of the Chi-Square Distribution

Significance Level

  .10 .05 .01
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Glossary

A
Adjusted R-Squared: A goodness-of-fit measure in 

multiple regression analysis that penalizes additional 
explanatory variables by using a degrees of freedom 
adjustment in estimating the error variance. 

Alternative Hypothesis: The hypothesis against which 
the null hypothesis is tested. 

AR(1) Serial Correlation: The errors in a time series 
regression model follow an AR(1) model. 

Asymptotic Bias: See inconsistency. 
Asymptotic Confidence Interval: A confidence interval 

that is approximately valid in large sample sizes. 
Asymptotic Normality: The sampling distribution of a 

properly normalized estimator converges to the stan-
dard normal distribution. 

Asymptotic Properties: Properties of estimators and 
test statistics that apply when the sample size grows 
without bound. 

Asymptotic Standard Error: A standard error that is 
valid in large samples. 

Asymptotic t Statistic: A t statistic that has an approxi-
mate standard normal distribution in large samples. 

Asymptotic Variance: The square of the value we must 
divide an estimator by in order to obtain an asymptotic 
standard normal distribution. 

Asymptotically Efficient: For consistent estimators with 
asymptotically normal distributions, the estimator with 
the smallest asymptotic variance. 

Asymptotically Uncorrelated: A time series process in 
which the correlation between random variables at two 
points in time tends to zero as the time interval between 
them increases. (See also weakly dependent.) 

Attenuation Bias: Bias in an estimator that is always 
toward zero; thus, the expected value of an estimator 
with attenuation bias is less in magnitude than the 
absolute value of the parameter. 

Augmented Dickey-Fuller Test: A test for a unit root that 
includes lagged changes of the variable as regressors. 

Autocorrelation: See serial correlation. 
Autoregressive Conditional Heteroskedasticity (ARCH): 

A model of dynamic heteroskedasticity where the vari-
ance of the error term, given past information, depends 
linearly on the past squared errors. 

Autoregressive Process of Order One [AR(1)]: A time 
series model whose current value depends linearly on 
its most recent value plus an unpredictable disturbance. 

Auxiliary Regression: A regression used to compute a test 
statistic—such as the test statistics for heteroskedasticity 
and serial correlation—or any other regression that does 
not estimate the model of primary interest. 

Average: The sum of n numbers divided by n. 
Average Partial Effect: For nonconstant partial effects, the 

partial effect averaged across the specified population. 
Average Treatment Effect: A treatment, or policy, effect 

averaged across the population. 

B
Balanced Panel: A panel data set where all years (or peri-

ods) of data are available for all cross-sectional units. 
Base Group: The group represented by the overall 

intercept in a multiple regression model that includes 
dummy explanatory variables. 

Base Period: For index numbers, such as price or produc-
tion indices, the period against which all other time 
periods are measured. 

Base Value: The value assigned to the base period for 
constructing an index number; usually the base value 
is 1 or 100. 

Benchmark Group: See base group. 
Bernoulli (or Binary) Random Variable: A random vari-

able that takes on the values zero or one. 
Best Linear Unbiased Estimator (BLUE): Among all 

linear unbiased estimators, the estimator with the small-
est variance. OLS is BLUE, conditional on the sample 
values of the explanatory variables, under the Gauss-
Markov assumptions. 

Beta Coefficients: See standardized coefficients. 
Bias: The difference between the expected value of an 

estimator and the population value that the estimator is 
supposed to be estimating. 

Biased Estimator: An estimator whose expectation, or 
sampling mean, is different from the population value 
it is supposed to be estimating. 

Biased Towards Zero: A description of an estimator 
whose expectation in absolute value is less than the 
absolute value of the population parameter. 

Binary Response Model: A model for a binary (dummy) 
dependent variable. 

Binary Variable: See dummy variable. 
Binomial Distribution: The probability distribution of the 

number of successes out of n independent Bernoulli tri-
als, where each trial has the same probability of success. 

Bivariate Regression Model: See simple linear regres-
sion model. 

BLUE: See best linear unbiased estimator. 
Bootstrap: A resampling method that draws random 

samples, with replacement, from the original data set.
Bootstrap Standard Error: A standard error obtained as 

the sample standard deviation of an estimate across all 
bootstrap samples.
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Breusch-Godfrey Test: An asymptotically justified test 
for AR(p) serial correlation, with AR(1) being the 
most popular; the test allows for lagged dependent 
variables as well as other regressors that are not strictly 
exogenous. 

Breusch-Pagan Test: A test for heteroskedasticity where 
the squared OLS residuals are regressed on the explan-
atory variables in the model. 

C
Causal Effect: A ceteris paribus change in one variable 

has an effect on another variable. 
Censored Normal Regression Model: The special case 

of the censored regression model where the underlying 
population model satisfies the classical linear model 
assumptions. 

Censored Regression Model: A multiple regression 
model where the dependent variable has been censored 
above or below some known threshold. 

Central Limit Theorem (CLT): A key result from prob-
ability theory that implies that the sum of independent 
random variables, or even weakly dependent random 
variables, when standardized by its standard deviation, 
has a distribution that tends to standard normal as the 
sample size grows. 

Ceteris Paribus: All other relevant factors are held fixed. 
Chi-Square Distribution: A probability distribution 

obtained by adding the squares of independent standard 
normal random variables. The number of terms in the 
sum equals the degrees of freedom in the distribution. 

Chi-Square Random Variable: A random variable with a 
chi-square distribution. 

Chow Statistic: An F statistic for testing the equality of 
regression parameters across different groups (say, 
men and women) or time periods (say, before and after 
a policy change). 

Classical Errors-in-Variables (CEV): A measurement 
error model where the observed measure equals the 
actual variable plus an independent, or at least an 
uncorrelated, measurement error. 

Classical Linear Model: The multiple linear regression 
model under the full set of classical linear model 
assumptions. 

Classical Linear Model (CLM) Assumptions: The ideal 
set of assumptions for multiple regression analysis: for 
cross-sectional analysis, Assumptions MLR.1 through 
MLR.6 and for time series analysis, Assumptions TS.1 
through TS.6. The assumptions include linearity in the 
parameters, no perfect collinearity, the zero conditional 
mean assumption, homoskedasticity, no serial correla-
tion, and normality of the errors. 

Cluster Effect: An unobserved effect that is common to 
all units, usually people, in the cluster. 

Cluster Sample: A sample of natural clusters or groups 
that usually consist of people. 

Cochrane-Orcutt (CO) Estimation: A method of esti-
mating a multiple linear regression model with AR(1) 
errors and strictly exogenous explanatory variables; 

unlike Prais-Winsten, Cochrane-Orcutt does not use 
the equation for the first time period. 

Coefficient of Determination: See R-squared. 
Cointegration: The notion that a linear combination of 

two series, each of which is integrated of order one, is 
integrated of order zero. 

Column Vector: A vector of numbers arranged as a 
column. 

Composite Error Term: In a panel data model, the sum 
of the time-constant unobserved effect and the idiosyn-
cratic error. 

Conditional Distribution: The probability distribution of 
one random variable, given the values of one or more 
other random variables. 

Conditional Expectation: The expected or average value 
of one random variable, called the dependent or 
explained variable, that depends on the values of one 
or more other variables, called the independent or 
explanatory variables. 

Conditional Forecast: A forecast that assumes the future 
values of some explanatory variables are known with 
certainty. 

Conditional Median: The median of a response variable 
conditional on some explanatory variables.

Conditional Variance: The variance of one random vari-
able, given one or more other random variables. 

Confidence Interval (CI): A rule used to construct a 
random interval so that a certain percentage of all data 
sets, determined by the confidence level, yields an 
interval that contains the population value. 

Confidence Level: The percentage of samples in which 
we want our confidence interval to contain the popula-
tion value; 95% is the most common confidence level, 
but 90% and 99% are also used. 

Consistency: An estimator converges in probability to the 
correct population value as the sample size grows. 

Consistent Estimator: An estimator that converges in 
probability to the population parameter as the sample 
size grows without bound. 

Consistent Test: A test where, under the alternative hypoth-
esis, the probability of rejecting the null hypothesis con-
verges to one as the sample size grows without bound. 

Constant Elasticity Model: A model where the elasticity 
of the dependent variable, with respect to an explana-
tory variable, is constant; in multiple regression, both 
variables appear in logarithmic form. 

Contemporaneously Homoskedastic: In time series or 
panel data applications, the variance of the error term, 
conditional on the regressors in the same time period, 
is constant. 

Contemporaneously Exogenous: In time series or panel 
data applications, a regressor is contemporaneously 
exogenous if it is uncorrelated with the error term in the 
same time period, although it may be correlated with 
the errors in other time periods. 

Continuous Random Variable: A random variable that 
takes on any particular value with probability zero. 

Control Group: In program evaluation, the group that 
does not participate in the program. 

Control Variable: See explanatory variable. 
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Corner Solution Response: A nonnegative dependent 
variable that is roughly continuous over strictly posi-
tive values but takes on the value zero with some 
regularity. 

Correlation Coefficient: A measure of linear dependence 
between two random variables that does not depend 
on units of measurement and is bounded between �1 
and 1. 

Count Variable: A variable that takes on nonnegative 
integer values. 

Covariance: A measure of linear dependence between two 
random variables. 

Covariance Stationary: A time series process with con-
stant mean and variance where the covariance between 
any two random variables in the sequence depends only 
on the distance between them. 

Covariate: See explanatory variable. 
Critical Value: In hypothesis testing, the value against 

which a test statistic is compared to determine whether 
or not the null hypothesis is rejected. 

Cross-Sectional Data Set: A data set collected by sam-
pling a population at a given point in time. 

Cumulative Distribution Function (cdf): A function that 
gives the probability of a random variable being less 
than or equal to any specified real number. 

D
Data Censoring: A situation that arises when we do not 

always observe the outcome on the dependent variable 
because at an upper (or lower) threshold we only know 
that the outcome was above (or below) the threshold. 
(See also censored regression model.) 

Data Frequency: The interval at which time series data 
are collected. Yearly, quarterly, and monthly are the 
most common data frequencies. 

Data Mining: The practice of using the same data set 
to estimate numerous models in a search to find the 
“best” model. 

Davidson-MacKinnon Test: A test that is used for test-
ing a model against a nonnested alternative; it can be 
implemented as a t test on the fitted values from the 
competing model. 

Degrees of Freedom (df ): In multiple regression analysis, 
the number of observations minus the number of esti-
mated parameters. 

Denominator Degrees of Freedom: In an F test, the 
degrees of freedom in the unrestricted model. 

Dependent Variable: The variable to be explained in a mul-
tiple regression model (and a variety of other models). 

Derivative: The slope of a smooth function, as defined 
using calculus. 

Descriptive Statistic: A statistic used to summarize a set 
of numbers; the sample average, sample median, and 
sample standard deviation are the most common. 

Deseasonalizing: The removing of the seasonal compo-
nents from a monthly or quarterly time series. 

Detrending: The practice of removing the trend from a 
time series. 

Diagonal Matrix: A matrix with zeros for all off-diagonal 
entries. 

Dickey-Fuller Distribution: The limiting distribution of the 
t statistic in testing the null hypothesis of a unit root. 

Dickey-Fuller (DF) Test: A t test of the unit root null 
hypothesis in an AR(1) model. (See also augmented 
Dickey-Fuller test.) 

Difference in Slopes: A description of a model where 
some slope parameters may differ by group or time 
period. 

Difference-in-Differences Estimator: An estimator that 
arises in policy analysis with data for two time periods. 
One version of the estimator applies to independently 
pooled cross sections and another to panel data sets. 

Difference-Stationary Process: A time series sequence 
that is I(0) in its first differences.

Diminishing Marginal Effect: The marginal effect of an 
explanatory variable becomes smaller as the value of 
the explanatory variable increases. 

Discrete Random Variable: A random variable that takes on 
at most a finite or countably infinite number of values. 

Distributed Lag Model: A time series model that relates 
the dependent variable to current and past values of an 
explanatory variable. 

Disturbance: See error term. 
Downward Bias: The expected value of an estimator is 

below the population value of the parameter. 
Dummy Dependent Variable: See binary response model. 
Dummy Variable: A variable that takes on the value zero 

or one. 
Dummy Variable Regression: In a panel data setting, 

the regression that includes a dummy variable for 
each cross-sectional unit, along with the remaining 
explanatory variables. It produces the fixed effects 
estimator. 

Dummy Variable Trap: The mistake of including too 
many dummy variables among the independent vari-
ables; it occurs when an overall intercept is in the model 
and a dummy variable is included for each group. 

Duration Analysis: An application of the censored regres-
sion model, where the dependent variable is time 
elapsed until a certain event occurs, such as the time 
before an unemployed person becomes reemployed. 

Durbin-Watson (DW) Statistic: A statistic used to test 
for first order serial correlation in the errors of a time 
series regression model under the classical linear model 
assumptions. 

Dynamically Complete Model: A time series model 
where no further lags of either the dependent variable 
or the explanatory variables help to explain the mean 
of the dependent variable. 

E
Econometric Model: An equation relating the depen-

dent variable to a set of explanatory variables and 
unobserved disturbances, where unknown population 
parameters determine the ceteris paribus effect of each 
explanatory variable. 
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Economic Model: A relationship derived from economic 
theory or less formal economic reasoning. 

Economic Significance: See practical significance. 
Elasticity: The percentage change in one variable given a 

1% ceteris paribus increase in another variable. 
Empirical Analysis: A study that uses data in a formal 

econometric analysis to test a theory, estimate a rela-
tionship, or determine the effectiveness of a policy. 

Endogeneity: A term used to describe the presence of an 
endogenous explanatory variable. 

Endogenous Explanatory Variable: An explanatory 
variable in a multiple regression model that is corre-
lated with the error term, either because of an omitted 
variable, measurement error, or simultaneity. 

Endogenous Sample Selection: Nonrandom sample 
selection where the selection is related to the depen-
dent variable, either directly or through the error term 
in the equation. 

Endogenous Variables: In simultaneous equations mod-
els, variables that are determined by the equations in 
the system. 

Engle-Granger Test: A test of the null hypothesis that two 
time series are not cointegrated; the statistic is obtained 
as the Dickey-Fuller statistic using OLS residuals.

Engle-Granger Two-Step Procedure: A two-step  method 
for estimating error correction models whereby the 
cointegrating parameter is estimated in the first stage, 
and the error correction parameters are estimated in 
the second. 

Error Correction Model: A time series model in first 
differences that also contains an error correction term, 
which works to bring two I(1) series back into long-run 
equilibrium. 

Error Term: The variable in a simple or multiple regres-
sion equation that contains unobserved factors that 
affect the dependent variable. The error term may also 
include measurement errors in the observed dependent 
or independent variables. 

Error Variance: The variance of the error term in a mul-
tiple regression model. 

Errors-in-Variables: A situation where either the depen-
dent variable or some independent variables are mea-
sured with error. 

Estimate: The numerical value taken on by an estimator 
for a particular sample of data. 

Estimator: A rule for combining data to produce a 
numerical value for a population parameter; the form 
of the rule does not depend on the particular sample 
obtained. 

Event Study: An econometric analysis of the effects of 
an event, such as a change in government regulation or 
economic policy, on an outcome variable. 

Excluding a Relevant Variable: In multiple regression 
analysis, leaving out a variable that has a nonzero par-
tial effect on the dependent variable. 

Exclusion Restrictions: Restrictions that state that certain 
variables are excluded from the model (or have zero 
population coefficients). 

Exogenous Explanatory Variable: An explanatory vari-
able that is uncorrelated with the error term. 

Exogenous Sample Selection: Sample selection that 
either depends on exogenous explanatory variables 
or is independent of the error term in the equation of 
interest. 

Exogenous Variable: Any variable that is uncorrelated 
with the error term in the model of interest. 

Expected Value: A measure of central tendency in the dis-
tribution of a random variable, including an estimator. 

Experiment: In probability, a general term used to denote 
an event whose outcome is uncertain. In econometric 
analysis, it denotes a situation where data are collected 
by randomly assigning individuals to control and treat-
ment groups. 

Experimental Data: Data that have been obtained by run-
ning a controlled experiment. 

Experimental Group: See treatment group. 
Explained Sum of Squares (SSE): The total sample 

variation of the fitted values in a multiple regression 
model. 

Explained Variable: See dependent variable. 
Explanatory Variable: In regression analysis, a variable 

that is used to explain variation in the dependent 
variable. 

Exponential Function: A mathematical function defined 
for all values that has an increasing slope but a constant 
proportionate change. 

Exponential Smoothing: A simple method of forecasting 
a variable that involves a weighting of all previous 
outcomes on that variable. 

Exponential Trend: A trend with a constant growth rate. 

F
F Distribution: The probability distribution obtained 

by forming the ratio of two independent chi-square 
random variables, where each has been divided by its 
degrees of freedom. 

F Random Variable: A random variable with an F 
 distribution. 

F Statistic: A statistic used to test multiple hypotheses 
about the parameters in a multiple regression model. 

Feasible GLS (FGLS) Estimator: A GLS procedure 
where variance or correlation parameters are unknown 
and therefore must first be estimated. (See also general-
ized least squares estimator.) 

Finite Distributed Lag (FDL) Model: A dynamic model 
where one or more explanatory variables are allowed to 
have lagged effects on the dependent variable. 

First Difference: A transformation on a time series con-
structed by taking the difference of adjacent time peri-
ods, where the earlier time period is subtracted from the 
later time period. 

First-Differenced (FD) Equation: In time series or panel 
data models, an equation where the dependent and 
independent variables have all been first differenced. 

First-Differenced (FD) Estimator: In a panel data set-
ting, the pooled OLS estimator applied to first differ-
ences of the data across time. 
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First Order Autocorrelation: For a time series process 
ordered chronologically, the correlation coefficient 
between pairs of adjacent observations. 

First Order Conditions: The set of linear equations used 
to solve for the OLS estimates. 

Fitted Values: The estimated values of the dependent 
variable when the values of the independent variables 
for each observation are plugged into the OLS regres-
sion line. 

Fixed Effect: See unobserved effect. 
Fixed Effects Estimator: For the unobserved effects 

panel data model, the estimator obtained by applying 
pooled OLS to a time-demeaned equation. 

Fixed Effects Model: An unobserved effects panel data 
model where the unobserved effects is allowed to be 
arbitrarily correlated with the explanatory variables in 
each time period. 

Fixed Effects Transformation: For panel data, the time-
demeaned data. 

Forecast Error: The difference between the actual out-
come and the forecast of the outcome. 

Forecast Interval: In forecasting, a confidence interval 
for a yet unrealized future value of a time series vari-
able. (See also prediction interval.) 

Functional Form Misspecification: A problem that 
occurs when a model has omitted functions of the 
explanatory variables (such as quadratics) or uses the 
wrong functions of either the dependent variable or 
some explanatory variables. 

G
Gauss-Markov Assumptions: The set of assumptions 

(Assumptions MLR.1 through MLR.5 or TS.1 through 
TS.5) under which OLS is BLUE. 

Gauss-Markov Theorem: The theorem that states that, 
under the five Gauss-Markov assumptions (for cross-
sectional or time series models), the OLS estimator 
is BLUE (conditional on the sample values of the 
explanatory variables). 

Generalized Least Squares (GLS) Estimator: An esti-
mator that accounts for a known structure of the error 
variance (heteroskedasticity), serial correlation pattern 
in the errors, or both, via a transformation of the origi-
nal model. 

Geometric (or Koyck) Distributed Lag: An infinite dis-
tributed lag model where the lag coefficients decline at 
a geometric rate. 

Goodness-of-Fit Measure: A statistic that summarizes 
how well a set of explanatory variables explains a 
dependent or response variable. 

Granger Causality: A limited notion of causality where 
past values of one series (x

t
) are useful for predicting 

future values of another series (y
t
), after past values of 

y
t
 have been controlled for. 

Growth Rate: The proportionate change in a time series 
from the previous period. It may be approximated 
as the difference in logs or reported in percentage 
form. 

H
Heckit Method: An econometric procedure used to correct 

for sample selection bias due to incidental truncation or 
some other form of nonrandomly missing data. 

Heterogeneity Bias: The bias in OLS due to omitted het-
erogeneity (or omitted variables). 

Heteroskedasticity: The variance of the error term, given 
the explanatory variables, is not constant. 

Heteroskedasticity of Unknown Form: Heteroskedasti c-
ity that may depend on the explanatory variables in an 
unknown, arbitrary fashion. 

Heteroskedasticity-Robust F Statistic: An F-type statis-
tic that is (asymptotically) robust to heteroskedasticity 
of unknown form. 

Heteroskedasticity-Robust LM Statistic: An LM statistic 
that is robust to heteroskedasticity of unknown form. 

Heteroskedasticity-Robust Standard Error: A standard 
error that is (asymptotically) robust to heteroskedastic-
ity of unknown form. 

Heteroskedasticity-Robust t Statistic: A t statistic that 
is (asymptotically) robust to heteroskedasticity of 
unknown form. 

Highly Persistent: A time series process where outcomes 
in the distant future are highly correlated with current 
outcomes. 

Homoskedasticity: The errors in a regression model 
have constant variance conditional on the explanatory 
variables. 

Hypothesis Test: A statistical test of the null, or main-
tained, hypothesis against an alternative hypothesis. 

I
Idempotent Matrix: A (square) matrix where multiplica-

tion of the matrix by itself equals itself. 
Identification: A population parameter, or set of param-

eters, can be consistently estimated. 
Identified Equation: An equation whose parameters can 

be consistently estimated, especially in models with 
endogenous explanatory variables. 

Identity Matrix: A square matrix where all diagonal 
 elements are one and all off-diagonal elements are 
zero. 

Idiosyncratic Error: In panel data models, the error that 
changes over time as well as across units (say, indi-
viduals, firms, or cities). 

Impact Elasticity: In a distributed lag model, the immedi-
ate percentage change in the dependent variable given 
a 1% increase in the independent variable. 

Impact Multiplier: See impact propensity. 
Impact Propensity: In a distributed lag model, the imme-

diate change in the dependent variable given a one-unit 
increase in the independent variable. 

Incidental Truncation: A sample selection problem 
whereby one variable, usually the dependent vari-
able, is only observed for certain outcomes of another 
variable. 
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Inclusion of an Irrelevant Variable: The including of an 
explanatory variable in a regression model that has a zero 
population parameter in estimating an equation by OLS. 

Inconsistency: The difference between the probability 
limit of an estimator and the parameter value. 

Inconsistent: An estimator does not converge (in prob-
ability) to the correct population parameter as the 
sample size grows. 

Independent Random Variables: Random variables 
whose joint distribution is the product of the marginal 
distributions. 

Independent Variable: See explanatory variable. 
Independently Pooled Cross Section: A data set obtained 

by pooling independent random samples from different 
points in time. 

Index Number: A statistic that aggregates information on 
economic activity, such as production or prices. 

Infinite Distributed Lag (IDL) Model: A distributed 
lag model where a change in the explanatory variable 
can have an impact on the dependent variable into the 
indefinite future. 

Influential Observations: See outliers. 
Information Set: In forecasting, the set of variables that 

we can observe prior to forming our forecast. 
In-Sample Criteria: Criteria for choosing forecasting 

models that are based on goodness-of-fit within the 
sample used to obtain the parameter estimates. 

Instrumental Variable (IV): In an equation with an 
endogenous explanatory variable, an IV is a variable 
that does not appear in the equation, is uncorrelated 
with the error in the equation, and is (partially) corre-
lated with the endogenous explanatory variable. 

Instrumental Variables (IV) Estimator: An estimator in a 
linear model used when instrumental variables are avail-
able for one or more endogenous explanatory variables. 

Instrument Exogeneity: In instrumental variables estima-
tion, the requirement that an instrumental variable is 
uncorrelated with the error term.

Instrument Relevance: In instrumental variables estima-
tion, the requirement that an instrumental variable 
helps to partially explain variation in the endogenous 
explanatory variable.

Integrated of Order One [I(1)]: A time series process 
that needs to be first-differenced in order to produce 
an I(0) process. 

Integrated of Order Zero [I(0)]: A stationary, weakly 
dependent time series process that, when used in 
regression analysis, satisfies the law of large numbers 
and the central limit theorem. 

Interaction Effect: In multiple regression, the partial 
effect of one explanatory variable depends on the value 
of a different explanatory variable. 

Interaction Term: An independent variable in a regression 
model that is the product of two explanatory variables. 

Intercept: In the equation of a line, the value of the y vari-
able when the x variable is zero. 

Intercept Parameter: The parameter in a multiple linear 
regression model that gives the expected value of the 
dependent variable when all the independent variables 
equal zero. 

Intercept Shift: The intercept in a regression model dif-
fers by group or time period. 

Internet: A global computer network that can be used to 
access information and download databases. 

Interval Estimator: A rule that uses data to obtain lower 
and upper bounds for a population parameter. (See also 
confidence interval.) 

Inverse: For an n × n matrix, its inverse (if it exists) is the 
n × n matrix for which pre- and post-multiplication by 
the original matrix yields the identity matrix. 

Inverse Mills Ratio: A term that can be added to a multi-
ple regression model to remove sample selection bias. 

J
Joint Distribution: The probability distribution determin-

ing the probabilities of outcomes involving two or 
more random variables. 

Joint Hypotheses Test: A test involving more than one 
restriction on the parameters in a model. 

Jointly Insignificant: Failure to reject, using an F test at 
a specified significance level, that all coefficients for a 
group of explanatory variables are zero. 

Jointly Statistically Significant: The null hypothesis that 
two or more explanatory variables have zero popula-
tion coefficients is rejected at the chosen significance 
level. 

Just Identified Equation: For models with endogenous 
explanatory variables, an equation that is identified but 
would not be identified with one fewer instrumental 
variable. 

K
Kurtosis: A measure of the thickness of the tails of a dis-

tribution based on the fourth moment of the standard-
ized random variable; the measure is usually compared 
to the value for the standard normal distribution, which 
is three.

L
Lag Distribution: In a finite or infinite distributed lag 

model, the lag coefficients graphed as a function of 
the lag length. 

Lagged Dependent Variable: An explanatory variable 
that is equal to the dependent variable from an earlier 
time period. 

Lagged Endogenous Variable: In a simultaneous equa-
tions model, a lagged value of one of the endogenous 
variables. 

Lagrange Multiplier (LM) Statistic: A test statistic with 
large-sample justification that can be used to test for 
omitted variables, heteroskedasticity, and serial corre-
lation, among other model specification problems. 

Large Sample Properties: See asymptotic properties. 
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Latent Variable Model: A model where the observed 
dependent variable is assumed to be a function of an 
underlying latent, or unobserved, variable. 

Law of Iterated Expectations: A result from prob-
ability that relates unconditional and conditional 
expectations. 

Law of Large Numbers (LLN): A theorem that says that 
the average from a random sample converges in prob-
ability to the population average; the LLN also holds 
for stationary and weakly dependent time series. 

Leads and Lags Estimator: An estimator of a cointegrat-
ing parameter in a regression with I(1) variables, where 
the current, some past, and some future first differences 
in the explanatory variable are included as regressors. 

Least Absolute Deviations (LAD): A method for esti-
mating the parameters of a multiple regression model 
based on minimizing the sum of the absolute values of 
the residuals. 

Least Squares Estimator: An estimator that minimizes a 
sum of squared residuals. 

Level-Level Model: A regression model where the depen-
dent variable and the independent variables are in level 
(or original) form. 

Level-Log Model: A regression model where the depen-
dent variable is in level form and (at least some of ) the 
independent variables are in logarithmic form. 

Likelihood Ratio Statistic: A statistic that can be used to 
test single or multiple hypotheses when the constrained 
and unconstrained models have been estimated by max-
imum likelihood. The statistic is twice the difference in 
the unconstrained and constrained log-likelihoods. 

Limited Dependent Variable (LDV): A dependent or 
response variable whose range is restricted in some 
important way. 

Linear Function: A function where the change in the 
dependent variable, given a one-unit change in an inde-
pendent variable, is constant. 

Linear Probability Model (LPM): A binary response 
model where the response probability is linear in its 
parameters. 

Linear Time Trend: A trend that is a linear function of 
time. 

Linear Unbiased Estimator: In multiple regression anal-
ysis, an unbiased estimator that is a linear function of 
the outcomes on the dependent variable. 

Linearly Independent Vectors: A set of vectors such that 
no vector can be written as a linear combination of the 
others in the set. 

Logarithmic Function: A mathematical function defined 
for positive arguments that has a positive, but diminish-
ing, slope. 

Log Function: A mathematical function, defined only for 
strictly positive arguments, with a positive but decreas-
ing slope. 

Logit Model: A model for binary response where the 
response probability is the logit function evaluated at a 
linear function of the explanatory variables. 

Log-Level Model: A regression model where the depen-
dent variable is in logarithmic form and the indepen-
dent variables are in level (or original) form. 

Log-Likelihood Function: The sum of the log-likelihoods, 
where the log-likelihood for each observation is the 
log of the density of the dependent variable given the 
explanatory variables; the log-likelihood function is 
viewed as a function of the parameters to be estimated. 

Log-Log Model: A regression model where the dependent 
variable and (at least some of) the explanatory vari-
ables are in logarithmic form. 

Longitudinal Data: See panel data. 
Long-Run Elasticity: The long-run propensity in a dis-

tributed lag model with the dependent and indepen-
dent variables in logarithmic form; thus, the long-run 
elasticity is the eventual percentage increase in the 
explained variable, given a permanent 1% increase in 
the explanatory variable. 

Long-Run Multiplier: See long-run propensity. 
Long-Run Propensity (LRP): In a distributed lag model, the 

eventual change in the dependent variable given a perma-
nent, one-unit increase in the independent variable. 

Loss Function: A function that measures the loss when a 
forecast differs from the actual outcome; the most com-
mon examples are absolute value loss and squared loss. 

M
Marginal Effect: The effect on the dependent variable 

that results from changing an independent variable by 
a small amount. 

Martingale: A time series process whose expected value, 
given all past outcomes on the series, simply equals the 
most recent value. 

Martingale Difference Sequence: The first difference of 
a martingale. It is unpredictable (or has a zero mean), 
given past values of the sequence. 

Matched Pair Sample: A sample where each observation 
is matched with another, as in a sample consisting of a 
husband and wife or a set of two siblings. 

Matrix: An array of numbers. 
Matrix Multiplication: An algorithm for multiplying 

together two conformable matrices. 
Matrix Notation: A convenient mathematical notation, 

grounded in matrix algebra, for expressing and manip-
ulating the multiple regression model. 

Maximum Likelihood Estimation (MLE): A broadly appli-
cable estimation method where the parameter estimates 
are chosen to maximize the log-likelihood function. 

Maximum Likelihood Estimator: An estimator that 
maximizes the (log of) the likelihood function. 

Mean: See expected value. 
Mean Absolute Error (MAE): A performance measure 

in forecasting, computed as the average of the absolute 
values of the forecast errors. 

Mean Independent: The key requirement in multiple regres-
sion analysis that says the unobserved error has a mean 
that does not change across subsets of the population 
defined by different values of the explanatory variables.

Mean Squared Error (MSE): The expected squared dis-
tance that an estimator is from the population value; it 
equals the variance plus the square of any bias. 
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Measurement Error: The difference between an observed 
variable and the variable that belongs in a multiple 
regression equation. 

Median: In a probability distribution, it is the value where 
there is a 50% chance of being below the value and a 
50% chance of being above it. In a sample of numbers, it 
is the middle value after the numbers have been ordered. 

Method of Moments Estimator: An estimator obtained 
by using the sample analog of population moments; 
ordinary least squares and two stage least squares are 
both method of moments estimators. 

Micronumerosity: A term introduced by Arthur 
Goldberger to describe properties of econometric esti-
mators with small sample sizes. 

Minimum Variance Unbiased Estimator: An estimator 
with the smallest variance in the class of all unbiased 
estimators. 

Missing Data: A data problem that occurs when we do not 
observe values on some variables for certain observations 
(individuals, cities, time periods, and so on) in the sample. 

Misspecification Analysis: The process of determining 
likely biases that can arise from omitted variables, 
measurement error, simultaneity, and other kinds of 
model misspecification. 

Moving Average Process of Order One [MA(1)]: A 
time series process generated as a linear function of 
the current value and one lagged value of a zero-mean, 
constant variance, uncorrelated stochastic process. 

Multicollinearity: A term that refers to correlation among 
the independent variables in a multiple regression 
model; it is usually invoked when some correlations are 
“large,” but an actual magnitude is not well defined. 

Multiple Hypotheses Test: A test of a null hypothesis 
involving more than one restriction on the parameters. 

Multiple Linear Regression (MLR) Model: A model lin-
ear in its parameters, where the dependent variable is a 
function of independent variables plus an error term. 

Multiple Regression Analysis: A type of analysis that 
is used to describe estimation of and inference in the 
multiple linear regression model. 

Multiple Restrictions: More than one restriction on the 
parameters in an econometric model. 

Multiple-Step-Ahead Forecast: A time series forecast of 
more than one period into the future. 

Multiplicative Measurement Error: Measurement error 
where the observed variable is the product of the true 
unobserved variable and a positive measurement error. 

Multivariate Normal Distribution: A distribution for 
multiple random variables where each linear combi-
nation of the random variables has a univariate (one-
dimensional) normal distribution. 

N
n-R-Squared Statistic: See Lagrange multiplier statistic. 
Natural Experiment: A situation where the economic 

environment—sometimes summarized by an explanatory 
variable—exogenously changes, perhaps inadvertently, 
due to a policy or institutional change. 

Natural Logarithm: See logarithmic function. 
Nominal Variable: A variable measured in nominal or 

current dollars. 
Nonexperimental Data: Data that have not been obtained 

through a controlled experiment. 
Nonlinear Function: A function whose slope is not 

 constant. 
Nonnested Models: Two (or more) models where no 

model can be written as a special case of the other by 
imposing restrictions on the parameters. 

Nonrandom Sample: A sample obtained other than by 
sampling randomly from the population of interest. 

Nonstationary Process: A time series process whose joint 
distributions are not constant across different epochs. 

Normal Distribution: A probability distribution com-
monly used in statistics and econometrics for modeling 
a population. Its probability distribution function has 
a bell shape. 

Normality Assumption: The classical linear model 
assumption that states that the error (or dependent 
variable) has a normal distribution, conditional on the 
explanatory variables. 

Null Hypothesis: In classical hypothesis testing, we take 
this hypothesis as true and require the data to provide 
substantial evidence against it. 

Numerator Degrees of Freedom: In an F test, the number 
of restrictions being tested. 

O
Observational Data: See nonexperimental data. 
OLS: See ordinary least squares. 
OLS Intercept Estimate: The intercept in an OLS regres-

sion line. 
OLS Regression Line: The equation relating the predicted 

value of the dependent variable to the independent 
variables, where the parameter estimates have been 
obtained by OLS. 

OLS Slope Estimate: A slope in an OLS regression line. 
Omitted Variable Bias: The bias that arises in the OLS 

estimators when a relevant variable is omitted from the 
regression. 

Omitted Variables: One or more variables, which we 
would like to control for, have been omitted in estimat-
ing a regression model. 

One-Sided Alternative: An alternative hypothesis that 
states that the parameter is greater than (or less than) 
the value hypothesized under the null. 

One-Step-Ahead Forecast: A time series forecast one 
period into the future. 

One-Tailed Test: A hypothesis test against a one-sided 
alternative. 

Online Databases: Databases that can be accessed via a 
computer network. 

Online Search Services: Computer software that allows 
the Internet or databases on the Internet to be searched 
by topic, name, title, or keywords. 

Order Condition: A necessary condition for identifying 
the parameters in a model with one or more endogenous 



 Glossary 843

explanatory variables: the total number of exogenous 
variables must be at least as great as the total number of 
explanatory variables. 

Ordinal Variable: A variable where the ordering of the 
values conveys information but the magnitude of the 
values does not. 

Ordinary Least Squares (OLS): A method for estimating 
the parameters of a multiple linear regression model. 
The ordinary least squares estimates are obtained by 
minimizing the sum of squared residuals. 

Outliers: Observations in a data set that are substantially 
different from the bulk of the data, perhaps because of 
errors or because some data are generated by a different 
model than most of the other data. 

Out-of-Sample Criteria: Criteria used for choosing fore-
casting models that are based on a part of the sample 
that was not used in obtaining parameter estimates. 

Overall Significance of a Regression: A test of the joint 
significance of all explanatory variables appearing in a 
multiple regression equation. 

Over Controlling: In a multiple regression model, includ-
ing explanatory variables that should not be held fixed 
when studying the ceteris paribus effect of one or more 
other explanatory variables; this can occur when vari-
ables that are themselves outcomes of an intervention 
or a policy are included among the regressors. 

Overdispersion: In modeling a count variable, the vari-
ance is larger than the mean. 

Overidentified Equation: In models with endogenous 
explanatory variables, an equation where the number 
of instrumental variables is strictly greater than the 
number of endogenous explanatory variables. 

Overidentifying Restrictions: The extra moment con-
ditions that come from having more instrumental 
variables than endogenous explanatory variables in a 
linear model. 

Overspecifying a Model: See inclusion of an irrelevant 
variable. 

P
p-Value: The smallest significance level at which the null 

hypothesis can be rejected. Equivalently, the largest 
significance level at which the null hypothesis cannot 
be rejected. 

Pairwise Uncorrelated Random Variables: A set of 
two or more random variables where each pair is 
uncorrelated. 

Panel Data: A data set constructed from repeated cross 
sections over time. With a balanced panel, the same 
units appear in each time period. With an unbalanced 
panel, some units do not appear in each time period, 
often due to attrition. 

Parameter: An unknown value that describes a population 
relationship. 

Parsimonious Model: A model with as few parameters as 
possible for capturing any desired features. 

Partial Derivative: For a smooth function of more than 
one variable, the slope of the function in one direction. 

Partial Effect: The effect of an explanatory variable on 
the dependent variable, holding other factors in the 
regression model fixed. 

Partial Effect at the Average (PEA): In models with 
nonconstant partial effects, the partial effect evaluated 
at the average values of the explanatory variables.

Percent Correctly Predicted: In a binary response model, 
the percentage of times the prediction of zero or one 
coincides with the actual outcome. 

Percentage Change: The proportionate change in a vari-
able, multiplied by 100. 

Percentage Point Change: The change in a variable that 
is measured as a percentage. 

Perfect Collinearity: In multiple regression, one indepen-
dent variable is an exact linear function of one or more 
other independent variables. 

Plug-In Solution to the Omitted Variables Problem: A 
proxy variable is substituted for an unobserved omitted 
variable in an OLS regression. 

Point Forecast: The forecasted value of a future outcome. 
Poisson Distribution: A probability distribution for count 

variables. 
Poisson Regression Model: A model for a count depen-

dent variable where the dependent variable, conditional 
on the explanatory variables, is nominally assumed to 
have a Poisson distribution. 

Policy Analysis: An empirical analysis that uses economet-
ric methods to evaluate the effects of a certain policy. 

Pooled Cross Section: A data configuration where 
in dependent cross sections, usually collected at dif-
ferent points in time, are combined to produce a 
single data set. 

Pooled OLS Estimation: OLS estimation with indepen-
dently pooled cross sections, panel data, or cluster 
samples, where the observations are pooled across time 
(or group) as well as across the cross-sectional units. 

Population: A well-defined group (of people, firms, cities, 
and so on) that is the focus of a statistical or economet-
ric analysis. 

Population Model: A model, especially a multiple linear 
regression model, that describes a population. 

Population R-Squared: In the population, the fraction of 
the variation in the dependent variable that is explained 
by the explanatory variables. 

Population Regression Function: See conditional 
expectation. 

Positive Definite: A symmetric matrix such that all qua-
dratic forms, except the trivial one that must be zero, 
are strictly positive. 

Positive Semi-Definite: A symmetric matrix such that all 
quadratic forms are nonnegative. 

Power of a Test: The probability of rejecting the null 
hypothesis when it is false; the power depends on the val-
ues of the population parameters under the alternative. 

Practical Significance: The practical or economic impor-
tance of an estimate, which is measured by its sign and 
magnitude, as opposed to its statistical significance. 

Prais-Winsten (PW) Estimation: A method of estimating 
a multiple linear regression model with AR(1) errors 
and strictly exogenous explanatory variables; unlike 
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Cochrane-Orcutt, Prais-Winsten uses the equation for 
the first time period in estimation. 

Predetermined Variable: In a simultaneous equations 
model, either a lagged endogenous variable or a lagged 
exogenous variable. 

Predicted Variable: See dependent variable. 
Prediction: The estimate of an outcome obtained by plug-

ging specific values of the explanatory variables into an 
estimated model, usually a multiple regression model. 

Prediction Error: The difference between the actual out-
come and a prediction of that outcome. 

Prediction Interval: A confidence interval for an unknown 
outcome on a dependent variable in a multiple regres-
sion model. 

Predictor Variable: See explanatory variable. 
Probability Density Function (pdf): A function that, for 

discrete random variables, gives the probability that 
the random variable takes on each value; for continu-
ous random variables, the area under the pdf gives the 
probability of various events. 

Probability Limit: The value to which an estimator con-
verges as the sample size grows without bound. 

Probit Model: A model for binary responses where the 
response probability is the standard normal cdf evalu-
ated at a linear function of the explanatory variables. 

Program Evaluation: An analysis of a particular private 
or public program using econometric methods to obtain 
the causal effect of the program. 

Proportionate Change: The change in a variable relative 
to its initial value; mathematically, the change divided 
by the initial value. 

Proxy Variable: An observed variable that is related but 
not identical to an unobserved explanatory variable in 
multiple regression analysis. 

Pseudo R-Squared: Any number of goodness-of-fit mea-
sures for limited dependent variable models. 

Q
Quadratic Form: A mathematical function where the 

vector argument both pre- and post-multiplies a square, 
symmetric matrix. 

Quadratic Functions: Functions that contain squares of 
one or more explanatory variables; they capture dimin-
ishing or increasing effects on the dependent variable. 

Qualitative Variable: A variable describing a nonquantita-
tive feature of an individual, a firm, a city, and so on. 

Quasi-Demeaned Data: In random effects estimation for 
panel data, it is the original data in each time period 
minus a fraction of the time average; these calculations 
are done for each cross-sectional observation. 

Quasi-Differenced Data: In estimating a regression 
model with AR(1) serial correlation, it is the difference 
between the current time period and a multiple of the 
previous time period, where the multiple is the param-
eter in the AR(1) model. 

Quasi-Experiment: See natural experiment. 
Quasi-Likelihood Ratio Statistic: A modification of 

the likelihood ratio statistic that accounts for possible 

distributional misspecification, as in a Poisson regres-
sion model. 

Quasi-Maximum Likelihood Estimation (QMLE): 
Maximum likelihood estimation but where the log-
likelihood function may not correspond to the actual 
conditional distribution of the dependent variable. 

R
R-Bar Squared: See adjusted R-squared. 
R-Squared: In a multiple regression model, the proportion 

of the total sample variation in the dependent variable 
that is explained by the independent variable. 

R-Squared Form of the F Statistic: The F statistic for 
testing exclusion restrictions expressed in terms of 
the R-squareds from the restricted and unrestricted 
models. 

Random Coefficient (Slope) Model: A multiple regres-
sion model where the slope parameters are allowed to 
depend on unobserved unit-specific variables.

Random Effects Estimator: A feasible GLS estimator in 
the unobserved effects model where the unobserved 
effect is assumed to be uncorrelated with the explana-
tory variables in each time period. 

Random Effects Model: The unobserved effects panel 
data model where the unobserved effect is assumed to 
be uncorrelated with the explanatory variables in each 
time period. 

Random Sample: A sample obtained by sampling ran-
domly from the specified population. 

Random Sampling: A sampling scheme whereby each 
observation is drawn at random from the population. 
In particular, no unit is more likely to be selected than 
any other unit, and each draw is independent of all 
other draws. 

Random Variable: A variable whose outcome is uncertain. 
Random Vector: A vector consisting of random variables. 
Random Walk: A time series process where next period’s 

value is obtained as this period’s value, plus an inde-
pendent (or at least an uncorrelated) error term. 

Random Walk with Drift: A random walk that has a 
constant (or drift) added in each period. 

Rank Condition: A sufficient condition for identification 
of a model with one or more endogenous explanatory 
variables. 

Rank of a Matrix: The number of linearly independent 
columns in a matrix. 

Rational Distributed Lag (RDL) Model: A type of infi-
nite distributed lag model where the lag distribution 
depends on relatively few parameters. 

Real Variable: A monetary value measured in terms of a 
base period. 

Reduced Form Equation: A linear equation where an 
endogenous variable is a function of exogenous vari-
ables and unobserved errors. 

Reduced Form Error: The error term appearing in a 
reduced form equation. 

Reduced Form Parameters: The parameters appearing in 
a reduced form equation. 
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Regressand: See dependent variable. 
Regression Specification Error Test (RESET): A gen-

eral test for functional form in a multiple regression 
model; it is an F test of joint significance of the 
squares, cubes, and perhaps higher powers of the fitted 
values from the initial OLS estimation. 

Regression through the Origin: Regression analysis 
where the intercept is set to zero; the slopes are obtained 
by minimizing the sum of squared residuals, as usual. 

Regressor: See explanatory variable. 
Rejection Region: The set of values of a test statistic that 

leads to rejecting the null hypothesis. 
Rejection Rule: In hypothesis testing, the rule that deter-

mines when the null hypothesis is rejected in favor of 
the alternative hypothesis. 

Relative Change: See proportionate change. 
Resampling Method: A technique for approximating 

standard errors (and distributions of test statistics) 
whereby a series of samples are obtained from the 
original data set and estimates are computed for each 
subsample.

Residual: The difference between the actual value and 
the fitted (or predicted) value; there is a residual for 
each observation in the sample used to obtain an OLS 
regression line. 

Residual Analysis: A type of analysis that studies the sign 
and size of residuals for particular observations after a 
multiple regression model has been estimated. 

Residual Sum of Squares: See sum of squared residuals. 
Response Probability: In a binary response model, the 

probability that the dependent variable takes on the 
value one, conditional on explanatory variables. 

Response Variable: See dependent variable. 
Restricted Model: In hypothesis testing, the model 

obtained after imposing all of the restrictions required 
under the null. 

Retrospective Data: Data collected based on past, rather 
than current, information.

Root Mean Squared Error (RMSE): Another name for 
the standard error of the regression in multiple regres-
sion analysis. 

Row Vector: A vector of numbers arranged as a row. 

S
Sample Average: The sum of n numbers divided by n; a 

measure of central tendency. 
Sample Correlation: For outcomes on two random vari-

ables, the sample covariance divided by the product of 
the sample standard deviations. 

Sample Correlation Coefficient: An estimate of the (pop-
ulation) correlation coefficient from a sample of data. 

Sample Covariance: An unbiased estimator of the popu-
lation covariance between two random variables. 

Sample Regression Function (SRF): See OLS regres-
sion line. 

Sample Selection Bias: Bias in the OLS estimator that 
is induced by using data that arise from endogenous 
sample selection.

Sample Standard Deviation: A consistent estimator of 
the population standard deviation. 

Sample Variance: An unbiased, consistent estimator of 
the population variance. 

Sampling Distribution: The probability distribution of an 
estimator over all possible sample outcomes. 

Sampling Standard Deviation: The standard deviation of 
an estimator, that is, the standard deviation of a sam-
pling distribution.

Sampling Variance: The variance in the sampling distri-
bution of an estimator; it measures the spread in the 
sampling distribution. 

Scalar Multiplication: The algorithm for multiplying a 
scalar (number) by a vector or matrix. 

Scalar Variance-Covariance Matrix: A variance-
covariance matrix where all off-diagonal terms are 
zero and the diagonal terms are the same positive 
constant. 

Score Statistic: See Lagrange multiplier statistic. 
Seasonal Dummy Variables: A set of dummy variables 

used to denote the quarters or months of the year. 
Seasonality: A feature of monthly or quarterly time series 

where the average value differs systematically by sea-
son of the year. 

Seasonally Adjusted: Monthly or quarterly time series 
data where some statistical procedure—possibly 
regression on seasonal dummy variables—has been 
used to remove the seasonal component. 

Selected Sample: A sample of data obtained not by ran-
dom sampling but by selecting on the basis of some 
observed or unobserved characteristic. 

Self-Selection: Deciding on an action based on the likely 
benefits, or costs, of taking that action. 

Semi-Elasticity: The percentage change in the dependent 
variable given a one-unit increase in an independent 
variable. 

Sensitivity Analysis: The process of checking whether 
the estimated effects and statistical significance of key 
explanatory variables are sensitive to inclusion of other 
explanatory variables, functional form, dropping of 
potentially out-lying observations, or different methods 
of estimation. 

Sequentially Exogenous: A feature of an explanatory 
variable in time series (or panel data) models where 
the error term in the current time period has a zero 
mean conditional on all current and past explanatory 
variables; a weaker version is stated in terms of zero 
correlations.

Serial Correlation: In a time series or panel data 
model, correlation between the errors in different 
time  periods. 

Serial Correlation-Robust Standard Error: A standard 
error for an estimator that is (asymptotically) valid 
whether or not the errors in the model are serially 
 correlated. 

Serially Uncorrelated: The errors in a time series or panel 
data model are pairwise uncorrelated across time. 

Short-Run Elasticity: The impact propensity in a distrib-
uted lag model when the dependent and independent 
variables are in logarithmic form. 
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Significance Level: The probability of Type I error in 
hypothesis testing. 

Simple Linear Regression Model: A model where the 
dependent variable is a linear function of a single inde-
pendent variable, plus an error term. 

Simultaneity: A term that means at least one explanatory 
variable in a multiple linear regression model is deter-
mined jointly with the dependent variable. 

Simultaneity Bias: The bias that arises from using OLS 
to estimate an equation in a simultaneous equations 
model. 

Simultaneous Equations Model (SEM): A model that 
jointly determines two or more endogenous variables, 
where each endogenous variable can be a function of 
other endogenous variables as well as of exogenous 
variables and an error term. 

Skewness: A measure of how far a distribution is from 
being symmetric, based on the third moment of the 
standardized random variable.

Slope: In the equation of a line, the change in the y variable 
when the x variable increases by one. 

Slope Parameter: The coefficient on an independent vari-
able in a multiple regression model. 

Smearing Estimate: A retransformation method particu-
larly useful for predicting the level of a response vari-
able when a linear model has been estimated for the 
natural log of the response variable.

Spreadsheet: Computer software used for entering and 
manipulating data. 

Spurious Correlation: A correlation between two vari-
ables that is not due to causality, but perhaps to the 
dependence of the two variables on another unobserved 
factor. 

Spurious Regression Problem: A problem that arises 
when regression analysis indicates a relationship 
between two or more unrelated time series processes 
simply because each has a trend, is an integrated time 
series (such as a random walk), or both. 

Square Matrix: A matrix with the same number of rows 
as columns. 

Stable AR(1) Process: An AR(1) process where the 
parameter on the lag is less than one in absolute value. 
The correlation between two random variables in the 
sequence declines to zero at a geometric rate as the dis-
tance between the random variables increases, and so a 
stable AR(1) process is weakly dependent. 

Standard Deviation: A common measure of spread in the 
distribution of a random variable. 

Standard Deviation of  ̂  � 
j
: A common measure of spread 

in the sampling distribution of  ̂  � 
j
.

Standard Error: Generically, an estimate of the standard 
deviation of an estimator. 

Standard Error of  ̂  � 
j
: An estimate of the standard devia-

tion in the sampling distribution of  ̂  � 
j
. 

Standard Error of the Estimate: See standard error of 
the regression. 

Standard Error of the Regression (SER): In multiple 
regression analysis, the estimate of the standard devia-
tion of the population error, obtained as the square 

root of the sum of squared residuals over the degrees 
of freedom. 

Standard Normal Distribution: The normal distribution 
with mean zero and variance one. 

Standardized Coefficients: Regression coefficients that 
measure the standard deviation change in the depen-
dent variable given a one standard deviation increase 
in an independent variable. 

Standardized Random Variable: A random variable trans-
formed by subtracting off its expected value and divid-
ing the result by its standard deviation; the new random 
variable has mean zero and standard deviation one. 

Static Model: A time series model where only contem-
poraneous explanatory variables affect the dependent 
variable. 

Stationary Process: A time series process where the 
marginal and all joint distributions are invariant across 
time. 

Statistical Inference: The act of testing hypotheses about 
population parameters. 

Statistical Significance: The importance of an estimate 
as measured by the size of a test statistic, usually a 
t statistic. 

Statistically Different from Zero: See statistically 
 significant. 

Statistically Insignificant: Failure to reject the null 
hypothesis that a population parameter is equal to zero, 
at the chosen significance level. 

Statistically Significant: Rejecting the null hypothesis 
that a parameter is equal to zero against the specified 
alternative, at the chosen significance level. 

Stochastic Process: A sequence of random variables 
indexed by time. 

Stratified Sampling: A nonrandom sampling scheme 
whereby the population is first divided into several 
nonoverlapping, exhaustive strata, and then random 
samples are taken from within each stratum. 

Strict Exogeneity: An assumption that holds in a time 
series or panel data model when the explanatory vari-
ables are strictly exogenous. 

Strictly Exogenous: A feature of explanatory variables in a 
time series or panel data model where the error term at 
any time period has zero expectation, conditional on the 
explanatory variables in all time periods; a less restric-
tive version is stated in terms of zero correlations. 

Strongly Dependent: See highly persistent. 
Structural Equation: An equation derived from economic 

theory or from less formal economic reasoning. 
Structural Error: The error term in a structural equation, 

which could be one equation in a simultaneous equa-
tions model. 

Structural Parameters: The parameters appearing in a 
structural equation. 

Studentized Residuals: The residuals computed by 
excluding each observation, in turn, from the estima-
tion, divided by the estimated standard deviation of 
the error.

Sum of Squared Residuals (SSR): In multiple regression 
analysis, the sum of the squared OLS residuals across 
all observations. 



 Glossary 847

Summation Operator: A notation, denoted by ∑, used to 
define the summing of a set of numbers. 

Symmetric Distribution: A probability distribution char-
acterized by a probability density function that is sym-
metric around its median value, which must also be the 
mean value (whenever the mean exists). 

Symmetric Matrix: A (square) matrix that equals its 
transpose. 

T
t Distribution: The distribution of the ratio of a standard 

normal random variable and the square root of an inde-
pendent chi-square random variable, where the chi-
square random variable is first divided by its df. 

t Ratio: See t statistic. 
t Statistic: The statistic used to test a single hypothesis 

about the parameters in an econometric model. 
Test Statistic: A rule used for testing hypotheses where 

each sample outcome produces a numerical value. 
Text Editor: Computer software that can be used to edit 

text files. 
Text (ASCII) File: A universal file format that can be 

transported across numerous computer platforms. 
Time-Demeaned Data: Panel data where, for each cross-

sectional unit, the average over time is subtracted from 
the data in each time period. 

Time Series Data: Data collected over time on one or 
more variables. 

Time Series Process: See stochastic process. 
Time Trend: A function of time that is the expected value 

of a trending time series process. 
Tobit Model: A model for a dependent variable that 

takes on the value zero with positive probability but is 
roughly continuously distributed over strictly positive 
values. (See also corner solution response.) 

Top Coding: A form of data censoring where the value 
of a variable is not reported when it is above a given 
threshold; we only know that it is at least as large as 
the threshold. 

Total Sum of Squares (SST): The total sample variation 
in a dependent variable about its sample average. 

Trace of a Matrix: For a square matrix, the sum of its 
diagonal elements. 

Transpose: For any matrix, the new matrix obtained by 
interchanging its rows and columns. 

Treatment Group: In program evaluation, the group that 
participates in the program. 

Trending Process: A time series process whose expected 
value is an increasing or a decreasing function of time. 

Trend-Stationary Process: A process that is station-
ary once a time trend has been removed; it is usually 
implicit that the detrended series is weakly dependent. 

True Model: The actual population model relating the 
dependent variable to the relevant independent vari-
ables, plus a disturbance, where the zero conditional 
mean assumption holds. 

Truncated Normal Regression Model: The special case 
of the truncated regression model where the underlying 

population model satisfies the classical linear model 
assumptions. 

Truncated Regression Model: A linear regression model 
for cross-sectional data in which the sampling scheme 
entirely excludes, on the basis of outcomes on the 
dependent variable, part of the population. 

Two-Sided Alternative: An alternative where the popula-
tion parameter can be either less than or greater than 
the value stated under the null hypothesis. 

Two Stage Least Squares (2SLS) Estimator: An instru-
mental variables estimator where the IV for an endoge-
nous explanatory variable is obtained as the fitted value 
from regressing the endogenous explanatory variable 
on all exogenous variables. 

Two-Tailed Test: A test against a two-sided alternative. 
Type I Error: A rejection of the null hypothesis when it 

is true. 
Type II Error: The failure to reject the null hypothesis 

when it is false. 

U
Unbalanced Panel: A panel data set where certain 

years (or periods) of data are missing for some cross-
 sectional units. 

Unbiased Estimator: An estimator whose expected value 
(or mean of its sampling distribution) equals the popu-
lation value (regardless of the population value). 

Uncentered R-squared: The R-squared computed with-
out subtracting the sample average of the dependent 
variable when obtaining the total sum of squares 
(SST).

Unconditional Forecast: A forecast that does not rely on 
knowing, or assuming values for, future explanatory 
variables. 

Uncorrelated Random Variables: Random variables that 
are not linearly related. 

Underspecifying a Model: See excluding a relevant 
 variable. 

Unidentified Equation: An equation with one or more 
endogenous explanatory variables where sufficient 
instrumental variables do not exist to identify the 
parameters. 

Unit Root Process: A highly persistent time series process 
where the current value equals last period’s value, plus 
a weakly dependent disturbance. 

Unobserved Effect: In a panel data model, an unobserved 
variable in the error term that does not change over 
time. For cluster samples, an unobserved variable that 
is common to all units in the cluster. 

Unobserved Effects Model: A model for panel data or 
cluster samples where the error term contains an unob-
served effect. 

Unobserved Heterogeneity: See unobserved effect. 
Unrestricted Model: In hypothesis testing, the model that 

has no restrictions placed on its parameters. 
Upward Bias: The expected value of an estimator is 

greater than the population parameter value. 
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V
Variance: A measure of spread in the distribution of a 

random variable. 
Variance-Covariance Matrix: For a random vector, the 

positive semi-definite matrix defined by putting the 
variances down the diagonal and the covariances in the 
appropriate off-diagonal entries. 

Variance-Covariance Matrix of the OLS Estimator: 
The matrix of sampling variances and covariances for 
the vector of OLS coefficients. 

Variance Inflation Factor: In multiple regression analy-
sis under the Gauss-Markov assumptions, the term in 
the sampling variance affected by correlation among 
the explanatory variables.

Variance of the Prediction Error: The variance in the 
error that arises when predicting a future value of the 
dependent variable based on an estimated multiple 
regression equation. 

Vector Autoregressive (VAR) Model: A model for two 
or more time series where each variable is modeled as 
a linear function of past values of all variables, plus 
disturbances that have zero means given all past values 
of the observed variables. 

W
Wald Statistic: A general test statistic for testing hypoth-

eses in a variety of econometric settings; typically, the 
Wald statistic has an asymptotic chi-square distribution. 

Weak Instruments: Instrumental variables that are 
only slightly correlated with the relevant endogenous 
explanatory variable or variables.

Weakly Dependent: A term that describes a time series 
process where some measure of dependence between 
random variables at two points in time—such as 
 correlation—diminishes as the interval between the 
two points in time increases. 

Weighted Least Squares (WLS) Estimator: An estima-
tor used to adjust for a known form of heteroskedastic-
ity, where each squared residual is weighted by the 
inverse of the (estimated) variance of the error. 

White Test: A test for heteroskedasticity that involves 
regressing the squared OLS residuals on the OLS fit-
ted values and on the squares of the fitted values; in 
its most general form, the squared OLS residuals are 
regressed on the explanatory variables, the squares of 
the explanatory variables, and all the nonredundant 
interactions of the explanatory variables. 

Within Estimator: See fixed effects estimator. 
Within Transformation: See fixed effects transformation. 

Y
Year Dummy Variables: For data sets with a time series 

component, dummy (binary) variables equal to one in 
the relevant year and zero in all other years. 

Z
Zero Conditional Mean Assumption: A key assump-

tion used in multiple regression analysis that states 
that, given any values of the explanatory variables, 
the expected value of the error equals zero. (See 
Assumptions MLR.4, TS.3, and TS.3�.) 

Zero Matrix: A matrix where all entries are zero. 
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AR(3) serial correlation, testing for, 

Example 12.3, 418
arrests

linear probability model of, Example 7.12, 250–251
records, Example 3.5, 82–83

ASCII files, 672
Assumption MLR.1 (linear in parameters), 84, 157
Assumption MLR.2 (random sampling), 84–85, 157
Assumption MLR.3 (no perfect collinearity), 85–87, 158
Assumption MLR.4�

zero mean and zero correlation, 169–170
Assumption MLR.4 (zero conditional 

mean), 87–88, 158
Assumption MLR.5 (homoskedasticity), 102, 158
Assumption MLR.6 (normality), 158, 172–173
Assumption RE.3, 504
Assumption RE.4, 504
Assumption TS.1 (linear in parameters), 345–346
Assumption TS.1� (linearity and weak dependence), 

382, 400
Assumption TS.2 (no perfect collinearity), 346
Assumption TS.2� (no perfect collinearity), 382, 400
Assumption TS.3 (zero conditional mean), 347–349

Assumption TS.3� (zero conditional mean), 382–383, 401
Assumption TS.4 (homoskedasticity), 349
Assumption TS.4� (homoskedasticity), 384, 399, 401
Assumption TS.5 (no serial correlation), 349–350
Assumption TS.5� (no serial correlation), 385, 401
Assumption TS.6 (normality), 351
assumptions. See also individual topical names of 

assumptions
classical linear model (CLM) assumptions, 118, 

157–158, 172, 351–352
Durbin-Watson test under classical assumptions, 

415–416
for pooled OLS using first differences (Assumptions 

FD.1–FD.7), 478–480
for two stage least squares (Assumptions 

2SLS. 1– 2SLS.6), 543–545
asymptotic bias, 170
asymptotic critical values for cointegration test

linear time trend, Table 18.5, 640
no time trend, Table 18.4, 639

asymptotic critical values for unit root t test: no time 
trend, Table 18.2, 632

asymptotic efficiency of OLS, 179–180
asymptotic normality

Figure 5.2, 173
asymptotic normality of OLS

Theorem 5.2, 172–176, 182–183
Theorem 11.2, 385

asymptotic properties, 167. See also large sample 
properties

of OLS, 381–388, 400–401
asymptotic standard error, 175

in limited dependent variable models, 621–622
asymptotic t statistics, 175
asymptotic variance, 174, 179–180
asymptotically efficient, 179–180

Theorem 5.3, 180
asymptotically uncorrelated, 379
attenuation bias, 320
attrition, 488
augmented Dickey-Fuller test, 633
autocorrelation, 350
autoregressive conditional heteroskedasticity (ARCH), 

433–435
in stock returns, Example 12.9, 435

autoregressive model of order two 
[AR(2) model], 386

autoregressive process of order one [AR(1)], 380
auxiliary regression, 177
average marginal effect (AME), 314
average partial effect (APE), 314, 582
average treatment effect, 454
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B
balanced panel, 466
base groups, 226–228
base period, 356
base value, 356
baseball player salaries, effects of race on, 

Example 7.11, 242–243
Becker, Gary, 2–3
benchmark groups, 226–228
best linear unbiased estimator (BLUE), 103
beta coefficients, 187–189
�

j 
, testing hypotheses about, 130–132. See also t test

bias
in �

1
, summary of, Table 3.2, 91

misspecified models, 102
biased towards zero, 82
binary dependent variables

linear probability model, 246–251
Figure 7.3, 248

binary explanatory variables, 355
binary independent variables, 354
binary response models, 575–587
binary variables, 225. See also dummy variables
birth weight

cigarette smoking and family income, 184–187
education of parents and, Example 4.9, 150–151
estimating effect of smoking on, 

Example 15.3, 515–516
standard errors in equations of, Example 5.2, 176

bivariate linear regression model. See simple linear 
regression model

bootstrap method of resampling, 223–224
bootstrap standard error, 223–224
Breusch-Godfrey test, 418
Breusch-Pagan test for heteroskedasticity (BP test), 

273–276

C
campaign expenditures, voting outcomes and

Example 2.5, 35
Example 2.9, 41

campus crime and enrollment, Example 4.4, 130–132
causal effect, ceteris paribus and, 12–17
censored and truncated regression models, 600–606

censored regression estimation, Table 17.4, 603
censored regression model, 600
duration of recidivism, Example 17.4, 602–604
truncated regression models, 604–606

censored normal regression model, 601
censored regression model, 600
Center for Research in Security Prices (CRSP), 672
CEO salaries

firm performance and, Example 6.4, 203
firm sales and, Example 2.11, 45
predicting

Example 6.7, 212–213
Example 6.8, 214

return on equity and
Example 2.3, 33
Example 2.6, 36–37
Example 2.8, 40–41
Figure 2.5, 34
Table 2.2, 37

ceteris paribus, 12–17, 75
Chinese barium chloride imports to U.S., 

Figure 18.2, 656
Chow statistic, 245–246. See also F tests
Chow test for structural change across time, 

449–450
cigarettes, demand for, Example 8.7, 284–286
city crime rates

Example 9.4, 311–312
Table 1.5, 11

classical errors-in-variables (CEV), 319
classical linear model (CLM) assumptions, 118, 157–158, 

172. See also multiple regression analysis
inference under, 351–352

cluster effect, 495
cluster sample, 495
Cochrane-Orcutt (CO) estimation, 422
coefficient of determination, 40
coefficients on dummy explanatory variables, when 

dependent variable is log(y), 231–233
cointegration, 637–644

error correction models and, 637–644
between fertility and personal exemption, 

Example 18.5, 641
parameter for interest rates, Example 18.6, 642
test, asymptotic critical values for

Table 18.4, 639
Table 18.5, 640

college GPA. See also GPA
confidence interval for predicted

Example 6.5, 207
Example 6.6, 209

determinants
Example 3.1, 69
Example 3.4, 81
Example 4.3, 128–130

effects of computer ownership on, Example 7.2, 230
college proximity as IV for education, Example 15.4, 

519–520
collinearity, no perfect

Assumption MLR.3, 85–87, 158
Assumption TS.2, 346
Assumption TS.2�, 382, 400

composite error, 457
composite error term, 490
Compustat, 672
computer ownership

determinants of, Example 8.9, 292–293
computer ownership, effects on college GPA, 

Example 7.2, 230
computer usage, effects on wages, Example 7.9, 239
conditional forecast, 646
confidence intervals (CI), 138–140

for predictions, 206–209
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for college GPA, Example 6.5, 207
for college GPA, Example 6.6, 209

consistency of OLS, 167–172
Figure 5.1, 168
with serially correlated errors, in time series 

regressions, 408–412
Theorem 5.1, 169
Theorem 11.1, 383

constant average growth rate, 361
constant elasticity model, 45
constant variance assumption, 52. See also homoskedasticity
contemporaneously exogenous variables, 347
contemporaneously homoskedastic, 384
control variable, 23
corner solution response, 574, 587–595
corrected R-squared, 200
correlation coefficient, 25
count variable, 595
country crime rates in North Carolina, 

Example 13.9, 468–469
covariance stationary process, 378–379
covariate, 23
crime

arrest records, Example 3.5, 82–83
arrests, linear probability model of, 

Example 7.12, 250–251
arrests, Poisson regression, determinants of, 

Example 17.3, 598–600
arrests, Poisson regression for number of, 

Example 17.3, 598–600
campus crime and enrollment, Example 4.4, 130–132
cities

Example 9.4, 311–312
Table 1.5, 11

by county, rates in North Carolina, Example 13.9, 
468–469

distributed lag of, on clear-up rate, Example 13.6, 461
economic model of

Example 1.1, 3, 4–5
Example 5.3, 178
Example 9.1, 301–303

law enforcement and, Example 1.5, 15
murder rates and size of police force, 

Example 16.1, 549
prison population, effect on violent crime rates, 

Example 16.8, 565–566
critical value, 123
crops, fertilizer effects on, Example 1.3, 13–15
cross-sectional analysis, 341
cross-sectional data, 5–8, 9, 12. See also regression analysis

time series data vs., 340–342
wages, Table 1.1, 7

Current Population Survey (CPS), 445

D
data. See also OLS (ordinary least squares)

collection (See also individual names of methods)
deciding on, 671–672

entering, storing, 672–674
inspecting, cleaning, summarizing, 673–675

economic, structure of, 5–12
in empirical papers, 682
frequency, 8
mining, 677
problems

functional form misspecification, 300–306
measurement error, 315–322
missing data, 322
nonrandom samples, 323–324
outliers, 325–329
proxy variable for unobserved explanatory 

variables, 306–310
data scaling

effects of, Table 6.1, 185
effects on OLS statistics, 184–189

Figure 6.1, 185
Davidson-MacKinnon test, 305
degrees of freedom (df ), 57, 101
demand equations, 2
denominator degrees of freedom, 146
dependent variables

hours, Table 17.2, 593
inf, Table 12.2, 425
inlf, Table 17.1, 585
log(chnimp), Table 12.1, 423
log(crmrte87), Table 9.3, 311
log(durat), Table 17.4, 603
log(invpc), detrended, Table 18.1, 630
log(salary), Table 4.1, 156
log(scrap), Table 14.1, 484
log(wage)

Table 9.2, 309
Table 14.2, 492
Table 15.1, 520
Table 17.5, 611

measurement error in, 316–318
narr86

Table 9.1, 302
Table 17.3, 599

nettfa, Table 8.1, 280
OLS results, Table 19.3, 686
rprice, Table 13.2, 452

dependent variables, defined, 23
deseasonalizing, of data, 369
detrending, defined, 365
detrending interpretation of regression, 365–366
Dickey-Fuller (DF) test, 631
Dickey-Fuller distribution, 631
difference in slopes, 239–243

Figure 7.2, 240
difference-in-differences estimator, 451

Table 13.3, 454
difference-stationary processes, 393
differencing

assumptions for pooled OLS using first 
differences, 478–480

with more than two time 
periods, 465–470
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differencing (continued)
county crime rates in North Carolina, 

Example 13.9, 468–469
effect of enterprise zones on unemployment claims, 

Example 13.8, 467–468
pitfalls in first-differencing panel data, 470

serial correlation and, 426–427
interest rate equation, Example 12.6, 427

disturbance, defined, 23
disturbance term (error term), 4
disturbance variance, 53, 76. See also error variance
downward bias, 83
drunk driving laws, effect on traffic fatalities, 

Example 13.7, 464–465
dummy independent variables, 226–233, 354

interpreting coefficients, when dependent variable is 
log(y), 231–233

dummy variables, 225–226
independent, 226–233

Figure 7.1, 228
interactions involving, 238–246

different slopes and, 239–243
interactions among, 238–239
testing for differences in regression functions across 

groups, 243–246
for multiple categories, 233–238

incorporating ordinal information, 235–238
regression, 485–486
single, independent, 226–233
Table 7.1, 226
times series data, 354–360
trap, 227

duration analysis, 602
duration of recidivism, Example 17.4, 602–604
Durbin-Watson (DW ) statistic, 415–416
Durbin-Watson test under classical assumptions, 

415–416
dynamically complete models

absence of serial correlation and, 396–399
defined, 397

E
Eagle-Granger test, 639
EconLit, 669
econometric analysis in empirical papers, 679–682
econometric models, relative to economic models, 4–5
econometrics, defined, 1–2
economic data, structure of, 5–12
economic growth, effects of government policy on, 

Table 1.2, 6–8
economic models, 2, 4–5

of crime
Example 5.3, 178
Example 9.1, 301–303
Table 9.1, 302

economic performance, election outcomes and, 
Example 10.6, 358–360

Economic Report of the President (ERP), 340, 356, 368

economic significance, statistical significance vs., 
135–138

education
changes in return to, and gender wage gap, 

Example 13.2, 447–449
effect on fertility, Example 15.9, 534
estimated response probabilities, Figure 17.2, 586
estimating return to, for married women

Example 15.1, 512
estimating return to, for men

Example 15.2, 513
estimating return to, for working women

Example 15.5, 523
Example 15.7, 528
Example 15.8, 530

measuring return to, Example 1.4, 14–15
of parents, in birth weight equation, Example 4.9, 

150–151
return to, change over time and, Example 14.2, 485
using college proximity as IV for, Example 15.4, 

519–520
wages and

Example 2.4, 34–35
Example 2.7, 38
Figure 2.9, 55

efficiency
of OLS: Gauss-Markov Theorem, 103, 409–410

efficient markets hypothesis
Example 11.4, 385–386
heteroskedasticity and, Example 12.8, 433

Eicker standard errors, 267
elasticity, 46
election outcomes and economic performance, 

Example 10.6, 358–360
empirical analysis

data collection, 671–675
econometric analysis, 675–678
journals for, 692–693
literature review, 670–671
posing a question, 668–670
steps in, 2–5
writing an empirical paper, 678–686

conceptual framework, 679
conclusions, 683–684
data description, 682
data sources for, 693–694
econometric models, estimation methods, 

679–682
introduction, 678–679
results, 682–683
sample projects, 687–692
style, 684–686

employment. See also unemployment
Puerto Rican, Example 10.9, 366
Puerto Rican, minimum wage and

Example 10.3, 353–354
Example 12.7, 431

endogeneity
return to education for working women, 

Example 15.7, 528
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of single explanatory variable, 528
testing for, 528

endogenous explanatory variables, 88, 300, 506
endogenous sample selection, 323–324
endogenous variables, 548
Engle-Granger two-step procedure, 644
enrollment, campus crime and, Example 4.4, 130–132
enterprise zones

effect on unemployment claims, Example 13.8, 
467–468

error correction model
cointegration and, 637–644
for holding yields, Example 18.7, 644

error sum of squares, 39. See also residual sum of 
squares (SSR)

error term (disturbance), 4, 23, 76
error variance, 53, 94

adding regressors to reduce, 205
estimating, 56–58
Theorem 3.3 (unbiased estimation of �2), 102

errors-in-variables, 506
IV solutions to, 525–527

estimation
by 2SLS, 557

labor supply of married, working women, 
Example 16.5, 557–558

methods, 679–682
in systems with three or more equations, 559

estimators. See also OLS estimators
minimum variance unbiased, 118
in wage equation, Table 14.2, 492

event studies, 355–356
exact sampling distributions, 167
excluding relevant variable problem, 89
exclusion restrictions, 143, 521, 554

Figure 4.7, 148
general linear, 153–154
testing, 143–148

exogenous explanatory variables, 88, 519
exogenous instrumental variables 

(Assumption 2SLS.4), 544
exogenous sample selection, 323, 607, 608
exogenous variables, 517, 548
expectations augmented Phillips curve, 

Example 11.5, 387–388
expectations hypothesis, Example 1.7, 16–17
experiment

experimental data, 2
experimental groups, 230–231
natural, 453, 514
quasi-, 453

explained sum of squares (SSE), 38–39, 80–84
explained variable, defined, 23
explanatory variable, 23

measurement error in, 318–322
explanatory variables

MLE with, 620–621
exponential smoothing, 646
exponential trends, 361
E(y|x) as a linear function of x, Figure 2.1, 26–27

F
f distribution. See also f statistic; f tests
f statistic. See also f distribution; f tests

f ratio, 145–146
overall significance of regression, 152–153
for overall significance of regression, 152–153
p-values for, 151–152
R-squared form of, 150–151
t statistics and, 149

f tests. See also f distribution; f statistic
Chow statistic, 245–246
overall significance of a regression, 152–153
p-values for, 151–152
R-squared form of f statistic, 150–151
testing exclusion restrictions, 143–148
testing general linear restrictions, 153–154

family saving equation, Example 8.6, 279–280
feasible GLS (FGLS) estimator, 282–286, 421

OLS compared to, 423–425
fertility rates

effect of education on, Example 15.9, 534
effects of personal exemption on, Example 10.4, 354–355
equation, Example 10.8, 364–365
equation, Example 11.6, 394–395
equation, Example 11.8, 398
personal exemption and, Example 18.5, 641
of women, over time

Example 13.1, 445–447
Table 13.1, 456

fertilizer
effects on crop yield, Example 1.3, 13–15
soybean yield and, Example 2.1, 24–27

FGLS. See feasible GLS (FGLS) estimator
final exam performance, attendance and, Example 6.3, 

198–199
finite distributed lag (FDL) model, 342–345

Example 11.2, 383–384
finite sample properties, 167
firm performance, CEO compensation and, 

Example 6.4, 203
first difference, 393

potential pitfalls in panel data, 470
first order autocorrelation, 394
first order conditions, 31, 74

derivation of, 113
first-differenced equation, 458
first-differenced estimator, 458
first differencing

estimators (Assumptions FD.1– FD.7), 478–480
fixed effects vs., 487–488

fitted values, 30–31
residuals and, 36–37, 83

Figure 2.4, 31
Table 2.2, 37

fixed effects, 456
assumptions for

FE.1–FE.7, 503–505
random effects and (RE.3, RE.4), 503–505
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fixed effects estimation, 482–489
dummy variable regression, 485–486
first differencing vs., 487–488
job training, effect on firm scrap rates

Example 14.1, 483–484
Example 14.3, 489

random effects vs., 493
return to education, change over time, 

Example 14.2, 485
with unbalanced panels, 488–489

fixed effects estimator, 482
fixed effects model, 456
fixed effects transformation, 481. See also fixed effects 

estimation
forecast. See also forecasting

conditional, 646
error, 645
interval, 647
out-of-sample criteria, of unemployment forecasts, 

Example 18.9, 651–652
point, 647
unconditional, 647

forecasting, 645–659
integrated processes, 655–659
multiple-step-ahead forecasting, 652–655
one-step-ahead forecasting, 645, 647–652
regression models for, 646–647
trending, seasonal, integrated processes, 655–659

Chinese barium chloride imports to U.S., 
Figure 18.2, 656

U.S. unemployment rate, Example 18.8, 648–649
401(k) plans

Example 3.3, 80
participation rates in, Example 4.6, 135–136

functional form
involving logarithms, Table 2.3, 46
logarithmic, 189–192
misspecification, 300–306

RESET as general test for, 303–305
tests against nonnested alternatives, 305–306

models with interaction terms, 197–199
models with quadratics, 192–197
time series data, 354–360

functional form, units of measurement and, 41–46

G
Gauss-Markov assumptions, 60, 94–95, 99–105, 117–118. 

See also heteroskedasticity; individual assumptions
Gauss-Markov Theorem

OLS estimators and, 349–350
Theorem 10.4, 351, 409–410

generalized least squares (GLS) estimators, 278
geometric (or Koyck) distributed lag, 626–628
GLS estimation with AR(1) errors, 421–423
Goldberger, Arthur, 97–98
goodness-of-fit, 40–41, 80–84

selection of regressors and, 199–205
in time series regressions, 410

Google Scholar, 669
government policy and economic growth, 6–8
government policy and economic growth, Table 1.2, 7
GPA. See also college GPA

confidence interval for predicted
Example 6.5, 207
Example 6.6, 209

with measurement error, Example 9.7, 320–321
R-squared used in, 199

Granger, Clive W. J., 168
Granger causality, 650
graphs. See also individual figures listed under topics

crime, Figure 4.5, 131
equation (7.16), Figure 7.2, 240
wage, Figure 7.1, 228
y

i
, Figure 2.7, 48

growth rates, 362

H
hedonic price models, 669
heterogeneity bias, 457
heteroskedasticity, 53, 55

autocorrelation consistent (HAC) standard errors 
and, 429

autoregressive conditional, 433–435
consequences of, for OLS, 264–265
heteroskedasticity-robust inference, after OLS 

estimation, 265–271
heteroskedasticity-robust statistics, 432
linear probability model and, 290–293
serial correlation and, in regression models, 435–436
testing for, 271–276, 432–433

Breusch-Pagan test, 273–276
efficient markets hypothesis and, Example 12.8, 433
White test, 274–276

two stage least squares (2SLS) with, 531
of unknown form, 265
weighted least squares estimation, 276–293

heteroskedasticity-robust F statistic, 269
Example 8.2, 269

heteroskedasticity-robust LM statistic, 270–271
Example 8.3, 270–271

heteroskedasticity-robust procedures, 265–271
computing heteroskedasticity-robust LM tests, 269–271

heteroskedasticity-robust standard error, 267–268
heteroskedasticity-robust statistics, 432
heteroskedasticity-robust t statistic, 267–268
higher order serial correlation

correcting for, 425–426
testing for, 417–419

Example 12.3, 418
highly persistent time series in regression analysis, 

388–393
transformation on, 393

histogram of prate, Figure 5.2, 173
holding other factors fixed, in multiple regression, 77
homoskedasticity, 52–56, 94–95

Assumption MLR.5, 102, 158
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Assumption TS.4, 349
Assumption TS.4�, 384, 399, 401
normal distribution with single explanatory variable, 

Figure 4.1, 119
serial correlation-robust inference after OLS, 428–431
simple regression model under, Figure 2.8, 54

hourly wage equation
Example 3.2, 76
Example 4.1, 124–125
Example 7.1, 229

housing expenditures
saving and, Example 16.2, 549–550

housing investment
Example 10.10, 367
prices and, Example 10.7, 363–364

housing prices
air pollution and, Example 4.5, 132
distance from incinerator and, Example 5.1, 171
effects of incinerator location on

Example 13.3, 450–453
Table 13.2, 452

effects of pollution on
Example 6.1, 189
Example 6.2, 194–195

equation, Example 9.2, 304
heteroskedasticity in, Example 8.4, 273–274
housing investment and, Example 10.7, 363–365
pooled cross sections, Table 1.4, 10
regression, Example 7.4, 232
special form White test, in log housing price equation, 

Example 8.5, 276
Huber standard errors, 267
hypotheses, 5. See also individual hypotheses
hypothesis testing

confidence intervals and, 138–140
language of classical, 135
single linear combination of parameters, 140–143
t test, 120–138

I
I(0) processes, 394
I(1) processes, 393–396
identification

order condition for, 559–560
of parameters, 510
rank condition, for structural equation, 554–557
in systems with three or more equations, 559–560
in two-equation system, 552–557

identified equation, 553
Figure 16.1, 553

idiosyncratic error, 456
impact multiplier, 343
impact propensity, 343
incidental truncation, 606, 608–612
inclusion of irrelevant variable, in multiple regression 

analysis, 89
income

savings and, scatterplot, Figure 2.2, 28

testing permanent income hypothesis, 
Example 16.7, 563

inconsistency, 170–171
independent variable, defined, 23
independent variables

changing more than one simultaneously, 77
dummy, 226–233
linearity among, 97–99
multiple regression, 73–89

k independent variables, 71–72
independently pooled cross sections

across time, 445–450
Chow test for structural change, 449–450

defined, 444
index numbers, 354–360
infant mortality rates, by state, Example 9.10, 329
inference

with IV estimator, 510–514
infinite distributed lag (IDL) model, 623–630
inflation

annual U.S., unit root test for, Example 18.3, 635
effects of, deficits on interest rates and, 

Example 10.2, 352
openness and

Example 16.4, 556–557
Example 16.6, 558

influential observations, 325–329
information set, 644
in-sample criteria, 651
instrument exogeneity, 508
instrument relevance, 508
instrumental variables (IV)

solution to errors-in-variables problems, 525–527
instrumental variables (IV), defined, 507–508
instrumental variables (IV) estimation, 506

IV, defined, 507–508
IV estimation of multiple regression model, 517–520
IV estimators, defined, 510
IV solution to errors-in-variables problems, 525–527
of multiple regression model

college proximity as IV for education, 
Example 15.4, 519–520

omitted variables in simple regression, 506–517
computing R-squared after IV estimation, 516–517
properties of, with poor IV, 514–516
statistical inference with IV estimators, 510–514

testing for endogeneity and overidentifying 
restrictions, 527–531

two stage least squares (2SLS), 521–525
applied to pooled cross sections and panel data, 

534–536
applied to time series equations, 531–533
estimation, testing multiple hypotheses after, 525
multicollinearity and, 523–524
multiple endogenous explanatory 

variables, 524–525
single endogenous explanatory 

variable, 521–523
two stage least squares (2SLS) with 

heteroskedasticity, 531
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instrumental variables (IV) estimators, 180
defined, 507–508, 510
estimating effect of smoking on birth weight, 

Example 15.3, 515–516
estimating return to education for married women, 

Example 15.1, 512
estimating return to education for men, 

Example 15.2, 513
integrated of order one [I(1)] processes, 393–396
integrated of order zero [I(0)] processes, 393
integrated processes, forecasting, 655–659
interaction effect, 197–199
interaction term, 238
intercept parameter, 23, 76
intercept shift, 227
interest rates

cointegrating parameter for, Example 18.6, 642
differencing, Example 12.6, 427
effects of inflation and deficits on, Example 10.2, 352

Internet, 669
interval estimation. See confidence intervals (CI)
introspection, 3
inverse Mills ratio, 589
IQ as a proxy for ability, Example 9.3, 308–309
irrelevant variables, in regression models, 89

J
job training

effect on firm scrap rates
Example 4.7, 136–137
Example 14.1, 483–484
Example 14.3, 489
Table 14.1, 484

and worker productivity
Example 1.2, 3–4
Example 15.10, 534–535

joint hypotheses test, 143
jointly insignificant, 147
jointly statistically significant, 147
Journal of Economic Literature (JEL), 669
journals, 669, 692–693
just identified equation, 560

K
k independent variables, 71–72
Koyck distributed lag, 626–628

L
labor force

married women’s participation in
Example 8.8, 291
Example 17.1, 584–586

supply, married women’s annual, Example 17.2, 
592–594

supply, of married, working women
Example 16.3, 555–556
Example 16.5, 557–558

lag distribution, 343–345
of crime rate on clear-up rate, Example 13.6, 461
Figure 10.1, 344
for housing investment

Example 18.1, 629–630
Table 18.1, 630

for rational distributed lag, Figure 18.1, 629
lagged dependent variables, 310–312

serial correlation in, 411–412
lagged endogenous variable, 562
Lagrange (LM ) multiplier statistic, 176–179
large sample properties, 167. See also asymptotic properties

asymptotic normality and, 172–179
Lagrange multiplier statistic, 176–179
in time series data, 377

latent variable model, 576
law enforcement, effect on crime, Example 1.5, 15
law school, effects of rankings on starting salaries, 

Example 7.8, 237–238
leads and lags estimator, 642
least absolute deviations (LAD), 330–331
left censoring, 601
legal decision, residual analysis for, 210
likelihood ratio (LR) test, 580
likelihood ratio statistic, 580
limited dependent variable (LDV) models, 574–575

asymptotic standard errors in, 621–622
censored and truncated regression models, 600–606
defined, 574
logit and probit models for binary response, 575–587
Poisson regression model, 595–600
sample selection corrections, 606–6212
Tobit model for corner solution responses, 587–595

linear in parameters
Assumption 2SLS.1, 543–544
Assumption MLR.1, 84, 157
Assumption TS.1, 345–346

Table 10.2, 346
linear probability model (LPM), 246–251

of arrests, Example 7.12, 250–251
defined, 247
estimated response probabilities, education, 

Figure 17.2, 586
estimates of labor force participation, Table 17.1, 585
heteroskedasticity and, 290–293

linear regression model
linear, defined, 46

linear time trends, 361
linearity among independent variables, 97–99
linearity and weak dependence 

(Assumption TS.1�), 382, 400
literature review, 670–671
log function. See also natural logarithm
log hourly wage equation

Example 7.5, 232–233
Example 7.6, 233–234
Example 7.10, 241–242
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log wage equation
Example 2.10, 43–44
Figure 2.6, 43–44

logarithmic functional forms, 189–192
logit estimator, 579
logit models for binary response, 575–585

Figure 17.1, 576
interpreting, 580–587
logit models, defined, 575
married women’s labor force participation, 

Example 17.1, 584–586
maximum likelihood estimation of, 578–579
Table 17.1, 585
testing multiple hypotheses, 579–587

log-likelihood function, 579
log(price) as quadratic function, Figure 6.2, 195
longitudinal data, 10–12, 444–445. See also panel data; 

panel data sets
long-run multiplier, 344
long-run propensity (LRP), 344
loss function, 645

M
married women. See education; labor force; wages
martingale difference sequence, 630, 645
matched pairs samples, 495
maximum likelihood estimation (MLE), 578–579
mean absolute error (MAE), 651
mean independent, 25
measurement error, 300
measurement error, in OLS

in dependent variable, 316–318
in explanatory variables, 318–322

method of moments approach, 29
“micronumerosity,” 97–98
minimum variance unbiased estimators, 118
minimum wage. See also wages

Puerto Rican, employment and, Example 10.3, 
354–355

Puerto Rican, Example 12.7, 431
testing for AR(1) serial correlation, 

Example 12.2, 417
unemployment, for Puerto Rico, Table 1.3, 8–9

missing data, 322
misspecification analysis, 87, 89–90, 300–306, 676
MLE with explanatory variables, 620–621
models with random slopes, 313–315
moving average process of order one [MA(1)], 380
multicollinearity

2SLS and, 523–524
components of OLS variances, 95–102
defined, 96
Figure 3.1, 97
large standard errors and, 137

multiple hypotheses
after 2SLS estimation, 525
logit and probit models, 579–587
test, 143

multiple regression analysis
data scaling, 184–189
estimation, 68, 73

expected value of OLS estimators, 84–94
Gauss-Markov Theorem, 103
mechanics and interpretation of OLS, 73–83
motivation for multiple regression, 68–71
variance of OLS estimators, 95–96

functional form, 189–199
goodness-of-fit and selection of regressors, 199–205
instrumental variables estimation, 506

IV estimation, 506–517
IV solutions to errors-in-variables 

problems, 525–527
omitted variables in single regression, 506–517
testing for endogeneity and overidentifying 

restrictions, 527–531
two stage least squares, 521–525
two stage least squares, applying to pooled cross 

sections and panel data, 534–536
two stage least squares, applying to time series 

equations, 531–533
two stage least squares, assumptions for, 543–545

interference
classic linear model assumptions and, 157–158
confidence intervals, 138–140
OLS estimators, sampling distribution of, 94–96, 

117–120
reporting regression results, 154–156
testing hypotheses about single linear combination 

of parameters, 140–143
testing hypotheses about single population 

parameter, 120–138
testing multiple linear restrictions, 143–154

models with random slopes, 313–315
with observable explanatory variables, 312–313
OLS asymptotics, 167

asymptotic efficiency, 179–180
asymptotic normality and large sample inference, 

172–179
consistency, 167–172

panel data sets, advanced methods, 481
applying, to other data structures, 494–496
assumptions for, 503–505
fixed effects estimation, 482–489
random effects models, 489–493

pooling cross sections across time, simple panel data 
methods, 444–450

assumptions for pooled OLS using first differences, 
478–480

differencing with more than two two periods, 
465–470

independent, 445–450
policy analysis with, 450–455
two-period panel data, policy analysis, 462–465
two-period panel data analysis, 455–462

prediction and residual analysis, 206–214
with qualitative information: dummy variables, 225

binary independent variable: linear probability 
model, 246–251
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multiple regression analysis (continued)
describing, 225–226
interactions involving, 238–246
policy analysis and program evaluation, 251–254
single, independent, 226–233
using, for multiple categories, 233–238

terminology, Table 3.1, 72
multiple restrictions, 143
multiple-step-ahead forecast, 646, 652–655

two-year-ahead forecast for unemployment rate, 
Example 18.10, 654

multiplicative measurement error, 317
municipal bond interest rates (MBR), 235–238
murder rates and size of police force, 

Example 16.1, 549

N
natural experiment, 453, 514
negative bias, 91
no perfect collinearity

Assumption MLR.3, 85–86, 96, 158
Assumption TS.2, 346
Assumption TS.2�, 382, 400

no serial correlation
Assumption 2SLS.6, 545
Assumption TS.5, 349–350
Assumption TS.5�, 385, 401

nonexperimental data, 2
nonlinearities

defined, 46
in simple regression, 43–46

nonnested models, 201–203, 305–306
nonparametric bootstrap method, 223–224
nonrandom sample selection, 606
nonrandom samples, 323–324
nonstationary time series, 378–379
normal distribution

with single explanatory variable, 
Figure 4.1, 119

normal sampling distributions
Theorem 4.1, 120
Theorem 10.5, 351–352

normality
Assumption MLR.6, 117–120, 158
Assumption TS.6, 351
asymptotic, 172–179

n-R-squared statistic, 177
null hypothesis, 121–124
numerator degrees of freedom, 146

O
observational data, 2
OLS, asymptotic efficiency of, 167

asymptotic normality and large sample inference, 
172–179

consistency, 167–172

OLS estimators, 510. See also estimators
consistency in, 167–172
heteroskedasticity-robust inference after, 265–271
sampling distribution of, 117–120
standard errors of, 101–102
variances of, Gauss-Markov Theorem and, 349–350

OLS intercept estimate, 74
OLS (ordinary least squares). See also multiple regression 

analysis
assumptions for pooled OLS using first differences, 

478–480 (See also panel data sets)
asymptotic efficiency of, 179–180
consequences of heteroskedasticity for, 264–265
consistency in, 167–172, 383, 408–412
defined, 30
deriving estimates, 27–36

algebraic properties of OLS statistics, 37–39
estimators

values and variances of, in simple regression, 46–58
variances of, in multiple regression, 95–96

expected value of, 84–94
FGLS compared to, 423–425
finite sample properties, under classical assumptions, 

345–349
inference under classical linear model assumptions, 

351–352
unbiasedness of OLS, 345–349
variance of OLS estimators and the Gauss-Markov 

Theorem, 349–350
mechanics and interpretation of, 73–83

changing more than one variable simultaneously, 77
goodness-of-fit, 80–84
“holding other factors fixed,” 77
interpreting, 73–74
obtaining estimates, 78–79
“partialling out,” 78–79
regression through origin, 83
simple vs. multiple regression estimates, 79–80

OLS regression line, 32, 34, 74
properties of

on any sample of data, 36–41
under measurement error, 315–322
with serially correlated errors, 408–412

regression line salary, Figure 2.5, 34
regression through origin, 58–59
sampling variances (Theorem 10.2), 350
on selected sample consistent, 607–610
simultaneity bias in, 550–552
terminology, 35–36
with time series data

asymptotic properties, 381–388, 400–401
dynamically complete models and absence of serial 

correlation, 396–399
highly persistent, in regression analysis, 388–393
homoskedasticity assumption, 399
stationary and weakly dependent time series, 

377–381
Tobit estimation and, Table 17.2, 593
units of measurement and functional form, 41–46

OLS slope estimates, 74
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omitted variable bias, 93–94
Example 3.5, 82–83
general cases, 93–94
simple case, 89–93
Table 3.2, 91

omitted variables, 506
one-sided alternative, 123–128

Figure 4.2, 124
Figure 4.3, 126

one-step-ahead forecast, 645, 647–652
one-tailed test, 123
online databases, 672
online search services, 670–671
order condition, 524–525, 555

for identification, 559–560
ordinal information, incorporating by using dummy 

variables, 235–238
ordinal variable, 235
ordinary least squares. See OLS (ordinary least squares)
origin, regression through, 83
outliers, 325–329
out-of-sample criteria, 651

of unemployment forecasts, Example 18.9, 651–652
over controlling, for factors, 204
overall significance of the regression, 152–153
overdispersion, 598
overidentification restrictions

testing for, 529–531
return to education for working women, 

Example 15.8, 530
overidentified equation, 560
overidentifying restrictions, defined, 529–530
overspecifying the model, in multiple regression 

analysis, 89

P
panel data, 10–12

SEMs with, 564–566
two stage least squares (2SLS) applied to, 534–536

panel data sets, 672
advanced methods, 481

applying, to other data structures, 494–496
assumptions for, 503–505
fixed effects estimation, 482–489
random effects models, 489–493

defined, 444–445
two-period panel data, policy analysis with, 462–465

effect of drunk driving laws on traffic fatalities, 
Example 13.7, 464–465

two-period panel data analysis, 455–462
organizing panel data, 461–462
sleeping vs. working, Example 13.5, 460–461

Panel Study of Income Dynamics, 672
parents’ education in birth weight equation, Example 4.9, 

150–151
partial effect, 75. See also ceteris paribus
partial effect at the average (PEA), 582
partialling out interpretation, of multiple regression, 78–79

pension
salary and, for teachers

Table 4.1, 156
percent correctly predicted, 249, 581
perfect collinearity (Assumption MLR.3), 85–86
permanent income hypothesis (PIH), 562
personal computer ownership, determinants of, 

Example 8.9, 292–293
personal exemption

cointegration between fertility and, Example 18.5, 641
effects of, on fertility rates, Example 10.4, 354–355

Phillips curve
expectations augmented, Example 11.5, 387–388
static, Example 12.5, 425
static, Table 12.2, 425
testing for AR(1) serial correlation in, 

Example 12.1, 414
physical attractiveness, effects on wages, Example 7.7, 

236–237
plug-in solution to the omitted variables 

problem, 307–308
point forecast, 647
Poisson distribution, 596
Poisson regression model

defined, 595
determinants of number of arrests, Table 17.3, 599
for number of arrests, Example 17.3, 598–600

policy analysis, 230
with pooled cross sections, 450–455
program evaluation and, 251–254
two-period panel data with, 462–465

pollution effects on housing prices
Example 6.1, 189
Example 6.2, 194–195

pooled cross sections, 9, 12
housing prices, Table 1.4, 10
policy analysis with, 450–455

effect of incinerator’s location on housing prices, 
Example 13.3, 450–453

effect of worker compensation laws on weeks out of 
work, Example 13.4, 454–455

two stage least squares (2SLS) applied to, 534–536
population model, 84–85

classical hypothesis testing, 120–138
single linear combination of 

parameters, 140–143
with single population parameter: t test, 120–138

population regression function, 26–27
Figure 2.5, 34

population R-squared, 200
positive bias, 91
Prais-Winsten (PW) estimation, 422

in event study, Example 12.4, 422–423
Table 12.1, 423

predetermined variable, 562
predicted variable, 23
prediction, 206–214

of CEO salaries
Example 6.7, 212–213
Example 6.8, 214
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prediction (continued)
confidence intervals for, 206–209

for college GPA, Example 6.5, 207
for college GPA, Example 6.6, 209

predicting y when log(y) is dependent variable, 
210–214

residual analysis, 209–110
prediction error, 208
prediction interval, 208
predictor variable, 23
price indexes, 356
prison population, effect on violent crime rates, 

Example 16.8, 565–566
probability limits, 169
probit estimator, 579
probit models for binary response, 575–585

defined, 576
estimated response probabilities, education, 

Figure 17.2, 586
Figure 17.1, 576
interpreting, 580–587
married women’s labor force participation, 

Example 17.1, 584–586
maximum likelihood estimation of, 578–579
Table 17.1, 585
testing multiple hypotheses, 579–587

prob-value. See p-values
program evaluation, 230

policy analysis and, 251–254
proxy variables, for unobserved explanatory variables, 

306–310
defined, 306
lagged dependent variables, 310–312
multiple regression analysis

with observable explanatory variables, 312–313
pseudo R-squared, 581–582
Puerto Rico

employment, Example 10.9, 366
minimum wage

employment and, Example 10.3, 354–355
Example 12.7, 431
Table 1.3, 8–9

p-values
for f tests, 151–152
for t tests, 133–135

Figure 4.6, 134

Q
quadratic functions, 192–197

Figure 6.1, 194
Figure 6.2, 195

qualitative information, describing, 225–226
quasi-demeaned data, 490
quasi-differenced data, 420
quasi-experiment, 453
quasi-likelihood ratio statistic, 598
quasi-maximum likelihood estimation 

(QMLE), 596, 598

R
race

effects of, on baseball player salaries, 
Example 7.11, 242–243

racial discrimination, 252–253
random coefficient model (random slope model), 313
random effects estimator, 491
random effects models, 489–493

assumptions for, 503–505
defined, 489
fixed effects vs., 493
wage equation using panel data, 

Example 14.4, 491–492
random sampling, 6, 47–49

Assumption 2SLS.2, 544
Assumption MLR.2, 84–85, 157
independently pooled cross sections vs., 444
sample selection problems, 6

random walk, 389–393
with drift, 392–393

Figure 11.3, 392
Figure 11.1, 390
Figure 11.2, 391

rank condition, 525, 554
Assumption 2SLS.3, 554
for identification of structural equation, 554–557

rational distributed lag (RDL) model, 626–628
R-bar squared, 200
R&D

expenditures, model of, Example 4.8, 139
intensity, Example 9.9, 328
intensity and firm size

Example 9.8, 325–326
Figure 9.1, 326

reduced form equation, 518, 551
reduced form error, 551
reduced form parameters, 551
regressand, defined, 23
regression analysis. See also multiple regression analysis; 

time series data
controlling for too many factors, 203–205
highly persistent time series in, 388–393
using trending variables in, 363–364

regression analysis with cross-sectional data, 21. See also 
data; heteroskedasticity; linear regression model; 
multiple regression analysis

OLS
deriving estimates, 27–36
properties of, on any sample of data, 36–41
regression through the origin, 58–59
units of measurement and functional 

form, 41–46
values and variances of OLS estimators, 46–58

positive/negative relations between variables, 35
simple linear regression model, 22–27

regression functions, testing for differences across 
groups, 243–246

regression results, reporting, 154–156
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regression specification error test (RESET). See RESET 
(regression specification error test)

regression through the origin, 58–59
regressor, defined, 23
rejection region

Figure 4.7, 148
rejection rule, 123

Figure 4.2, 124
Figure 4.3, 126
Figure 4.4, 129

resampling method, 223–224
RESET (regression specification error test), 303–305
residual analysis, 209–210
residual sum of squares (SSR), 38–39, 80–84
residuals, 31

errors and, 56–58
fitted values and, 36–37, 83

Table 2.2, 37
fitted values and, Figure 2.4, 31
studentized, 327

response probability, 247, 575
response variable, defined, 23
restricted model, 145
retrospective data, 2
return on equity. See also salaries

measurement of, 41–43
right censoring, 601
robust standard errors, 267
root mean squared error (RMSE), 102, 651
R-squared

adjusted, 200–203
computing

after IV estimation, 516–517
when dependent variable is trending, 366–367

form of t statistic, 150–151
of regression, 40–41
size of, 199–200
statistic, 177–178
uncentered, 235

S
salaries

of CEO, firm sales and, Example 2.11, 45
of CEO, return on equity and

Example 2.3, 33
Example 2.6, 36–37
Example 2.8, 40–41
Figure 2.5, 34
Table 2.2, 37

effects of law school rankings on, 
Example 7.8, 237–238

effects of race on baseball player salaries, 
Example 7.11, 242–243

measurement of, 41–43
pension tradeoff for teachers

Example 4.10, 155–156
Table 4.1, 156

sample regression function (SRF), 32, 74

sample selection corrections, 606–612
incidental truncation, 608–612
OLS on, 606–612
wage offer equation for married women

Example 17.5, 611
Table 17.5, 611

sampling, random. See random sampling
sampling distributions

Figure 5.1, 168
of OLS estimators, 117–120

sampling variance
of OLS estimators (Theorem 2.2), 54–55
of OLS slope estimators (Theorum 3.2), 95

savings
income and, scatterplot, Figure 2.2, 28
with measurement error, Example 9.5, 317

scatterplots
of R&D intensity against firm sales, Figure 9.1, 326
of savings and income, Figure 2.2, 28
wages against education, Figure 2.3, 30

school lunch program, student math performance and, 
Example 2.12, 52

school size, student performance and, Example 4.2, 
126–128

score statistic, 176
scrap rates

measurement error in, Example 9.6, 317
seasonal dummy variables, 368
seasonality, 368–369

forecasting, 655–659
seasonally adjusted patterns, 368
second order serial correlation, testing for, 417
selected samples, 607
self-selection problems, 253–254
semi-elasticity, 45–46
sensitivity analysis, 677
sequentially exogenous variables, 398
serial correlation, 350. See also AR(1) serial correlation; 

higher order serial correlation
absence of, 396–399
AR(3) serial correlation, testing for,

Example 12.3, 418
in regression models, 436
testing for second order, 417

serial correlation-robust standard error, 429–431
serially uncorrelated errors, 396
significance level, 123
simple linear regression model. See also OLS (ordinary 

least squares)
defined, 22–27
Gauss-Markov assumptions in, 60, 94–95
multiple regression estimates vs., 79–80
nonlinearities in, 43–46
terminology, Table 2.1, 23

simple regression analysis
instrumental variables estimation

omitted variables, 506–517
simple regression model under homoskedasticity, 

Figure 2.8, 54
simple wage equation, Example 2.2, 24–27
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simultaneity, 546
simultaneity bias, 552
simultaneous equations models (SEM), 546

identifying and estimating a structural equation, 
552–558

nature of, 546–550
housing expenditures, saving and, Example 16.2, 

549–550
murder rates and size of police force, 

Example 16.1, 549
with panel data, 564–566

prison population, effect on violent crime, 
Example 16.8, 565–566

simultaneity bias in OLS, 550–552
systems with more than two equations, 559–560
with time series, 560–564

testing permanent income hypothesis, 
Example 16.7, 563

simultaneous equations models (SEMs)
defined, 548
simultaneity, defined, 546

sleeping vs. working, Example 13.5, 460–461
slope parameter, 23, 76
small sample properties, 167. See also finite sample 

properties
smearing estimate, 212
Social Sciences Citation Index, 669
soybeans, fertilizer and, Example 2.1, 24–27
specification, 300

functional form misspecification, 300–306
specification search, 678
spreadsheets, 673
spurious correlation, 51
spurious regression, 636–637

problem, 636
spurious regression problems, 363
stability condition, 380
stable AR(1) process, 380
standard deviation

of �j 
, 102

standard error, 102
of �

1
, 58, 102

in birth weight equation, Example 5.2, 176
of the estimate, 102
of the regression (SER), 58, 102

standardized coefficients, 188. See also beta coefficients
static models, 342

Example 11.1, 383
static Phillips curves, 342

Example 10.1, 352
Table 12.2, 425

stationary and weakly dependent time series, 377–381
stationary/nonstationary, 378–379
weakly dependent time series, 379–381

stationary process, 378–379
stationary stochastic process, 378
stationary time series, 378–379
statistical significance

economic significance vs., 135–138

statistical tables. See individual tables listed 
under topics

statistically insignificant level, 128
statistically significant level, 128
stepwise regression, 678
stochastic process, 341
stock returns, ARCH in, Example 12.9, 435
strict exogeneity, 459, 465
strict stationarity, 378–379
strictly exogenous explanatory variables, 347
strictly exogenous regressors

AR(1) serial correlation with, t test for, 412–414
strongly dependent time series, 388. See also highly 

persistent time series in regression analysis
structural equation, 517, 547

inflation and openness
Example 16.4, 556–557
Example 16.6, 558

labor supply of married, working women, 
Example 16.3, 555–556

structural errors, 548
structural parameters, 551
student math performance and school lunch, 

Example 2.12, 52
student performance and school size, Example 4.2, 

126–128
studentized residuals, 327
sum of squared residuals, 31. See also residual sum of 

squares (SSR)
minimizing, 58–59, 66–67, 73–74

summary statistics, Table 19.2, 685
systematic part of y, 27

T
t distribution. See t statistics; t test
t statistics. See also t distribution; t test

asymptotic, 175
f statistics and, 149
t ratio, 122–123

t test, 120–123. See also t distribution; t statistics
for AR(1) serial correlation with strictly exogenous 

regressors, 412–414
computing p-values for, 133–135
economic vs. statistical significance, 135–138
language of classical hypothesis testing, 135
one-sided alternatives, 123–128
other hypotheses about �j 

, 130–132
two-sided alternatives, 128–130

T-bill rates, unit root test for, Example 18.2, 632
temporal ordering, 340. See also time series data
test scores (two) as indicators of ability, 

Example 15.6, 527
text (ASCII) files, 672
text editors, 673
Theorem 2.1 (unbiasedness of OLS), 50–51
Theorem 2.2 (sampling variances of OLS estimators), 

54–55
Theorem 2.3 (unbiased estimation of �2), 57
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Theorem 3.1 (unbiasedness of OLS), 88
Theorem 3.2 (sampling variances of OLS slope 

estimators), 95
Theorem 3.3 (unbiased estimation of �2), 102
Theorem 4.1 (normal sampling distributions), 120
Theorem 4.2 (t distribution for the standardized 

estimators), 121–123
Theorem 5.1 (consistency of OLS), 169
Theorem 5.2 (asymptotic normality of OLS), 172–176, 

182–183
Theorem 5.3 (asymptotic efficiency of OLS), 180
Theorem 10.1 (unbiasedness of OLS), 348–349
Theorem 10.2 (OLS sampling variances), 350
Theorem 10.3 (unbiased estimation of �2), 351
Theorem 10.4 (Gauss-Markov Theorem), 351
Theorem 10.5 (normal sampling distributions), 351–352
Theorem 11.1 (consistency of OLS), 383
Theorem 11.2 (asymptotic normality of OLS), 385
Theorem 15A.1 (2SLS estimator), 544
Theorem 15A.2 (2SLS estimator asymptotically normally 

distributed), 545
Theorem 15A.3 (2SLS estimator asymptotically 

efficient), 545
time index, convention about, 345
time series

SEMs with
testing permanent income hypothesis, 

Example 16.7, 563
time series data, 8–9, 12, 341

advanced topics, 623
cointegration and error correction 

models, 637–644
forecasting, 645–659
infinite distributed lag models, 623–630
spurious regression, 636–637
testing for unit roots, 630–635

examples of regression models, 342–345
functional forms, dummy variables, index numbers, 

354–360
nature of, 340–343
OLS with, 377

asymptotic properties, 381–388, 400–401
dynamically complete models and absence of serial 

correlation, 396–399
finite sample properties under classical assumptions, 

345–349
highly persistent time series in regression analysis, 

388–393
homoskedasticity assumption, 399
stationary and weakly dependent time series, 

377–381
simultaneous equations models (SEM) with, 560–564
Table 10.1, 341
trends

seasonality and, 368–369
trends and seasonality, 360–369
two stage least squares (2SLS) applied to, 531–533

time series process, 341
time series regression models. See also regression 

analysis; time series data

computing R-squared when dependent variable is 
trending, 366–367

detrending interpretation of regression with, 365–366
Figure 10.2, 360
Figure 10.3, 362
finite distributed lag (FDL) model, 342–345
heteroskedasticity in, 408, 432–436
seasonality, 368–369
serial correlation in, 408

correcting for, with strictly exogenous regressors, 
419–426

differencing and, 426–427
OLS with, 408–412
robust inference after OLS, 428–431
testing for, 412–419

static models, 342
time index, convention about, 345
time trends and seasonality, 360–369
using trending variables in regression analysis, 363–368

time trends, 360
time-demeaned data, 482
Tobit model, 588

for corner solution responses, 587–595
estimated expected values of hours, Figure 17.3, 594
estimation of annual hours worked, Table 17.2, 593
interpreting estimates, 589–594
married women’s annual labor supply, Example 17.2, 

592–594
specification issues in, 594–595

top coding, 601
total sum of squares (SST), 38–39, 80–84
training

effects of grants on hours of training, Example 7.3, 231
treatment groups, 230–231
trends. See also time trends

seasonality and, 368–369
trending processes, forecasting, 655–659
trend-stationary process, 381

trends and seasonality, 360–369
true model, 84–85
truncated normal regression model, 604
truncated regression models, 604–606

Figure 17.4, 606
two stage least squares (2SLS), 521–525. See also 

simultaneous equations models (SEM)
applied to pooled cross sections, panel data

effect of education on fertility, Example 15.9, 534
job training and worker productivity, 

Example 15.10, 534–535
applied to SEMs, 557–558
applied to time series equations, 531–533
assumptions for, 543–545
estimation by, 557
estimator, 522
with heteroskedasticity, 531
single endogenous explanatory variable, 521–523

return to education for working women, 
Example 15.5, 523

two stage least squares and
endogenous explanatory variables, 521–525
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two-period panel data
effect of drunk driving laws on traffic fatalities, 

Example 13.7, 464–465
policy analysis with, 462–465

two-period panel data analysis, 455–462
distributed lag of crime rate on clear-up rate, 

Example 13.6, 461
organizing panel data, 461–462
sleeping vs. working, Example 13.5, 460–461

two-sided alternative, 128–130
Figure 4.4, 129
p-values for t tests, Figure 4.6, 134

two-tailed test, 128
two-variable linear regression model, 22. See also simple 

linear regression model
two-year-ahead forecast for unemployment rate, 

Example 18.10, 654

U
u variable, defined, 23
unbalanced panels, 488–499
unbiased estimation of �2

Theorem 3.3, 102
Theorem 10.3, 351

unbiased estimation of �2

Theorem 2.3, 57
unbiasedness of OLS, 47–52, 167

with serially correlated errors, in time series 
regressions, 408–412

Theorem 2.1, 50–51
Theorem 3.1, 88
Theorem 10.1, 348–349
time series data and, 345–349

uncentered R-squared, 235
unconditional forecast, 647
underspecifying the model, 89
unemployment. See also employment

effect of enterprise zones on claims for, Example 13.8, 
467–468

forecasting U.S. rate of, Example 18.8, 648–649
minimum wage, for Puerto Rico, Table 1.3, 8–9
minimum wage and

Example 1.6, 16
out-of-sample comparison of forecasts, Example 18.9, 

651–652
two-year-ahead forecast for unemployment rate, 

Example 18.10, 654
U.S. inflation and

Table 10.1, 341
unidentified equation, 560
unit root process, 630
unit roots

asymptotic critical values for unit root t test: no time 
trend, Table 18.2, 632

asymtotic critical values for unit root t test: linear time 
trend, Table 18.3, 634

in log of U.S. real gross domestic product, 
Example 18.4, 635

process, 391
testing for, 630–635

for annual U.S. inflation, Example 18.3, 635
three-month T-bill rates, Example 18.2, 632

units of measurement. See also data scaling
functional form and, 41–46

unobserved effect, 456
unobserved effects model, 456, 482
unobserved heterogeneity, 456
unrestricted model, 145
unsystematic part of y, 27
upward bias, 82
U.S. inflation, unemployment and, 

Table 10.1, 341
U.S. real gross domestic product, unit root in log of, 

Example 18.4, 635
utility maximization, 2–3

V
variable descriptions, Table 1, 684
variance

of OLS estimators, 52–56
of the prediction error, 208

Var(wage�educ) increasing with educ, 
Figure 2.9, 55

vectors
autoregressive (VAR) model, 649

Vietnam War, lifetime earnings of veterans, 514
voting outcomes

campaign expenditures and
Example 2.5, 35
Example 2.9, 41

W
wage and exper, quadratic relationship between, 

Figure 6.1, 194
wage offer function, 606
wages

against education, scatterplot, Figure 2.3, 30
education and

Example 2.4, 34–35
Example 2.7, 38
Figure 2.9, 55

effects of computer usage on, Example 7.9, 239, 
244–245

effects of physical attractiveness on, Example 7.7, 
236–237

equations
Example 2.10, 43–44
Figure 2.6, 43–44
Table 14.2, 492

equations, using panel data
Example 14.4, 491–492

gender gap, and changes in return to education, 
Example 13.2, 447–449

heteroskedasticity in, Example 2.13, 53
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hourly wage equation
Example 3.2, 76
Example 4.1, 124–125
Example 7.1, 229

log hourly wage equation
Example 7.5, 232–233
Example 7.6, 233–234
Example 7.10, 241–242

log wage equation with heteroskedasticity-robust 
standard errors, Example 8.1, 267–268

minimum wage, unemployment and
Example 1.6, 16

minimum wage, unemployment and (Puerto Rico)
Table 1.3, 8–9

multiple regression analysis, 92
productivity and, Example 11.7, 395–396
simple wage equation, Example 2.2, 24–27
wage offer equation for married women, Example 17.5, 

611
Wald statistic, 579–580
weak instruments, 516
weakly dependent, defined, 379–381
weighted least squares (WLS) estimation, 276–293

estimators, 278, 292–293, 433
Table 8.1, 280

heteroskedasticity
feasible GLS, 282–286
known up to multiplicative constant, 277–282
prediction and prediction intervals, 289–290
questioning assumed function, 287–288
questioning assumed function, Table 8.2, 288

nettfa Equation, Table 8.2, 288

White standard errors, 267
White test for heteroskedasticity, 274–276

special form, in log housing price equation, 
Example 8.5, 276

within estimator, 482
within transformation, 482
women’s fertility rates over time

Example 13.1, 445–447
Table 13.1, 456

worker compensation laws, effect on weeks out of work, 
Example 13.4, 454–455

worker productivity, job training and, Example 15.10, 
534–535

working, sleeping vs., Example 13.5, 460–461
working women. See education; labor force

Y
year dummy variables, 445
yields, error correction model for holding, 

Example 18.7, 644

Z
zero conditional mean assumption, 25

MLR.4, 87–88, 158, 170
TS.3, 347–349
TS.3�, 382–383, 401

zero mean and zero correlation (Assumption MLR.4�), 
169–170


	Front Cover
	Title Page
	Copyright
	Contents
	CHAPTER 1 The Nature of Econometrics and Economic Data
	1.1 What Is Econometrics?
	1.2 Steps in Empirical Economic Analysis
	1.3 The Structure of Economic Data
	Cross-Sectional Data
	Time Series Data
	Pooled Cross Sections
	Panel or Longitudinal Data
	A Comment on Data Structures

	1.4 Causality and the Notion of Ceteris Paribus in Econometric Analysis
	Summary
	Key Terms
	Problems
	Computer Exercises

	PART 1 Regression Analysis with Cross-Sectional Data
	CHAPTER 2 The Simple Regression Model
	2.1 Definition of the Simple Regression Model
	2.2 Deriving the Ordinary Least Squares Estimates
	2.3 Properties of OLS on Any Sample of Data
	2.4 Units of Measurement and Functional Form
	2.5 Expected Values and Variances of the OLS Estimators
	2.6 Regression through the Origin
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 2A

	CHAPTER 3 Multiple Regression Analysis: Estimation
	3.1 Motivation for Multiple Regression
	3.2 Mechanics and Interpretation of Ordinary Least Squares
	3.3 The Expected Value of the OLS Estimators
	3.4 The Variance of the OLS Estimators
	3.5 Efficiency of OLS: The Gauss-Markov Theorem
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 3A

	CHAPTER 4 Multiple Regression Analysis: Inference
	4.1 Sampling Distributions of the OLS Estimators
	4.2 Testing Hypotheses about a Single Population Parameter: The t Test
	4.3 Confidence Intervals
	4.4 Testing Hypotheses about a Single Linear Combination of the Parameters
	4.5 Testing Multiple Linear Restrictions: The F Test
	4.6 Reporting Regression Results
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 5 Multiple Regression Analysis: OLS Asymptotics
	5.1 Consistency
	5.2 Asymptotic Normality and Large Sample Inference
	5.3 Asymptotic Efficiency of OLS
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 5A

	CHAPTER 6 Multiple Regression Analysis: Further Issues
	6.1 Effects of Data Scaling on OLS Statistics
	6.2 More on Functional Form
	6.3 More on Goodness-of-Fit and Selection of Regressors
	6.4 Prediction and Residual Analysis
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 6A

	CHAPTER 7 Multiple Regression Analysis with Qualitative Information: Binary (or Dummy) Variables
	7.1 Describing Qualitative Information
	7.2 A Single Dummy Independent Variable
	7.3 Using Dummy Variables for Multiple Categories
	7.4 Interactions Involving Dummy Variables
	7.5 A Binary Dependent Variable: The Linear Probability Model
	7.6 More on Policy Analysis and Program Evaluation
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 8 Heteroskedasticity
	8.1 Consequences of Heteroskedasticity for OLS
	8.2 Heteroskedasticity-Robust Inference after OLS Estimation
	8.3 Testing for Heteroskedasticity
	8.4 Weighted Least Squares Estimation
	8.5 The Linear Probability Model Revisited
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 9 More on Specification and Data Issues
	9.1 Functional Form Misspecification
	9.2 Using Proxy Variables for Unobserved Explanatory Variables
	9.3 Models with Random Slopes
	9.4 Properties of OLS under Measurement Error
	9.5 Missing Data, Nonrandom Samples, and Outlying Observations
	9.6 Least Absolute Deviations Estimation
	Summary
	Key Terms
	Problems
	Computer Exercises


	PART 2 Regression Analysis with Time Series Data
	CHAPTER 10 Basic Regression Analysis with Time Series Data
	10.1 The Nature of Time Series Data
	10.2 Examples of Time Series Regression Models
	10.3 Finite Sample Properties of OLS under Classical Assumptions
	10.4 Functional Form, Dummy Variables, and Index Numbers
	10.5 Trends and Seasonality
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 11 Further Issues in Using OLS with Time Series Data
	11.1 Stationary and Weakly Dependent Time Series
	11.2 Asymptotic Properties of OLS
	11.3 Using Highly Persistent Time Series in Regression Analysis
	11.4 Dynamically Complete Models and the Absence of Serial Correlation
	11.5 The Homoskedasticity Assumption for Time Series Models
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 12 Serial Correlation and Heteroskedasticity in Time Series Regressions
	12.1 Properties of OLS with Serially Correlated Errors
	12.2 Testing for Serial Correlation
	12.3 Correcting for Serial Correlation with Strictly Exogenous Regressors
	12.4 Differencing and Serial Correlation
	12.5 Serial Correlation-Robust Inference after OLS
	12.6 Heteroskedasticity in Time Series Regressions
	Summary
	Key Terms
	Problems
	Computer Exercises


	PART 3 Advanced Topics
	CHAPTER 13 Pooling Cross Sections across Time: Simple Panel Data Methods
	13.1 Pooling Independent Cross Sections across Time
	13.2 Policy Analysis with Pooled Cross Sections
	13.3 Two-Period Panel Data Analysis
	13.4 Policy Analysis with Two-Period Panel Data
	13.5 Differencing with More Than Two Time Periods
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 13A

	CHAPTER 14 Advanced Panel Data Methods
	14.1 Fixed Effects Estimation
	14.2 Random Effects Models
	14.3 Applying Panel Data Methods to Other Data Structures
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 14A

	CHAPTER 15 Instrumental Variables Estimation and Two Stage Least Squares
	15.1 Motivation: Omitted Variables in a Simple Regression Model
	15.2 IV Estimation of the Multiple Regression Model
	15.3 Two Stage Least Squares
	15.4 IV Solutions to Errors-in-Variables Problems
	15.5 Testing for Endogeneity and Testing Overidentifying Restrictions
	15.6 2SLS with Heteroskedasticity
	15.7 Applying 2SLS to Time Series Equations
	15.8 Applying 2SLS to Pooled Cross Sections and Panel Data
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 15A

	CHAPTER 16 Simultaneous Equations Models
	16.1 The Nature of Simultaneous Equations Models
	16.2 Simultaneity Bias in OLS
	16.3 Identifying and Estimating a Structural Equation
	16.4 Systems with More Than Two Equations
	16.5 Simultaneous Equations Models with Time Series
	16.6 Simultaneous Equations Models with Panel Data
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 17 Limited Dependent Variable Models and Sample Selection Corrections
	17.1 Logit and Probit Models for Binary Response
	17.2 The Tobit Model for Corner Solution Responses
	17.3 The Poisson Regression Model
	17.4 Censored and Truncated Regression Models
	17.5 Sample Selection Corrections
	Summary
	Key Terms
	Problems
	Computer Exercises
	Appendix 17A
	Appendix 17B

	CHAPTER 18 Advanced Time Series Topics
	18.1 Infinite Distributed Lag Models
	18.2 Testing for Unit Roots
	18.3 Spurious Regression
	18.4 Cointegration and Error Correction Models
	18.5 Forecasting
	Summary
	Key Terms
	Problems
	Computer Exercises

	CHAPTER 19 Carrying Out an Empirical Project
	19.1 Posing a Question
	19.2 Literature Review
	19.3 Data Collection
	19.4 Econometric Analysis
	19.5 Writing an Empirical Paper
	Summary
	Key Terms
	Sample Empirical Projects
	List of Journals
	Data Sources


	Appendix A: Basic Mathematical Tools
	A.1 The Summation Operator and Descriptive Statistics
	A.2 Properties of Linear Functions
	A.3 Proportions and Percentages
	A.4 Some Special Functions and Their Properties
	A.5 Differential Calculus
	Summary
	Key Terms
	Problems

	Appendix B: Fundamentals of Probability
	B.1 Random Variables and Their Probability Distributions
	B.2 Joint Distributions, Conditional Distributions, and Independence
	B.3 Features of Probability Distributions
	B.4 Features of Joint and Conditional Distributions
	B.5 The Normal and Related Distributions
	Summary
	Key Terms
	Problems

	Appendix C: Fundamentals of Mathematical Statistics
	C.1 Populations, Parameters, and Random Sampling
	C.2 Finite Sample Properties of Estimators
	C.3 Asymptotic or Larger Sample Properties of Estimators
	C.4 General Approaches to Parameter Estimation
	C.5 Interval Estimation and Confidence Intervals
	C.6 Hypothesis Testing
	C.7 Remarks on Notation
	Summary
	Key Terms
	Problems

	Appendix D: Summary of Matrix Algebra
	D.1 Basic Definitions
	D.2 Matrix Operations
	D.3 Linear Independence and Rank of a Matrix
	D.4 Quadratic Forms and Positive Definite Matrices
	D.5 Idempotent Matrices
	D.6 Differentiation of Linear and Quadratic Forms
	D.7 Moments and Distributions of Random Vectors
	Summary
	Key Terms
	Problems

	Appendix E: The Linear Regression Model in Matrix Form
	E.1 The Model and Ordinary Least Squares Estimation
	E.2 Finite Sample Properties of OLS
	E.3 Statistical Inference
	E.4 Some Asymptotic Analysis
	Summary
	Key Terms
	Problems

	Appendix F: Answers to Chapter Questions
	Appendix G: Statistical Tables
	References
	Glossary
	Index

